1
|
Wang G, Han S, Lu Y. From Structure to Application: The Evolutionary Trajectory of Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310026. [PMID: 38860348 DOI: 10.1002/smll.202310026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Since the proposal of the concept of spherical nucleic acids (SNAs) in 1996, numerous studies have focused on this topic and have achieved great advances. As a new delivery system for nucleic acids, SNAs have advantages over conventional deoxyribonucleic acid (DNA) nanostructures, including independence from transfection reagents, tolerance to nucleases, and lower immune reactions. The flexible structure of SNAs proves that various inorganic or organic materials can be used as the core, and different types of nucleic acids can be conjugated to realize diverse functions and achieve surprising and exciting outcomes. The special DNA nanostructures have been employed for immunomodulation, gene regulation, drug delivery, biosensing, and bioimaging. Despite the lack of rational design strategies, potential cytotoxicity, and structural defects of this technology, various successful examples demonstrate the bright and convincing future of SNAs in fields such as new materials, clinical practice, and pharmacy.
Collapse
Affiliation(s)
- Guijia Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Dong F, Yan W, Dong W, Shang X, Xu Y, Liu W, Wu Y, Wei W, Zhao T. DNA-enabled fluorescent-based nanosensors monitoring tumor-related RNA toward advanced cancer diagnosis: A review. Front Bioeng Biotechnol 2022; 10:1059845. [DOI: 10.3389/fbioe.2022.1059845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
As a burgeoning non-invasive indicator for reproducible cancer diagnosis, tumor-related biomarkers have a wide range of applications in early cancer screening, efficacy monitoring, and prognosis predicting. Accurate and efficient biomarker determination, therefore, is of great importance to prevent cancer progression at an early stage, thus reducing the disease burden on the entire population, and facilitating advanced therapies for cancer. During the last few years, various DNA structure-based fluorescent probes have established a versatile platform for biological measurements, due to their inherent biocompatibility, excellent capacity to recognize nucleic and non-nucleic acid targets, obvious accessibility to synthesis as well as chemical modification, and the ease of interfacing with signal amplification protocols. After decades of research, DNA fluorescent probe technology for detecting tumor-related mRNAs has gradually grown to maturity, especially the advent of fluorescent nanoprobes has taken the process to a new level. Here, a systematic introduction to recent trends and advances focusing on various nanomaterials-related DNA fluorescent probes and the physicochemical properties of various involved nanomaterials (such as AuNP, GO, MnO2, SiO2, AuNR, etc.) are also presented in detail. Further, the strengths and weaknesses of existing probes were described and their progress in the detection of tumor-related mRNAs was illustrated. Also, the salient challenges were discussed later, with a few potential solutions.
Collapse
|
3
|
Spherical nucleic acids-based biosensors for cancer biomarkers detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
5
|
Poly-adenine-mediated spherical nucleic acid probes for live cell fluorescence imaging of tumor-related microRNAs. Mol Biol Rep 2022; 49:3705-3712. [DOI: 10.1007/s11033-022-07210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
|
6
|
Zhao T, Dong F, Hu X, Xu Y, Wei W, Liu R, Yu F, Fang W, Shen Y, Zhang Z. Dynamic tracking of p21 mRNA in living cells by sticky-flares for the visual evaluation of the tumor treatment effect. NANOSCALE 2022; 14:1733-1741. [PMID: 34985067 DOI: 10.1039/d1nr05418j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monitoring the expression level of the intracellular tumor suppressor gene p21 mRNA is essential to reveal the progress and prognosis of a tumor. Methods widely reported for the detection of p21 mRNA are the real-time polymerase chain reaction and Northern blot. However, these methods only detect mRNA in vitro and cannot realize the in situ monitoring of the p21 mRNA expression level in living cells. Additionally, the sensor for the real-time tracking and monitoring of the p21 mRNA location without the help of a transfection reagent in living cells is still limited. Herein, a novel sticky-flare was constructed for the dynamic monitoring of the temporal and spatial variations of p21 mRNA in living cells. The nanoprobe consists of AuNP, a recognition sequence modified with Cy5, and a thiol-modified DNA sequence. The thiol oligonucleotide strand could act partially complementary to the Cy5-modified oligonucleotide strand to form a double-stranded DNA linked to AuNP, resulting in the fluorescence quenching of Cy5 due to the energy transfer from Cy5 to the gold sphere. In the presence of p21 mRNA, the Cy5-modified recognition nucleic acid specifically bound to p21 mRNA to form a more stable double chain and escaped from the gold sphere, leading to the recovery of red fluorescence. Our method is better than other methods in its ability to quantify the spatial distribution and expression level of p21 mRNA in living cells and discriminate various tumor cell lines with different p21 mRNA expression levels by the naked eye. Particularly, the sticky-flare probe used in this assay could allow the visual evaluation of the tumor treatment effect and the determination of the tumor progression stage by enabling monitoring of the relative expression level of p21 mRNA in tumor cells after cisplatin treatment. The method reported here is accurate, reliable and needs no auxiliary tools (transfection reagent), and thereby provides a promising route for the prognostic evaluation and drug development of cancer treatment in the future.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, Anhui, China
- Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fengqi Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Xinlong Hu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Yanli Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Wenmei Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Rui Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Fang Yu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Weijun Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
7
|
Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, Zhang S, Gong Z, Shi L, Li X, Liao Q, Xiang B, Zhou M, Guo C, Li G, Zeng Z, Wu X, Xiong W. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology 2021; 19:403. [PMID: 34863202 PMCID: PMC8645109 DOI: 10.1186/s12951-021-01149-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Yang Z, Liu E, Wang SM, Xiao YF, Zeng S, Yang SM, Zhao XY, Huang Y. Development of a long noncoding RNA BC032469-dependent gold nanoparticle molecular beacon for the detection of gastric cancer cells. Nanomedicine (Lond) 2021; 16:2255-2267. [PMID: 34569291 DOI: 10.2217/nnm-2021-0249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: Long noncoding RNA (lncRNA) BC032469-dependent gold nanoparticle molecular beacons (AuNP-MB) were constructed for the detection of gastric cancer cells. Materials & methods: The AuNP-MBs were prepared according to well-established procedures based on the Au-S interaction between the gold lattice and thiol functionalized oligonucleotides. More importantly, the stability and targeting ability of AuNP-MB were verified by a series of in vitro and in vivo experiments. Results: The lncRNA-dependent probes were successfully utilized for AuNP-MB-based intracellular imaging, with fluorescence effectively emitted in GC cells, but not in normal cells. Notably, such fluorescent emission was positively correlated with lncRNA BC032469 expression. Conclusion: The authors developed an effective fluorescent imaging probe for the recognition of gastric cancer cells.
