Kelly B, O'Donovan DH, O'Brien J, McCabe T, Blanco F, Rozas I. Pyridin-2-yl guanidine derivatives: conformational control induced by intramolecular hydrogen-bonding interactions.
J Org Chem 2011;
76:9216-27. [PMID:
21977964 DOI:
10.1021/jo200954c]
[Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and conformational analysis of a series of pyridin-2-yl guanidine derivatives using NMR, X-ray crystallography, and B3LYP/6-31+G** theoretical studies are reported. A remarkable difference was observed in the (1)H NMR spectra of the guanidinium salts as compared with their N,N'-di-Boc protected and neutral analogues. This difference corresponds to a 180° change in the dihedral angle between the guanidine/ium moiety and the pyridine ring in the salts as compared to the Boc-protected derivatives, a conclusion that was supported by theoretical studies, X-ray data, and NMR analysis. Moreover, our data sustain the existence of two intramolecular hydrogen-bonding systems: (i) between the pyridine N1 atom and the guanidinium protons in the salts and (ii) within the tert-butyl carbamate groups of the Boc-protected derivatives. To verify that the observed conformational control arises from these intramolecular interactions, a new series of N-Boc-N'-propyl-substituted pyridin-2-yl guanidines were also prepared and studied.
Collapse