1
|
Janiga E, Kim G, Chmielewski PJ, Lis T, Kim D, Stępień M. Porphyrin-Ryleneimide Hybrids: Low-Bandgap Acceptors in Energy-Transfer Cassettes. Chem Asian J 2020; 15:2854-2858. [PMID: 32667127 DOI: 10.1002/asia.202000762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/06/2022]
Abstract
Energy-transfer cassettes consisting of naphthaleneimide-fused metalloporphyrin acceptors (M=Zn and Pd) and BODIPY donors have been designed and synthesized. These systems have rigid pseudo-tetrahedral structures with a donor-acceptor separation of ca. 17.5 Å. Spectroscopic investigations, including femtosecond transient absorption measurements, showed efficient excitation energy transfer (EET) occurring according to the Förster mechanism. Strong fluorescence of the donor units and significant spectral overlap of the donor and acceptor subunits are prerequisites for the efficient EET in these systems.
Collapse
Affiliation(s)
- Ewelina Janiga
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Gakhyun Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
2
|
Plamont R, Balaban TS, Canard G. Straightforward Syntheses That Avoid Scrambling of meso
-Substituted [28]Hexaphyrins. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rémi Plamont
- Aix Marseille Univ; CNRS, Centrale Marseille; iSm2, Chirosciences
| | | | - Gabriel Canard
- Aix Marseille Univ; CNRS; CINAM; Campus de Luminy, Case 913 13288 Marseille Cedex 09 France
| |
Collapse
|
3
|
Gutsche CS, Ortwerth M, Gräfe S, Flanagan KJ, Senge MO, Reissig HU, Kulak N, Wiehe A. Nucleophilic Aromatic Substitution on Pentafluorophenyl-Substituted Dipyrranes and Tetrapyrroles as a Route to Multifunctionalized Chromophores for Potential Application in Photodynamic Therapy. Chemistry 2016; 22:13953-13964. [PMID: 27549436 DOI: 10.1002/chem.201601857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/12/2022]
Abstract
The application of porphyrinoids in biomedical fields, such as photodynamic therapy (PDT), requires the introduction of functional groups to tune their solubility for the biological environment and to allow a coupling to other active moieties or carrier systems. A valuable motif in this regard is the pentafluorophenyl (PFP) substituent, which can easily undergo a regiospecific nucleophilic replacement (SN Ar) of its para-fluorine atom by a number of nucleophiles. Here, it is shown that, instead of amino-substitution on the final porphyrinoid or BODIPY (boron dipyrromethene), the precursor 5-(PFP)-dipyrrane can be modified with amines (or alcohols). These dipyrranes were transformed into amino-substituted BODIPYs. Condensation of these dipyrranes with aldehydes gave access to trans-A2 B2 -porphyrins and trans-A2 B-corroles. By using pentafluorobenzaldehyde, it was possible to introduce another para-fluorine atom, which enabled the synthesis of multifunctionalized tetrapyrroles. Furthermore, alkoxy- and amino-substituted dipyrranes were applied to the synthesis of A3 B3 -hexaphyrins. The polar porphyrins that were prepared by using this method exhibited in vitro PDT activity against several tumor cell lines.
Collapse
Affiliation(s)
- Claudia S Gutsche
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34/36, 14195, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Marlene Ortwerth
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34/36, 14195, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Susanna Gräfe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany
| | - Keith J Flanagan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Arno Wiehe
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany. .,biolitec research GmbH, Otto-Schott-Str. 15, 07745, Jena, Germany.
| |
Collapse
|
4
|
Tanaka T, Osuka A. Chemistry of meso-Aryl-Substituted Expanded Porphyrins: Aromaticity and Molecular Twist. Chem Rev 2016; 117:2584-2640. [DOI: 10.1021/acs.chemrev.6b00371] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takayuki Tanaka
- Department of Chemistry,
Graduate School of Science, Kyoto University, Kyoto 606-8501, Japan
| | - Atsuhiro Osuka
- Department of Chemistry,
Graduate School of Science, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Shin JY, Kim K, Lim JM, Tanaka T, Kim D, Kim K, Shinokubo H, Osuka A. Photodynamics of [26]- and [28]Hexaphyrin-Bodipy Hybrids. Chemistry 2014; 20:4574-82. [DOI: 10.1002/chem.201400315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Indexed: 11/06/2022]
|
6
|
Bessette A, Hanan GS. Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices. Chem Soc Rev 2014; 43:3342-405. [PMID: 24577078 DOI: 10.1039/c3cs60411j] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review article presents the most recent developments in the use of materials based on dipyrromethene (DPM) and azadipyrromethenes (ADPM) for organic photovoltaic (OPV) applications. These chromophores and their corresponding BF2-chelated derivatives BODIPY and aza-BODIPY, respectively, are well known for fluorescence-based applications but are relatively new in the field of photovoltaic research. This review examines the variety of relevant designs, synthetic methodologies and photophysical studies related to materials that incorporate these porphyrinoid-related dyes in their architecture. The main idea is to inspire readers to explore new avenues in the design of next generation small-molecule and bulk-heterojunction solar cell (BHJSC) OPV materials based on DPM chromophores. The main concepts are briefly explained, along with the main challenges that are to be resolved in order to take full advantage of solar energy.
Collapse
Affiliation(s)
- André Bessette
- Département de Chimie, Université de Montréal, Pavillon J.-A. Bombardier, 5155 Decelles Avenue, Montréal, Québec H3T-2B1, Canada.
| | | |
Collapse
|
7
|
Yu C, Jiao L, Yin H, Zhou J, Pang W, Wu Y, Wang Z, Yang G, Hao E. α-/β-Formylated Boron-Dipyrrin (BODIPY) Dyes: Regioselective Syntheses and Photophysical Properties. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100736] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Saito S, Osuka A. Expanded Porphyrins: Intriguing Structures, Electronic Properties, and Reactivities. Angew Chem Int Ed Engl 2011; 50:4342-73. [PMID: 21491551 DOI: 10.1002/anie.201003909] [Citation(s) in RCA: 544] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Indexed: 01/07/2023]
Affiliation(s)
- Shohei Saito
- Department of Chemistry, Graduate School of Science, Kyoto University
| | | |
Collapse
|
10
|
Whited MT, Djurovich PI, Roberts ST, Durrell AC, Schlenker CW, Bradforth SE, Thompson ME. Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex. J Am Chem Soc 2010; 133:88-96. [DOI: 10.1021/ja108493b] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew T. Whited
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I. Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sean T. Roberts
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Alec C. Durrell
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Cody W. Schlenker
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E. Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|