Collapse
Affiliation(s)
- Zhuo Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No. 83, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - En Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No. 83, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Su Min Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No. 83, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Yu Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No. 83, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No. 83, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Shi Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No. 83, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Xiao Yan Zhao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No. 83, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, No. 83, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| |
Collapse
|
9
|
Khandker SS, Shakil MS, Hossen MS. Gold Nanoparticles; Potential Nanotheranostic Agent in Breast Cancer: A Comprehensive Review with Systematic Search Strategy. Curr Drug Metab 2021; 21:579-598. [PMID: 32520684 DOI: 10.2174/1389200221666200610173724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Breast cancer is a heterogeneous disease typically prevalent among women and is the second-largest cause of death worldwide. Early diagnosis is the key to minimize the cancer-induced complication, however, the conventional diagnostic strategies have been sluggish, complex, and, to some extent, non-specific. Therapeutic tools are not so convenient and side effects of current therapies offer the development of novel theranostic tool to combat this deadly disease. OBJECTIVE This article aims to summarize the advances in the diagnosis and treatment of breast cancer with gold nanoparticles (GNP or AuNP). METHODS A systematic search was conducted in the three popular electronic online databases including PubMed, Google Scholar, and Web of Science, regarding GNP as breast cancer theranostics. RESULTS Published literature demonstrated that GNPs tuned with photosensitive moieties, nanomaterials, drugs, peptides, nucleotide, peptides, antibodies, aptamer, and other biomolecules improve the conventional diagnostic and therapeutic strategies of breast cancer management with minimum cytotoxic effect. GNP derived diagnosis system assures reproducibility, reliability, and accuracy cost-effectively. Additionally, surface-modified GNP displayed theranostic potential even in the metastatic stage of breast cancer. CONCLUSION Divergent strategies have shown the theranostic potential of surface tuned GNPs against breast cancer even in the metastatic stage with minimum cytotoxic effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Shahad Saif Khandker
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Salman Shakil
- Department of Pharmacology & Toxicology, University of Otago, 362 Leith St., North Dunedin, Dunedin 9016, New Zealand
| | - Md Sakib Hossen
- Department of Biochemistry, Primeasia University, Banani, Dhaka, Bangladesh
| |
Collapse
|
10
|
Berneschi S, D'Andrea C, Baldini F, Banchelli M, de Angelis M, Pelli S, Pini R, Pugliese D, Boetti NG, Janner D, Milanese D, Giannetti A, Matteini P. Ion-exchanged glass microrods as hybrid SERS/fluorescence substrates for molecular beacon-based DNA detection. Anal Bioanal Chem 2021; 413:6171-6182. [PMID: 34278523 DOI: 10.1007/s00216-021-03418-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
Ion-exchange in molten nitrate salts containing metal ions (i.e. silver, copper, etc.) represents a well-established technique able to modify the chemical-physical properties of glass materials. It is widely used not only in the field of integrated optics (IO) but also, more recently, in plasmonics due to the possibility to induce the formation of metal nanoparticles in the glass matrix by an ad hoc thermal post-process. In this work, the application of this technology for the realisation of low-cost and stable surface-enhanced Raman scattering (SERS) active substrates, based on soda-lime glass microrods, is reported. The microrods, with a radius of a few tens of microns, were obtained by cutting the end of an ion-exchanged soda-lime fibre for a length less than 1 cm. As ion source, silver nitrate was selected due to the outstanding SERS properties of silver. The ion-exchange and thermal annealing post-process parameters were tuned to expose the embedded silver nanoparticles on the surface of the glass microrods, avoiding the use of any further chemical etching step. In order to test the combined SERS/fluorescence response of these substrates, labelled molecular beacons (MBs) were immobilised on their surface for deoxyribonucleic acid (DNA) detection. Our experiments confirm that target DNA is attached on the silver nanoparticles and its presence is revealed by both SERS and fluorescence measurements. These results pave the way towards the development of low-cost and stable hybrid fibres, in which SERS and fluorescence interrogation techniques are combined in the same optical device.
Collapse
Affiliation(s)
- Simone Berneschi
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Cristiano D'Andrea
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Martina Banchelli
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Marella de Angelis
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Stefano Pelli
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Roberto Pini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Diego Pugliese
- Department of Applied Science and Technology and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Nadia G Boetti
- Fondazione LINKS-Leading Innovation and Knowledge for Society, via P. C. Boggio 61, 10138, Turin, Italy
| | - Davide Janner
- Department of Applied Science and Technology and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Daniel Milanese
- Department of Engineering and Architecture and RU INSTM, Università di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
11
|
Xavier M, Kyriazi ME, Lanham S, Alexaki K, Matthews E, El-Sagheer AH, Brown T, Kanaras AG, Oreffo ROC. Enrichment of Skeletal Stem Cells from Human Bone Marrow Using Spherical Nucleic Acids. ACS NANO 2021; 15:6909-6916. [PMID: 33751885 DOI: 10.1021/acsnano.0c10683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human bone marrow (BM)-derived stromal cells contain a population of skeletal stem cells (SSCs), with the capacity to differentiate along the osteogenic, adipogenic, and chondrogenic lineages, enabling their application to clinical therapies. However, current methods to isolate and enrich SSCs from human tissues remain, at best, challenging in the absence of a specific SSC marker. Unfortunately, none of the current proposed markers alone can isolate a homogeneous cell population with the ability to form bone, cartilage, and adipose tissue in humans. Here, we have designed DNA-gold nanoparticles able to identify and sort SSCs displaying specific mRNA signatures. The current approach demonstrates the significant enrichment attained in the isolation of SSCs, with potential therein to enhance our understanding of bone cell biology and translational applications.
