1
|
Schaefer S, Ziegler F, Lang T, Steuer A, Di Pizio A, Behrens M. Membrane-bound chemoreception of bitter bile acids and peptides is mediated by the same subset of bitter taste receptors. Cell Mol Life Sci 2024; 81:217. [PMID: 38748186 PMCID: PMC11096235 DOI: 10.1007/s00018-024-05202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/18/2024]
Abstract
The vertebrate sense of taste allows rapid assessment of the nutritional quality and potential presence of harmful substances prior to ingestion. Among the five basic taste qualities, salty, sour, sweet, umami, and bitter, bitterness is associated with the presence of putative toxic substances and elicits rejection behaviors in a wide range of animals including humans. However, not all bitter substances are harmful, some are thought to be health-beneficial and nutritious. Among those compound classes that elicit a bitter taste although being non-toxic and partly even essential for humans are bitter peptides and L-amino acids. Using functional heterologous expression assays, we observed that the 5 dominant human bitter taste receptors responsive to bitter peptides and amino acids are activated by bile acids, which are notorious for their extreme bitterness. We further demonstrate that the cross-reactivity of bitter taste receptors for these two different compound classes is evolutionary conserved and can be traced back to the amphibian lineage. Moreover, we show that the cross-detection by some receptors relies on "structural mimicry" between the very bitter peptide L-Trp-Trp-Trp and bile acids, whereas other receptors exhibit a phylogenetic conservation of this trait. As some bile acid-sensitive bitter taste receptor genes fulfill dual-roles in gustatory and non-gustatory systems, we suggest that the phylogenetic conservation of the rather surprising cross-detection of the two substance classes could rely on a gene-sharing-like mechanism in which the non-gustatory function accounts for the bitter taste response to amino acids and peptides.
Collapse
Affiliation(s)
- Silvia Schaefer
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Florian Ziegler
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Alexandra Steuer
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354, Freising, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany
- Chemoinformatics and Protein Modelling, Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Strasse 34, 85354, Freising, Germany.
| |
Collapse
|
2
|
Toke O. Structural and Dynamic Determinants of Molecular Recognition in Bile Acid-Binding Proteins. Int J Mol Sci 2022; 23:505. [PMID: 35008930 PMCID: PMC8745080 DOI: 10.3390/ijms23010505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders in bile acid transport and metabolism have been related to a number of metabolic disease states, atherosclerosis, type-II diabetes, and cancer. Bile acid-binding proteins (BABPs), a subfamily of intracellular lipid-binding proteins (iLBPs), have a key role in the cellular trafficking and metabolic targeting of bile salts. Within the family of iLBPs, BABPs exhibit unique binding properties including positive binding cooperativity and site-selectivity, which in different tissues and organisms appears to be tailored to the local bile salt pool. Structural and biophysical studies of the past two decades have shed light on the mechanism of bile salt binding at the atomic level, providing us with a mechanistic picture of ligand entry and release, and the communication between the binding sites. In this review, we discuss the emerging view of bile salt recognition in intestinal- and liver-BABPs, with examples from both mammalian and non-mammalian species. The structural and dynamic determinants of the BABP-bile-salt interaction reviewed herein set the basis for the design and development of drug candidates targeting the transcellular traffic of bile salts in enterocytes and hepatocytes.
Collapse
Affiliation(s)
- Orsolya Toke
- Laboratory for NMR Spectroscopy, Structural Research Centre, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
| |
Collapse
|
3
|
Pagano K, Paolino M, Fusi S, Zanirato V, Trapella C, Giuliani G, Cappelli A, Zanzoni S, Molinari H, Ragona L, Olivucci M. Bile Acid Binding Protein Functionalization Leads to a Fully Synthetic Rhodopsin Mimic. J Phys Chem Lett 2019; 10:2235-2243. [PMID: 30995409 DOI: 10.1021/acs.jpclett.9b00210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rhodopsins are photoreceptive proteins using light to drive a plethora of biological functions such as vision, proton and ion pumping, cation and anion channeling, and gene and enzyme regulation. Here we combine organic synthesis, NMR structural studies, and photochemical characterization to show that it is possible to prepare a fully synthetic mimic of rhodopsin photoreceptors. More specifically, we conjugate a bile acid binding protein with a synthetic mimic of the rhodopsin protonated Schiff base chromophore to achieve a covalent complex featuring an unnatural protein host, photoswitch, and photoswitch-protein linkage with a reverse orientation. We show that, in spite of its molecular-level diversity, light irradiation of the prepared mimic fuels a photochromic cycle driven by sequential photochemical and thermal Z/E isomerizations reminiscent of the photocycles of microbial rhodopsins.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR , Via A. Corti 12 , 20133 Milano , Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Stefania Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | | | | | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche , Università di Verona , Strada Le Grazie , 37134 Verona , Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR , Via A. Corti 12 , 20133 Milano , Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR , Via A. Corti 12 , 20133 Milano , Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022) , Università degli Studi di Siena , Via Aldo Moro 2 , 53100 Siena , Italy
- Chemistry Department , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| |
Collapse
|
4
|
Tomaselli S, Ramirez DOS, Carletto RA, Varesano A, Vineis C, Zanzoni S, Molinari H, Ragona L. Electrospun Lipid Binding Proteins Composite Nanofibers with Antibacterial Properties. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/13/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Simona Tomaselli
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, via Corti 12 20133 Milano Italy
| | | | | | - Alessio Varesano
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, C.so G. Pella 16 13900 Biella Italy
| | - Claudia Vineis
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, C.so G. Pella 16 13900 Biella Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie; Università degli Studi di Verona; Strada le Grazie 15 37134 Verona Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, via Corti 12 20133 Milano Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole (ISMAC); CNR, via Corti 12 20133 Milano Italy
