1
|
Li WJ, Hu Z, Xu L, Wang XQ, Wang W, Yin GQ, Zhang DY, Sun Z, Li X, Sun H, Yang HB. Rotaxane-Branched Dendrimers with Enhanced Photosensitization. J Am Chem Soc 2020; 142:16748-16756. [PMID: 32869633 DOI: 10.1021/jacs.0c07292] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past few decades, fabrication of functional rotaxane-branched dendrimers has become one of the most attractive yet challenging topics within supramolecular chemistry and materials science. Herein, we present the successful fabrication of a family of new rotaxane-branched dendrimers containing up to 21 platinum atoms and 42 photosensitizer moieties through an efficient and controllable divergent approach. Notably, the photosensitization efficiencies of these rotaxane-branched dendrimers gradually increased with the increase of dendrimer generation. For example, third-generation rotaxane-branched dendrimer PG3 revealed 13.3-fold higher 1O2 generation efficiency than its corresponding monomer AN. The enhanced 1O2 generation efficiency was attributed to the enhancement of intersystem crossing (ISC) through the simple and efficient incorporation of multiple heavy atoms and photosensitizer moieties on the axles and wheels of the rotaxane units, respectively, which has been validated by UV-visible and fluorescence techniques, time-dependent density functional theory calculations, photolysis model reactions, and apparent activation energy calculations. Therefore, we develop a new promising platform of rotaxane-branched dendrimers for the preparation of effective photosensitizers.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P.R. China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P.R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| |
Collapse
|
2
|
Riss-Yaw B, Morin J, Clavel C, Coutrot F. How Secondary and Tertiary Amide Moieties are Molecular Stations for Dibenzo-24-crown-8 in [2]Rotaxane Molecular Shuttles? Molecules 2017; 22:E2017. [PMID: 29160822 PMCID: PMC6150268 DOI: 10.3390/molecules22112017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
Interlocked molecular machines like [2]rotaxanes are intriguing aesthetic molecules. The control of the localization of the macrocycle, which surrounds a molecular axle, along the thread leads to translational isomers of very different properties. Although many moieties have been used as sites of interactions for crown ethers, the very straightforwardly obtained amide motif has more rarely been envisaged as molecular station. In this article, we report the use of secondary and tertiary amide moieties as efficient secondary molecular station in pH-sensitive molecular shuttles. Depending on the N-substitution of the amide station, and on deprotonation or deprotonation-carbamoylation, the actuation of the molecular machinery differs accordingly to very distinct interactions between the axle and the DB24C8.
Collapse
Affiliation(s)
- Benjamin Riss-Yaw
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| | - Justine Morin
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| | - Caroline Clavel
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| |
Collapse
|
3
|
Farahani N, Zhu K, O'Keefe CA, Schurko RW, Loeb SJ. Thermally Driven Dynamics of a Rotaxane Wheel about an Imidazolium Axle inside a Metal-Organic Framework. Chempluschem 2016; 81:836-841. [PMID: 31968814 DOI: 10.1002/cplu.201600176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Indexed: 01/28/2023]
Abstract
A new mechanically interlocked molecular linker was prepared by using ring-closing metathesis (Grubbs I) to clip a [24]crown-6 ether wheel around an axle containing both Y-shaped diphenylimidazole and isophthalic acid groups. A metal-organic framework (MOF) material was prepared using this linker and ZnII ions. Single-crystal X-ray diffraction experiments showed that the MOF contains an imidazolium-based rotaxane linked by dimeric [Zn2 (NO3 )(DEF)] secondary building units (SBUs). Variable-temperature (VT), 2 H solid-state NMR spectroscopy was used to characterize the motion of the "soft" wheel component around the rigid "hard" lattice of the framework. At higher temperatures (above 150 °C), it was demonstrated that the 24-membered, macrocyclic ring of the MOF undergoes rapid, thermally driven rotation about the axle inside the voids of the lattice.
Collapse
Affiliation(s)
- Nasim Farahani
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Kelong Zhu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Christopher A O'Keefe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
4
|
Riss-Yaw B, Waelès P, Coutrot F. Reverse Anomeric Effect in Large-Amplitude Pyridinium Amide-Containing Mannosyl [2]Rotaxane Molecular Shuttles. Chemphyschem 2016; 17:1860-9. [DOI: 10.1002/cphc.201600253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Benjamin Riss-Yaw
- Supramolecular Machines and ARchitectures Team; Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS; Université Montpellier, ENSCM, Case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon; 34095 Montpellier cedex 5 France
| | - Philip Waelès
- Supramolecular Machines and ARchitectures Team; Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS; Université Montpellier, ENSCM, Case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon; 34095 Montpellier cedex 5 France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team; Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS; Université Montpellier, ENSCM, Case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon; 34095 Montpellier cedex 5 France
| |
Collapse
|
8
|
Mercer DJ, Vella SJ, Guertin L, Suhan ND, Tiburcio J, Vukotic VN, Wisner JA, Loeb SJ. Rotaxanes Based on the 1,2-Bis(pyridinio)ethane-24-Crown-8 Templating Motif. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Suhan ND, Allen L, Gharib MT, Viljoen E, Vella SJ, Loeb SJ. Colour coding the co-conformations of a [2]rotaxane flip-switch. Chem Commun (Camb) 2011; 47:5991-3. [DOI: 10.1039/c1cc10948k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|