Collapse
Affiliation(s)
- Miguel Xavier
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Maria-Eleni Kyriazi
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Stuart Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Konstantina Alexaki
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Elloise Matthews
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
12
|
Bidar N, Amini M, Oroojalian F, Baradaran B, Hosseini SS, Shahbazi MA, Hashemzaei M, Mokhtarzadeh A, Hamblin MR, de la Guardia M. Molecular beacon strategies for sensing purpose. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Arndt N, Tran HDN, Zhang R, Xu ZP, Ta HT. Different Approaches to Develop Nanosensors for Diagnosis of Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001476. [PMID: 33344116 PMCID: PMC7740096 DOI: 10.1002/advs.202001476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Indexed: 05/09/2023]
Abstract
The success of clinical treatments is highly dependent on early detection and much research has been conducted to develop fast, efficient, and precise methods for this reason. Conventional methods relying on nonspecific and targeting probes are being outpaced by so-called nanosensors. Over the last two decades a variety of activatable sensors have been engineered, with a great diversity concerning the operating principle. Therefore, this review delineates the achievements made in the development of nanosensors designed for diagnosis of diseases.
Collapse
Affiliation(s)
- Nina Arndt
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- Department of BiotechnologyTechnische Universität BerlinBerlin10623Germany
| | - Huong D. N. Tran
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- School of Environment and ScienceGriffith UniversityBrisbaneQueensland4111Australia
| |
Collapse
|
14
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
15
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
16
|
Dang W, Liu H, Fan J, Zhao C, Long Y, Tong C, Liu B. Monitoring VEGF mRNA and imaging in living cells in vitro using rGO-based dual fluorescent signal amplification platform. Talanta 2019; 205:120092. [PMID: 31450435 DOI: 10.1016/j.talanta.2019.06.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
VEGF mRNA, as an important biomarker for disease diagnosis and therapeutics, has received extensive attention. However, how to monitor its mRNA levels rapidly and sensitively remains a challenge. Herein, a strategy was designed for facile and efficient detection of VEGF mRNA and imaging in living cells using a collaborative system of a fluorophore-labeled single-stranded probe (P), reduced graphene oxide (rGO) and double-specific nuclease (DSN). The combination of strong fluorophore-quenching ability of rGO with DSN assisted signal amplification contributes to the superior sensitivity of the assay for VEGF mRNA, which was reflected by the lower limit of mRNA detection of 100 fM obtained using dual signal amplification manner. Furthermore, the developed sensor was directly used for intracellular mRNA imaging in vitro without the assistance of transfection reagent. In summary, the simple, ultra-sensitive and cost-effective mRNA assay system, which provided a general analysis strategy for other mRNAs assay by replacing the sequence of the probe, is hopeful for applying on the clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Wenya Dang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Hao Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Chuan Zhao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ying Long
- College of Biology, Hunan University, Changsha, 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
17
|
Quan W, Xudong W, Min X, Lou X, Fan X. One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
RNA imaging by chemical probes. Adv Drug Deliv Rev 2019; 147:44-58. [PMID: 31398387 DOI: 10.1016/j.addr.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Abstract
Sequence-specific detection of intracellular RNA is one of the most important approaches to understand life phenomena. However, it is difficult to detect RNA in living cells because of its variety and scarcity. In the last three decades, several chemical probes have been developed for RNA detection in living cells. These probes are composed of DNA or artificial nucleic acid and hybridize with the target RNA in a sequence-specific manner. This hybridization triggers a change of fluorescence or a chemical reaction. In this review, we classify the probes according to the associated fluorogenic mechanism, that is, interaction between fluorophore and quencher, environmental change of fluorophore, and template reaction with/without ligation. In addition, we introduce examples of RNA imaging in living cells.
Collapse
|
19
|
Stobiecka M, Ratajczak K, Jakiela S. Toward early cancer detection: Focus on biosensing systems and biosensors for an anti-apoptotic protein survivin and survivin mRNA. Biosens Bioelectron 2019; 137:58-71. [PMID: 31078841 DOI: 10.1016/j.bios.2019.04.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
The development of biosensors for cancer biomarkers has recently been expanding rapidly, offering promising biomedical applications of these sensors as highly sensitive, selective, and inexpensive bioanalytical tools that can provide alternative methodology to that afforded by the advanced hyphenated-instrumental techniques. In this review, we focus particularly on the detection of a member of the inhibitor of apoptosis proteins (IAP) family, protein survivin (Sur), a ubiquitous re-organizer of the cell life cycle with the ability to inhibit the apoptosis and induce an enhanced proliferation leading to the unimpeded cancer growth and metastasis. Herein, we critically evaluate the progress in the development of novel biosensing systems and biosensors for the detection of two survivin (Sur) biomarkers: the Sur protein and its messenger RNA (Sur mRNA), including immunosensors, electrochemical piezo- and impedance-sensors, electrochemi-luminescence biosensors, genosensors based on oligonucleotide molecular beacons (MBs) with fluorescent or electrochemical transduction, as well as the microfluidic and related analytical platforms based on solution chemistry. The in-situ applications of survivin biomarkers' detection technologies to equip nanocarriers of the controlled drug delivery systems with MB-based fluorescence imaging capability, apoptosis control, and mitigation of the acquired drug resistance are also presented and critically evaluated. Finally, we turn the attention to the application of biosensors for the analysis of Sur biomarkers in exosomes and circulating tumor cells for a non-invasive liquid biopsy. The prospect of a widespread screening for early cancers, based on inexpensive point-of-care testing using biosensors and multiplex biosensor arrays, as a means of reducing the high cancer fatality rate, is discussed.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland.
| | - Katarzyna Ratajczak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland.
| |
Collapse
|
20
|
Moros M, Kyriazi ME, El-Sagheer AH, Brown T, Tortiglione C, Kanaras AG. DNA-Coated Gold Nanoparticles for the Detection of mRNA in Live Hydra Vulgaris Animals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13905-13911. [PMID: 30525369 DOI: 10.1021/acsami.8b17846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advances in nanoparticle design have led to the development of nanoparticulate systems that can sense intracellular molecules, alter cellular processes, and release drugs to specific targets in vitro. In this work, we demonstrate that oligonucleotide-coated gold nanoparticles are suitable for the detection of mRNA in live Hydra vulgaris, a model organism, without affecting the animal's integrity. We specifically focus on the detection of Hymyc1 mRNA, which is responsible for the regulation of the balance between stem cell self-renewal and differentiation. Myc deregulation is found in more than half of human cancers, thus the ability to detect in vivo related mRNAs through innovative fluorescent systems is of outmost interest.
