1
|
Yuan XY, Li M, Yu X, Li H. Structural analysis, simulation, and molecular docking of aza-nitrile into cathepsins to explain the high selectivity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Cathepsin B: Active site mapping with peptidic substrates and inhibitors. Bioorg Med Chem 2018; 27:1-15. [PMID: 30473362 DOI: 10.1016/j.bmc.2018.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
The potential of papain-like cysteine proteases, such as cathepsin B, as drug discovery targets for systemic human diseases has prevailed over the past years. The development of potent and selective low-molecular cathepsin B inhibitors relies on the detailed expertise on preferred amino acid and inhibitor residues interacting with the corresponding specificity pockets of cathepsin B. Such knowledge might be obtained by mapping the active site of the protease with combinatorial libraries of peptidic substrates and peptidomimetic inhibitors. This review, for the first time, summarizes a wide spectrum of active site mapping approaches. It considers relevant X-ray crystallographic data and discloses propensities towards favorable protein-ligand interactions in case of the therapeutically relevant protease cathepsin B.
Collapse
|
3
|
Steinebach C, Ambrożak A, Dosa S, Beedie SL, Strope JD, Schnakenburg G, Figg WD, Gütschow M. Synthesis, Structural Characterization, and Antiangiogenic Activity of Polyfluorinated Benzamides. ChemMedChem 2018; 13:2080-2089. [PMID: 30134015 DOI: 10.1002/cmdc.201800263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/17/2018] [Indexed: 11/09/2022]
Abstract
The introduction of fluorine into bioactive molecules is a matter of importance in medicinal chemistry. In this study, representatives of various chemical entities of fluoroaromatic compounds were synthesized. Depending on the reaction conditions, either tetrafluorophthalimides or ammonium tetrafluorophthalamates are accessible from tetrafluorophthalic anhydride and primary amines. Tetrafluorophthalamic acids undergo thermal decarboxylation to yield tetrafluorobenzamides. These could be successfully converted upon treatment with primary amines, in the course of an aromatic nucleophilic substitution, to 2,3,5-trifluorobenzamides with respective amino substituents at the 4-position. The five structure types were characterized by means of spectroscopic and crystallographic methods. The synthesized compounds were evaluated as inhibitors of angiogenesis by measuring microvessel outgrowth in a rat aortic ring assay. The biological activity was maintained throughout these different polyfluorinated chemotypes.
Collapse
Affiliation(s)
- Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Agnieszka Ambrożak
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Stefan Dosa
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Shaunna L Beedie
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - William D Figg
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
4
|
Dato FM, Sheikh M, Uhl RZ, Schüller AW, Steinkrüger M, Koch P, Neudörfl JM, Gütschow M, Goldfuss B, Pietsch M. ω-Phthalimidoalkyl Aryl Ureas as Potent and Selective Inhibitors of Cholesterol Esterase. ChemMedChem 2018; 13:1833-1847. [PMID: 30004170 DOI: 10.1002/cmdc.201800388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Indexed: 11/09/2022]
Abstract
Cholesterol esterase (CEase), a serine hydrolase thought to be involved in atherogenesis and thus coronary heart disease, is considered as a target for inhibitor development. We investigated recombinant human and murine CEases with a new fluorometric assay in a structure-activity relationship study of a small library of ω-phthalimidoalkyl aryl ureas. The urea motif with an attached 3,5-bis(trifluoromethyl)phenyl group and the aromatic character of the ω-phthalimide residue were most important for inhibitory activity. In addition, an alkyl chain composed of three or four methylene groups, connecting the urea and phthalimide moieties, was found to be an optimal spacer for inhibitors. The so-optimized compounds 2 [1-(3,5-bis(trifluoromethyl)phenyl)-3-(3-(1,3-dioxoisoindolin-2-yl)propyl)urea] and 21 [1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(1,3-dioxoisoindolin-2-yl)butyl)urea] exhibited dissociation constants (Ki ) of 1-19 μm on the two CEases and showed either a competitive (2 on the human enzyme and 21 on the murine enzyme) or a noncompetitive mode of inhibition. Two related serine hydrolases-monoacylglycerol lipase and fatty acid amide hydrolase-were inhibited by ω-phthalimidoalkyl aryl ureas to a lesser extent.
Collapse
Affiliation(s)
- Florian M Dato
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany.,Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Miriam Sheikh
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| | - Rocky Z Uhl
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| | - Alexandra W Schüller
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany.,Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Michaela Steinkrüger
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| | - Peter Koch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| | - Jörg-Martin Neudörfl
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| |
Collapse
|
5
|
|
6
|
Plebanek E, Chevrier F, Roy V, Garenne T, Lecaille F, Warszycki D, Bojarski AJ, Lalmanach G, Agrofoglio LA. Straightforward synthesis of 2,4,6-trisubstituted 1,3,5-triazine compounds targeting cysteine cathepsins K and S. Eur J Med Chem 2016; 121:12-20. [PMID: 27214508 DOI: 10.1016/j.ejmech.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022]
Abstract
The synthesis and evaluation against various cysteine cathepsins with endopeptidase activity, of two new families of hitherto unknown 1,3,5-triazines, substituted by a nitrile function and either a cyclohexylamine moiety (5-like) or a piperazine moiety (9-like) are described. The structure-activity relationship was discussed; from 16 synthesized novel compounds, 9h was the most active and selectively inhibitor of Cat K (IC50 = 28 nM) and Cat S (IC50 = 23 nM). Molecular docking of 9h to X-ray crystal structure of cathepsins K and S confirmed a common binding mode with a crucial covalent bond with Cys25. We observed for 9h that p-trifluorophenyl group is located in S2 pocket and possess hydrophobic interactions with Tyr67 and Met68. Triazine and piperazine moieties are located in S'1 pocket and interact with Gly23, Cys63, Gly64 and Gly65. Altogether, these results indicate that the new analogs can make them effective agents against some viruses for which the glycoprotein cleavage is mediated by an array of proteases.