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | | - Afaf H El-Sagheer
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | |
Collapse
|
21
|
Chang J, Wang X, Wang J, Li H, Li F. Nucleic Acid-Functionalized Metal–Organic Framework-Based Homogeneous Electrochemical Biosensor for Simultaneous Detection of Multiple Tumor Biomarkers. Anal Chem 2019; 91:3604-3610. [DOI: 10.1021/acs.analchem.8b05599] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiafu Chang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Xin Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Jiao Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
22
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
23
|
Wang L, Zhang H, Wang C, Xu Y, Su J, Wang X, Liu X, Feng D, Wang L, Zuo X, Shi J, Ge Z, Fan C, Mi X. Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. Biosens Bioelectron 2018; 127:85-91. [PMID: 30594078 DOI: 10.1016/j.bios.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023]
Abstract
DNA-gold nanoparticles (AuNPs) conjugate is one of the most versatile bionanomaterials for biomedical and clinical diagnosis. However, to finely tune the hybridization ability and precisely control the orientation and conformation of surface-tethered oligonucleotides on AuNPs remains a hurdle. In this work, we developed a poly adenine-mediated spherical nucleic acid (polyA-mediated SNA) strategy by assembling di-block DNA probes on gold nanoparticles (AuNPs) to spatially control interdistance and hybridization ability of oligonucleotides on AuNPs. By modulating length of poly A bound on the SNA with different degrees of constructing, we presented significant improved biosensing performance including high hybridization efficiency, and expanded dynamic range of analytes with more sensitive detection limit. Furthermore, this polyA design could facilitate the programmable detection for DNA in serum environment and simultaneous multicolor detection of three different microRNAs associated with pancreatic carcinoma. The demonstration of the link between modulation of SNA assembly strategy and biodetection capability will increase the development of high performance diagnostic tools for translational biomedicine.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Chenguang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Yi Xu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Jing Su
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Xiao Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Xinxin Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Dezhi Feng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiye Shi
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhilei Ge
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianqiang Mi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China.
| |
Collapse
|
24
|
Wang S, Xia M, Liu J, Zhang S, Zhang X. Simultaneous Imaging of Three Tumor-Related mRNAs in Living Cells with a DNA Tetrahedron-Based Multicolor Nanoprobe. ACS Sens 2017; 2:735-739. [PMID: 28723114 DOI: 10.1021/acssensors.7b00290] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We constructed a DNA tetrahedron based multicolor nanoprobe, which could simultaneously imaging of three tumor-related mRNAs in living cells through fluorescence restoration caused by competitive chain replacement reaction. The oligonucleotides used to construct the tetrahedron were extended by adding three 21-base recognition sequences modified with different fluorophores (FAM, Cy3, and Cy5) in the 5' end. Three 11-base complementary sequences modified with quencher (BHQ1 for FAM and BHQ2 for Cy3 and Cy5) were hybridized with the recognition sequences to quench the fluorescence. In the presence of the specific mRNA targets, the recognition sequences hybridized with the targets to form longer duplexes and the fluorescence was restored. Compared with previously reported nanoprobes based on DNA tetrahedron, the multicolor nanoprobe can effectively avoid false positive results.
Collapse
Affiliation(s)
- Song Wang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- National Insititute of Metrology, Beijing 100029, P. R. China
| | - Mengchan Xia
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jie Liu
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Sichun Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinrong Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
25
|
Kuang T, Chang L, Peng X, Hu X, Gallego-Perez D. Molecular Beacon Nano-Sensors for Probing Living Cancer Cells. Trends Biotechnol 2017; 35:347-359. [DOI: 10.1016/j.tibtech.2016.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/30/2023]
|
26
|
Luan M, Li N, Pan W, Yang L, Yu Z, Tang B. Simultaneous detection of multiple targets involved in the PI3K/AKT pathway for investigating cellular migration and invasion with a multicolor fluorescent nanoprobe. Chem Commun (Camb) 2017; 53:356-359. [DOI: 10.1039/c6cc07605j] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent nanoprobe was developed for assessing cellular migration and invasion by imaging miRNA-221, PTEN mRNA and MMP-9 involved in the PI3K/AKT pathway regulating cellular mobility and invasiveness.
Collapse
Affiliation(s)
- Mingming Luan
- College of Chemistry
- Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Institute of Molecular and Nano Science
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Institute of Molecular and Nano Science
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Institute of Molecular and Nano Science
| | - Limin Yang
- College of Chemistry
- Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Institute of Molecular and Nano Science
| | - Zhengze Yu
- College of Chemistry
- Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Institute of Molecular and Nano Science
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Institute of Molecular and Nano Science
| |
Collapse
|
27
|
Zang Y, Wei Y, Shi Y, Chen Q, Xing D. Chemo/Photoacoustic Dual Therapy with mRNA-Triggered DOX Release and Photoinduced Shockwave Based on a DNA-Gold Nanoplatform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:756-769. [PMID: 26683002 DOI: 10.1002/smll.201502857] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/08/2015] [Indexed: 06/05/2023]
Abstract
A multifunctional nanoparticle based on gold nanorod (GNR), utilizing mRNA triggered chemo-drug release and near-infrared photoacoustic effect, is developed for a combined chemo-photoacoustic therapy. The constructed nanoparticle (GNR-DNA/FA:DOX) comprises three functional components: (i) GNR as the drug delivery platform and photoacoustic effect enhancer; (ii) toehold-possessed DNA dressed on the GNR to load doxorubicin (DOX) to implement a tumor cell specific chemotherapy; and (iii) folate acid (FA) modified on GNR to guide the nanoparticle to target tumor cells. The results show that, upon an effective and specific delivery of the nanoparticles to the tumor cells with overexpressed folate receptors, the cytotoxic DOX loaded on the GNR-DNA nanoplatform can be released through DNA displacement reaction in melanoma-associated antigen gene mRNA expressed cells. With 808 nm pulse laser irradiation, the photoacoustic effect of the GNR leads to a direct physical damage to the cells. The combined treatment of the two modalities can effectively destroy tumor cells and eradicate the tumors with two distinctively different and supplementing mechanisms. With the nanoparticle, photoacoustic imaging is successfully performed in situ to monitor the drug distribution and tumor morphology for therapeutical guidance. With further in-depth investigation, the proposed nanoparticle may provide an effective and safe alternative cancer treatment modality.
Collapse
Affiliation(s)
- Yundong Zang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
| | - Yanchun Wei
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
| | - Yujiao Shi
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
| | - Qun Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
28
|
Hövelmann F, Gaspar I, Chamiolo J, Kasper M, Steffen J, Ephrussi A, Seitz O. LNA-enhanced DNA FIT-probes for multicolour RNA imaging. Chem Sci 2016; 7:128-135. [PMID: 29861973 PMCID: PMC5950760 DOI: 10.1039/c5sc03053f] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/01/2015] [Indexed: 01/04/2023] Open
Abstract
The simultaneous imaging of different RNA molecules in homogeneous solution is a challenge and requires optimisation to enable unambiguous staining of intracellular RNA targets. Our approach relies on single dye forced intercalation (FIT) probes, in which a visco-sensitive reporter of the thiazole orange (TO) family serves as a surrogate nucleobase and provides enhancements of fluorescence upon hybridisation. Previous FIT probes spanned the cyan and green emission range. Herein, we report for the first time chromophores for FIT probes that emit in the red range (above 600 nm). Such probes are valuable to overcome cellular auto-fluorescent background and enable multiplexed detection. In order to find suitable chromophores, we developed a submonomer approach that facilitated the rapid analysis of different TO family dyes in varied sequence positions. A carboxymethylated 4,4'-methine linked cyanine, which we named quinoline blue (QB), provided exceptional response characteristics at the 605 nm emission maximum. Exceeding previously reported base surrogates, the emission of the QB nucleotide intensified by up to 195-fold upon binding of complementary RNA. Owing to large extinction coefficients and quantum yields (up to ε = 129.000 L mol-1 cm-1 and Φ = 0.47, respectively) QB-FIT probes enable imaging of intracellular mRNA. A mixture of BO-, TO- and QB-containing FIT probes allowed the simultaneous detection of three different RNA targets in homogenous solution. TO- and QB-FIT probes were used to localize oskar mRNA and other polyadenylated mRNA molecules in developing oocytes from Drosphila melanogaster by means of wash-free fluorescent in situ hybridisation and super resolution microscopy (STED).
Collapse
Affiliation(s)
- F Hövelmann
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
- European Molecular Biology Laboratory (EMBL) Heidelberg , Meyerhofstr. 1 , 69117 Heidelberg , Germany
| | - I Gaspar
- European Molecular Biology Laboratory (EMBL) Heidelberg , Meyerhofstr. 1 , 69117 Heidelberg , Germany
| | - J Chamiolo
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| | - M Kasper
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| | - J Steffen
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| | - A Ephrussi
- European Molecular Biology Laboratory (EMBL) Heidelberg , Meyerhofstr. 1 , 69117 Heidelberg , Germany
| | - O Seitz
- Department of Chemistry , Humboldt University Berlin , Brook-Taylor-Str. 2 , D-12489 Berlin , Germany .
| |
Collapse
|
29
|
Rowland CE, Brown CW, Medintz IL, Delehanty JB. Intracellular FRET-based probes: a review. Methods Appl Fluoresc 2015; 3:042006. [PMID: 29148511 DOI: 10.1088/2050-6120/3/4/042006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probes that exploit Förster resonance energy transfer (FRET) in their feedback mechanism are touted for their sensitivity, robustness, and low background, and thanks to the exceptional distance dependence of the energy transfer process, they provide a means of probing lengthscales well below the resolution of light. These attributes make FRET-based probes superbly suited to an intracellular environment, and recent developments in biofunctionalization and expansion of imaging capabilities have put them at the forefront of intracellular studies. Here, we present an overview of the engineering and execution of a variety of recent intracellular FRET probes, highlighting the diversity of this class of materials and the breadth of application they have found in the intracellular environment.
Collapse
Affiliation(s)
- Clare E Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA. National Research Council, Washington, DC 20036, USA
| | | | | | | |
Collapse
|
30
|
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem Rev 2015; 115:10530-74. [PMID: 26313138 DOI: 10.1021/acs.chemrev.5b00321] [Citation(s) in RCA: 647] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alyssa B Chinen
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenxia M Guan
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer R Ferrer
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey N Barnaby
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timothy J Merkel
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Wiraja C, Yeo DC, Chew SY, Xu C. Molecular beacon-loaded polymeric nanoparticles for non-invasive imaging of mRNA expression. J Mater Chem B 2015; 3:6148-6156. [PMID: 32262733 DOI: 10.1039/c5tb00876j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assessment of intracellular mRNA expression is invaluable for understanding cellular signaling activities, identifying disease stages, and monitoring the gene expression pattern of therapeutic cells during their culture, expansion and/or differentiation process. Previous methods suffer from the need to disrupt the biological samples to perform polymerase chain reaction analysis which can be laborious, fragmented and destructive. Herein, we develop a mRNA nanosensor based on the sustained release of mRNA-specific molecular beacons (probes that fluoresce upon hybridization) from the biodegradable poly(d,l-lactide-co-glycolide) nanoparticles. Post cellular internalization, the particles gradually degrade and release the encapsulated probes which are initially weakly fluorescent. When the released probes meet and hybridize with target mRNA, they restore pre-quenched fluorescence. By virtue of quantifying the fluorescence intensity, we can estimate the cellular mRNA expression. As a case study, β-actin mRNA expression in mesenchymal stem cells cultured on a 3D matrix was monitored and compared with those cultured on a 2D plate for one week. Critically, the observed expression profile shows a great correlation with the established quantitative polymerase chain reaction analysis.