Collapse
Affiliation(s)
| | | | - Vincent Roy
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France
| | - Thibault Garenne
- INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, F-37032, Tours Cedex, France
| | - Fabien Lecaille
- INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, F-37032, Tours Cedex, France
| | - Dawid Warszycki
- Medicinal Chemistry Department, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Medicinal Chemistry Department, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Gilles Lalmanach
- INSERM, UMR 1100, Pathologies Respiratoires: protéolyse et aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, F-37032, Tours Cedex, France
| | | |
Collapse
|
7
|
Fustero S, Simón-Fuentes A, Barrio P, Haufe G. Olefin Metathesis Reactions with Fluorinated Substrates, Catalysts, and Solvents. Chem Rev 2014; 115:871-930. [DOI: 10.1021/cr500182a] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Santos Fustero
- Departamento
de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | | | - Pablo Barrio
- Departamento
de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain
| | - Günter Haufe
- Organisch-Chemisches
Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, D-48149 Münster, Germany
| |
Collapse
|
8
|
The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem 2014; 6:1355-71. [DOI: 10.4155/fmc.14.73] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine peptidase, with an important role in the development and progression of cancer. It is involved in the degradation of extracellular matrix proteins, a process promoting invasion and metastasis of tumor cells and tumor angiogenesis. Cathepsin B is unique among cathepsins in possessing both carboxypeptidase and endopeptidase activities. While the former is associated with its physiological role, the latter is involved in pathological degradation of the extracellular matrix. Its activities are regulated by different means, the most important being its endogenous inhibitors, the cystatins. In cancer this peptidase/inhibitor balance is altered, leading to harmful cathepsin B activity. The latter can be prevented by exogenous inhibitors. They differ in modes of inhibition, size, structure, binding affinity, selectivity, toxicity and bioavailability. In this article, we review the properties and function of endogenous and exogenous cathepsin B inhibitors and indicate their application as possible anticancer agents.
Collapse
|
9
|
Yuan XY, Fu DY, Ren XF, Fang X, Wang L, Zou S, Wu Y. Highly selective aza-nitrile inhibitors for cathepsin K, structural optimization and molecular modeling. Org Biomol Chem 2013; 11:5847-52. [DOI: 10.1039/c3ob41165f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Ren XF, Li HW, Fang X, Wu Y, Wang L, Zou S. Highly selective azadipeptide nitrile inhibitors for cathepsin K: design, synthesis and activity assays. Org Biomol Chem 2013; 11:1143-8. [DOI: 10.1039/c2ob26624e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Frizler M, Mertens MD, Gütschow M. Fluorescent nitrile-based inhibitors of cysteine cathepsins. Bioorg Med Chem Lett 2012; 22:7715-8. [PMID: 23122525 DOI: 10.1016/j.bmcl.2012.09.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/20/2012] [Accepted: 09/25/2012] [Indexed: 01/18/2023]
Abstract
Cysteine cathepsins play an important role in many (patho)physiological conditions. Among them, cathepsins L, S, K and B are subjects of several drug discovery programs. Besides their role as drug targets, cysteine cathepsins are additionally considered to be possible biomarkers for inflammation and cancer. Herein, we describe the design, synthesis, biological evaluation and spectral properties of fluorescently labeled dipeptide- and azadipeptide nitriles.
Collapse
Affiliation(s)
- Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | |
Collapse
|
12
|
Fustero S, Albert L, Mateu N, Chiva G, Miró J, González J, Aceña JL. Stereoselective access to fluorinated and non-fluorinated quaternary piperidines: synthesis of pipecolic acid and iminosugar derivatives. Chemistry 2012; 18:3753-64. [PMID: 22334380 DOI: 10.1002/chem.201102351] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Indexed: 11/07/2022]
Abstract
The preparation of optically pure quaternary piperidines, both fluorinated and non-fluorinated, has been achieved from a chiral imino lactone derived from (R)-phenylglycinol. In the case of the fluorinated derivatives, the addition of (trifluoromethyl)trimethylsilane (TMSCF(3)) followed by iodoamination and migration of the CF(3) group allowed access to four derivatives of α-(trifluoromethyl)pipecolic acid. A theoretical study of the CF(3)-group rearrangement has been carried out to help establish the reaction mechanism of this uncommon transformation. Moreover, a route to trifluoromethyl-substituted iminosugars was also developed through the diastereoselective dihydroxylation of suitable synthetic intermediates. Conversely, alkylation of the starting substrate and subsequent cross-metathesis and aza-Michael reactions led to α-alkyl derivatives of the target compounds.
Collapse
Affiliation(s)
- Santos Fustero
- Departmento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
Frizler M, Lohr F, Lülsdorff M, Gütschow M. Facing the gem-dialkyl effect in enzyme inhibitor design: preparation of homocycloleucine-based azadipeptide nitriles. Chemistry 2011; 17:11419-23. [PMID: 21898616 DOI: 10.1002/chem.201101350] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/18/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Maxim Frizler
- Pharmaceutical Chemistry I, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | | | | | | |
Collapse
|