Collapse
Affiliation(s)
- Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | | | | | | |
Collapse
|
32
|
Zheng J, Yang R, Shi M, Wu C, Fang X, Li Y, Li J, Tan W. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem Soc Rev 2015; 44:3036-55. [PMID: 25777303 PMCID: PMC4431697 DOI: 10.1039/c5cs00020c] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acids hold promise as biomolecules for future applications in biomedicine and biotechnology. Their well-defined structures and compositions afford unique chemical properties and biological functions. Moreover, the specificity of hydrogen-bonded Watson-Crick interactions allows the construction of nucleic acid sequences with multiple functions. In particular, the development of nucleic acid probes as essential molecular engineering tools will make a significant contribution to advancements in biosensing, bioimaging and therapy. The molecular beacon (MB), first conceptualized by Tyagi and Kramer in 1996, is an excellent example of a double-stranded nucleic acid (dsDNA) probe. Although inactive in the absence of a target, dsDNA probes can report the presence of a specific target through hybridization or a specific recognition-triggered change in conformation. MB probes are typically fluorescently labeled oligonucleotides that range from 25 to 35 nucleotides (nt) in length, and their structure can be divided into three components: stem, loop and reporter. The intrinsic merit of MBs depends on predictable design, reproducibility of synthesis, simplicity of modification, and built-in signal transduction. Using resonance energy transfer (RET) for signal transduction, MBs are further endowed with increased sensitivity, rapid response and universality, making them ideal for chemical sensing, environmental monitoring and biological imaging, in contrast to other nucleic acid probes. Furthermore, integrating MBs with targeting ligands or molecular drugs can substantially support their in vivo applications in theranositics. In this review, we survey advances in bioanalytical and biomedical applications of rationally designed MBs, as they have evolved through the collaborative efforts of many researchers. We first discuss improvements to the three components of MBs: stem, loop and reporter. The current applications of MBs in biosensing, bioimaging and therapy will then be described. In particular, we emphasize recent progress in constructing MB-based biosensors in homogeneous solution or on solid surfaces. We expect that such rationally designed and functionalized MBs will open up new and exciting avenues for biological and medical research and applications.
Collapse
Affiliation(s)
- Jing Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Optical fiber nanotips coated with molecular beacons for DNA detection. SENSORS 2015; 15:9666-80. [PMID: 25919369 PMCID: PMC4481987 DOI: 10.3390/s150509666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
Abstract
Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs) for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD) of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells.
Collapse
|
34
|
Pan W, Yang H, Li N, Yang L, Tang B. Simultaneous Visualization of Multiple mRNAs and Matrix Metalloproteinases in Living Cells Using a Fluorescence Nanoprobe. Chemistry 2015; 21:6070-3. [PMID: 25752514 DOI: 10.1002/chem.201500365] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 01/12/2023]
Abstract
Simultaneous monitoring of multiple tumour markers is of great significance for improving the accuracy of early cancer detection. In this study, a fluorescence nanoprobe has been prepared that can simultaneously monitor and visualize multiple mRNAs and matrix metalloproteinases (MMPs) in living cells. Confocal fluorescence imaging results indicate that the nanoprobe could effectively distinguish between cancer cells and normal cells even if one tumour maker of normal cells was overexpressed. Furthermore, it can detect changes in the expression levels of mRNAs and MMPs in living cells. The current approach could provide new tools for early cancer detection and monitoring the changes in expression levels of biomarkers during tumour progression.
Collapse
Affiliation(s)
- Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University, Jinan 250014 (P.R. China)
| | | | | | | | | |
Collapse
|
35
|
Shahabi S, Treccani L, Dringen R, Rezwan K. Dual fluorophore doped silica nanoparticles for cellular localization studies in multiple stained cells. Acta Biomater 2015; 14:208-16. [PMID: 25463504 DOI: 10.1016/j.actbio.2014.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 11/18/2014] [Indexed: 12/24/2022]
Abstract
Fluorescently labeled nanoparticles (NPs) are used in a wide range of biomedical and nanotoxicological studies to elucidate their interactions with cellular components and their intracellular localization. As commonly used fluorescence microscopes are usually limited in their performance to a few channels which detect the emitted fluorescence light in the red, green and blue color range, the simultaneous colocalization of accumulated fluorescent NPs with cellular markers is often difficult and remains a challenge due to spectral overlay of NP fluorescence and fluorescence of stained cellular components. To overcome this problem we have synthesized three different photostable dual-labeled fluorescent core/shell silica NPs with high fluorescence intensity and well-defined shape, size and surface chemistry. The synthesis route of dual fluorophore doped silica (DFDS) NPs was based on a water-in-oil microemulsion method and includes the separate incorporation of two fluorophores in the core or shell. The suitability of DFDS for colocalization studies was assessed and successfully demonstrated with human osteoblast cells. Parallel visualization of DFDS NPs with two separate microscope channels allowed cellular NP uptake and discrimination from fluorescently stained cellular components, even in triple stained cells that show fluorescence for the cytoskeleton protein actin (green), the nucleus (blue) and collagen (red). Our results demonstrate the feasibility and straightforwardness of the approach for colocalization studies at a single-cell level to discern clearly the accumulation of NPs from triple-stained cellular components. Such NPs with multiple fluorescence characteristics have a great potential to replace single fluorescent NPs for in vitro studies, when multiple staining of cellular components is required.
Collapse
Affiliation(s)
- Shakiba Shahabi
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Laura Treccani
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany.
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen and Centre for Environmental Research and Sustainable Technology, Faculty 2 (Biology/Chemistry), University of Bremen, Leobener Strasse, NW2, 28359 Bremen, Germany
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| |
Collapse
|
36
|
Silva AS, Bonifácio VDB, Raje VP, Branco PS, Machado PFB, Correia IJ, Aguiar-Ricardo A. Design of oligoaziridine-PEG coatings for efficient nanogold cellular biotagging. RSC Adv 2015. [DOI: 10.1039/c4ra15743e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biocompatible oligoaziridine-PEG coated gold nanoparticles overcome self-quenching while targeting the cell nucleus. The course of gold biotags within the cell's environment was tracked through confocal laser microscopy.
Collapse
Affiliation(s)
- A. Sofia Silva
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Vasco D. B. Bonifácio
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Vivek P. Raje
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Paula S. Branco
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Paulo F. B. Machado
- CICS-UBI
- Health Sciences Research Center
- Faculdade de Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
| | - Ilídio J. Correia
- CICS-UBI
- Health Sciences Research Center
- Faculdade de Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
| | - Ana Aguiar-Ricardo
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| |
Collapse
|
37
|
Kim EY, Kumar D, Khang G, Lim DK. Recent advances in gold nanoparticle-based bioengineering applications. J Mater Chem B 2015; 3:8433-8444. [DOI: 10.1039/c5tb01292a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The recently developed gold nanoparticle-based bioengineering technologies for biosensors,in vitroandin vivobioimaging, drug delivery systems for improved therapeutics and tissue engineering are discussed.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of BIN Fusion Technology
- Department of PolymerNano science & Polymer BIN Research Center
- Chonbuk National University
- Jeonju 561-756
- Republic of Korea
| | - Dinesh Kumar
- KU-KIST Graduate School of Converging Science and Technology
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Gilson Khang
- Department of BIN Fusion Technology
- Department of PolymerNano science & Polymer BIN Research Center
- Chonbuk National University
- Jeonju 561-756
- Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology
- Korea University
- Seoul 136-701
- Republic of Korea
| |
Collapse
|
38
|
Wang Z, Zhang R, Wang Z, Wang HF, Wang Y, Zhao J, Wang F, Li W, Niu G, Kiesewetter DO, Chen X. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells. ACS NANO 2014; 8:12386-96. [PMID: 25494492 PMCID: PMC4278684 DOI: 10.1021/nn505047n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 12/10/2014] [Indexed: 05/19/2023]
Abstract
Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ruili Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- Address correspondence to ,
| | - He-Fang Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yu Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jun Zhao
- Unit on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fu Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Weitao Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Address correspondence to ,
| |
Collapse
|
39
|
Latorre A, Posch C, Garcimartín Y, Ortiz-Urda S, Somoza Á. Single-point mutation detection in RNA extracts using gold nanoparticles modified with hydrophobic molecular beacon-like structures. Chem Commun (Camb) 2014; 50:3018-20. [PMID: 24496380 DOI: 10.1039/c3cc47862a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles functionalized with oligonucleotides that bear a cholesterol group are used as gene sensors. The hydrophobic molecule is buried inside the nanostructure but when the complementary RNA sequence is present the structure unfolds exposing the cholesterol group to the water molecules. This rearrangement leads to the aggregation of the nanostructures.
Collapse
Affiliation(s)
- Alfonso Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología" Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
40
|
Zhang K, Tan T, Fu JJ, Zheng T, Zhu JJ. A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells. Analyst 2014; 138:6323-30. [PMID: 23978949 DOI: 10.1039/c3an01255g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A robust, nanobiotechnology-based electrochemical cytosensing platform for the detection of acute leukemia cells was developed with high sensitivity, selectivity, acceptable rapidity and excellent extensibility. It utilized the competitive binding of cell-specific aptamers to acute leukemia cells and subsequent voltammetric quantification of the metal signature. Greatly enhanced sensitivity was achieved with dual signal amplification by using Fe3O4 magnetic nanoparticles (MNPs) as carriers to load a large amount of gold nanoparticles (AuNPs) and AuNP-catalyzed silver deposition. The proposed competitive cytosensor showed high sensitivity with a detection limit down to 10 cells. This simple and low-cost electrochemical cytosensing approach offers great promise to extend its application to early detection of human leukemia and possibly to other cancer cells.
Collapse
Affiliation(s)
- Kui Zhang
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210008, P. R. China
| | | | | | | | | |
Collapse
|
41
|
Zhang Y, Chu W, Foroushani AD, Wang H, Li D, Liu J, Barrow CJ, Wang X, Yang W. New Gold Nanostructures for Sensor Applications: A Review. MATERIALS 2014; 7:5169-5201. [PMID: 28788124 PMCID: PMC5455824 DOI: 10.3390/ma7075169] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022]
Abstract
Gold based structures such as nanoparticles (NPs) and nanowires (NWs) have widely been used as building blocks for sensing devices in chemistry and biochemistry fields because of their unusual optical, electrical and mechanical properties. This article gives a detailed review of the new properties and fabrication methods for gold nanostructures, especially gold nanowires (GNWs), and recent developments for their use in optical and electrochemical sensing tools, such as surface enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Yuanchao Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| | - Wendy Chu
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| | | | - Hongbin Wang
- School of Chemistry and Biotechnology, Yunnan Minzu University, Kunming 650031, China.
| | - Da Li
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| | - Jingquan Liu
- College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China.
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Deakin, VIC 3217, Australia.
| |
Collapse
|
42
|
Nanoparticle-based detection of cancer-associated RNA. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:384-97. [DOI: 10.1002/wnan.1266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 12/12/2022]
|
43
|
Li Y, Xiao K, Zhu W, Deng W, Lam KS. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv Drug Deliv Rev 2014; 66:58-73. [PMID: 24060922 DOI: 10.1016/j.addr.2013.09.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/27/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Stimuli-responsive cross-linked micelles (SCMs) represent an ideal nanocarrier system for drug delivery against cancers. SCMs exhibit superior structural stability compared to their non-cross-linked counterpart. Therefore, these nanocarriers are able to minimize the premature drug release during blood circulation. The introduction of environmentally sensitive cross-linkers or assembly units makes SCMs responsive to single or multiple stimuli present in tumor local microenvironment or exogenously applied stimuli. In these instances, the payload drug is released almost exclusively in cancerous tissue or cancer cells upon accumulation via enhanced permeability and retention effect or receptor mediated endocytosis. In this review, we highlight recent advances in the development of SCMs for cancer therapy. We also introduce the latest biophysical techniques, such as electron paramagnetic resonance (EPR) spectroscopy and fluorescence resonance energy transfer (FRET), for the characterization of the interactions between SCMs and blood proteins.
Collapse
Affiliation(s)
- Yuanpei Li
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
| | - Kai Xiao
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Wei Zhu
- Department of Cardiology, the First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wenbin Deng
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry & Molecular Medicine, UC Davis Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
44
|
Zhou Z, Huang H, Chen Y, Liu F, Huang CZ, Li N. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design. Biosens Bioelectron 2014; 52:367-73. [DOI: 10.1016/j.bios.2013.09.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/06/2023]
|
45
|
Xu H, Li Q, Wang L, He Y, Shi J, Tang B, Fan C. Nanoscale optical probes for cellular imaging. Chem Soc Rev 2014; 43:2650-61. [PMID: 24394966 DOI: 10.1039/c3cs60309a] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanomaterials with unique optical properties have shown great promise as probes for cellular imaging. Based on these properties, a wide range of plasmonic, fluorescent and Raman probes have been designed and prepared. Nanomaterials of different sizes and shapes have also been functionalized with various types of biomolecules, such as antibodies, DNA or RNA, which are actively exploited to realize targeted imaging. In this review, we will summarize recent advances in using functional nanomaterials for imaging, primarily cellular imaging. These nanomaterials are categorized based on their conducting properties, i.e. conductors, semiconductors and insulators.
Collapse
Affiliation(s)
- Hui Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Wu P, Tu Y, Qian Y, Zhang H, Cai C. DNA strand-displacement-induced fluorescence enhancement for highly sensitive and selective assay of multiple microRNA in cancer cells. Chem Commun (Camb) 2014; 50:1012-4. [DOI: 10.1039/c3cc46773b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Nöll G, Su Q, Heidel B, Yu Y. A reusable sensor for the label-free detection of specific oligonucleotides by surface plasmon fluorescence spectroscopy. Adv Healthc Mater 2014; 3:42-6. [PMID: 23788367 DOI: 10.1002/adhm.201300056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/19/2013] [Indexed: 01/07/2023]
Abstract
The development of a reusable molecular beacon (MB)-based sensor for the label-free detection of specific oligonucleotides using surface plasmon fluorescence spectroscopy (SPFS) as the readout method is described. The MBs are chemisorbed at planar gold surfaces serving as fluorescence quenching units. Target oligonucleotides of 24 bases can be detected within a few minutes at high single-mismatch discrimination rates.
Collapse
Affiliation(s)
- Gilbert Nöll
- Nöll Junior Research Group for Nanotechnology, Siegen University, Faculty IV, Department of Chemistry-Biology, Organic Chemistry, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | | | | | | |
Collapse
|
48
|
Pan W, Zhang T, Yang H, Diao W, Li N, Tang B. Multiplexed detection and imaging of intracellular mRNAs using a four-color nanoprobe. Anal Chem 2013; 85:10581-8. [PMID: 24088027 DOI: 10.1021/ac402700s] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Simultaneous detection and imaging of multiple intracellular biomarkers hold great promise for early cancer detection. Here, we introduce a four-color nanoprobe that can simultaneously detect and image four types of mRNAs in living cells. The nanoprobe composed of gold nanoparticles functionalized with a dense shell of molecular beacons, which can identify multiple intracellular mRNA transcripts. It shows rapid response, high specificity, nuclease stability, and good biocompatibility. Intracellular experiments indicate that the nanoprobe could effectively distinguish cancer cells from their normal cells, even some mRNAs are overexpressed in normal cells. Moreover, it can identify the changes of the expression levels of mRNA in living cells. The current strategy could provide more-accurate information for early cancer detection and availably avoid false positive results.
Collapse
Affiliation(s)
- Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University . Jinan 250014, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Wu C, Chen T, Han D, You M, Peng L, Cansiz S, Zhu G, Li C, Xiong X, Jimenez E, Yang CJ, Tan W. Engineering of switchable aptamer micelle flares for molecular imaging in living cells. ACS NANO 2013; 7:5724-31. [PMID: 23746078 PMCID: PMC3789376 DOI: 10.1021/nn402517v] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Simultaneous monitoring of the expression, distribution, and dynamics of biological molecules in living cells is one of the most challenging tasks in the analytical sciences. The key to effective and successful intracellular imaging is the development of delivery platforms with high efficiency and ultrasensitive molecular probes for specific targets of interest. To achieve these goals, many nanomaterials are widely used as carriers to introduce nucleic acid probes into living cells for real-time imaging of biomolecules. However, limitations on their use include issues of cytotoxicity and delivery efficiency. Herein, we propose a switchable aptamer micelle flare (SAMF), formed by self-assembly of an aptamer switch probe-diacyllipid chimera, to monitor ATP molecules inside living cells. Similarity of hydrophobic composition between diacyllipids in the micelle flares and phospholipid bilayers in the dynamic membranes of living cells allows SAMFs to be uptaken by living cells more efficiently than aptamer switch probes without external auxiliary. Switchable aptamers were found to bind target ATP molecules with high selectivity and specificity, resulting in restoration of the fluorescence signal from "OFF" to "ON" state, thus indicating the presence of the analyte. These switchable aptamer micelle flares, which exhibit cell permeability and nanoscale controllability, show exceptional promise for molecular imaging in bioanalysis, disease diagnosis, and drug delivery.
Collapse
Affiliation(s)
- Cuichen Wu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
| | - Tao Chen
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
| | - Da Han
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, People's Republic of China
| | - Mingxu You
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
| | - Lu Peng
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
| | - Sena Cansiz
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
| | - Guizhi Zhu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, People's Republic of China
| | - Chunmei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
| | - Xiangling Xiong
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, People's Republic of China
| | - Elizabeth Jimenez
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
| | - Chaoyong James Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemical Biology, Key Laboratory of Analytical Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, People's Republic of China
| |
Collapse
|
50
|
Oligonucleotide optical switches for intracellular sensing. Anal Bioanal Chem 2013; 405:6181-96. [PMID: 23793395 DOI: 10.1007/s00216-013-7086-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/16/2022]
Abstract
Fluorescence imaging coupled with nanotechnology is making possible the development of powerful tools in the biological field for applications such as cellular imaging and intracellular messenger RNA monitoring and detection. The delivery of fluorescent probes into cells and tissues is currently receiving growing interest because such molecules, often coupled to nanodimensional materials, can conveniently allow the preparation of small tools to spy on cellular mechanisms with high specificity and sensitivity. The purpose of this review is to provide an exhaustive overview of current research in oligonucleotide optical switches for intracellular sensing with a focus on the engineering methods adopted for these oligonucleotides and the more recent and fascinating techniques for their internalization into living cells. Oligonucleotide optical switches can be defined as specifically designed short nucleic acid molecules capable of turning on or modifying their light emission on molecular interaction with well-defined molecular targets. Molecular beacons, aptamer beacons, hybrid molecular probes, and simpler linear oligonucleotide switches are the most promising optical nanosensors proposed in recent years. The intracellular targets which have been considered for sensing are a plethora of messenger-RNA-expressing cellular proteins and enzymes, or, directly, proteins or small molecules in the case of sensing through aptamer-based switches. Engineering methods, including modification of the oligonucleotide itself with locked nucleic acids, peptide nucleic acids, or L-DNA nucleotides, have been proposed to enhance the stability of nucleases and to prevent false-negative and high background optical signals. Conventional delivery techniques are treated here together with more innovative methods based on the coupling of the switches with nano-objects.
Collapse
|