| |
Collapse
|
5
|
Horváth G, Bencsura Á, Simon Á, Tochtrop GP, DeKoster GT, Covey DF, Cistola DP, Toke O. Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR. FEBS J 2016; 283:541-55. [PMID: 26613247 DOI: 10.1111/febs.13610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/24/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED Besides aiding digestion, bile salts are important signal molecules exhibiting a regulatory role in metabolic processes. Human ileal bile acid binding protein (I-BABP) is an intracellular carrier of bile salts in the epithelial cells of the distal small intestine and has a key role in the enterohepatic circulation of bile salts. Positive binding cooperativity combined with site selectivity of glycocholate and glycochenodeoxycholate, the two most abundant bile salts in the human body, make human I-BABP a unique member of the family of intracellular lipid binding proteins. Solution NMR structure of the ternary complex of human I-BABP with glycocholate and glycochenodeoxycholate reveals an extensive network of hydrogen bonds and hydrophobic interactions stabilizing the bound bile salts. Conformational changes accompanying bile salt binding affects four major regions in the protein including the C/D, E/F and G/H loops as well as the helical segment. Most of these protein regions coincide with a previously described network of millisecond time scale fluctuations in the apo protein, a motion absent in the bound state. Comparison of the heterotypic doubly ligated complex with the unligated form provides further evidence of a conformation selection mechanism of ligand entry. Structural and dynamic aspects of human I-BABP-bile salt interaction are discussed and compared with characteristics of ligand binding in other members of the intracellular lipid binding protein family. PROTEIN DATA BANK ACCESSION NUMBERS The coordinates of the 10 lowest energy structures of the human I-BABP : GCDA : GCA complex as well as the distance restraints used to calculate the final ensemble have been deposited in the Brookhaven Protein Data Bank with accession number 2MM3.
Collapse
Affiliation(s)
- Gergő Horváth
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Bencsura
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Simon
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gregory P Tochtrop
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.,Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Douglas F Covey
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - David P Cistola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Orsolya Toke
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Tomaselli S, Pagano K, Boulton S, Zanzoni S, Melacini G, Molinari H, Ragona L. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach. FEBS J 2015; 282:4094-113. [PMID: 26260520 DOI: 10.1111/febs.13405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off.
Collapse
Affiliation(s)
- Simona Tomaselli
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| | - Katiuscia Pagano
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| | - Stephen Boulton
- Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | | | - Giuseppe Melacini
- Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Henriette Molinari
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| | - Laura Ragona
- NMR Laboratory, Istituto per lo Studio delle Macromolecole (ISMAC), Milano, Italy
| |
Collapse
|
7
|
Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Ragona L, Molinari H, Assfalg M. The unique ligand binding features of subfamily-II iLBPs with respect to bile salts and related drugs. Prostaglandins Leukot Essent Fatty Acids 2015; 95:1-10. [PMID: 25468388 DOI: 10.1016/j.plefa.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/20/2014] [Indexed: 11/28/2022]
Abstract
Intracellular lipid binding proteins (iLBPs) are a family of evolutionarily related small cytoplasmic proteins implicated in the transcellular transport of lipophilic ligands. Subfamily-II iLBPs include the liver fatty acid binding protein (L-FABP), and the ileal and the liver and ileal bile acid binding proteins (L-BABP and I-BABP). Atomic-level investigations during the past 15-20 years have delivered relevant information on bile acid binding by this protein group, revealing unique features including binding cooperativity, promiscuity, and site selectivity. Using NMR spectroscopy and other biophysical techniques, our laboratories have contributed to an understanding of the molecular determinants of some of these properties and their generality among proteins from different animal species. We focused especially on formation of heterotypic complexes, considering the mixed compositions of physiological bile acid pools. Experiments performed with synthetic bile acid derivatives showed that iLBPs could act as targets for cell-specific contrast agents and, more generally, as effective carriers of amphiphilic drugs. This review collects the major findings related to bile salt interactions with iLBPs aiming to provide keys for a deeper understanding of protein-mediated intracellular bile salt trafficking.
Collapse
Affiliation(s)
- Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Alberto Ceccon
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Laura Ragona
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Henriette Molinari
- Institute for Macromolecular Studies, National Research Council, Via Bassini 15, Milan 20133, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
8
|
Ragona L, Pagano K, Tomaselli S, Favretto F, Ceccon A, Zanzoni S, D'Onofrio M, Assfalg M, Molinari H. The role of dynamics in modulating ligand exchange in intracellular lipid binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1268-78. [PMID: 24768771 DOI: 10.1016/j.bbapap.2014.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/29/2022]
Abstract
Lipids are essential for many biological processes and crucial in the pathogenesis of several diseases. Intracellular lipid-binding proteins (iLBPs) provide mobile hydrophobic binding sites that allow hydrophobic or amphipathic lipid molecules to penetrate into and across aqueous layers. Thus iLBPs mediate the lipid transport within the cell and participate to a spectrum of tissue-specific pathways involved in lipid homeostasis. Structural studies have shown that iLBPs' binding sites are inaccessible from the bulk, implying that substrate binding should involve a conformational change able to produce a ligand entry portal. Many studies have been reported in the last two decades on iLBPs indicating that their dynamics play a pivotal role in regulating ligand binding and targeted release. The ensemble of reported data has not been reviewed until today. This review is thus intended to summarize and possibly generalize the results up to now described, providing a picture which could help to identify the missing notions necessary to improve our understanding of the role of dynamics in iLBPs' molecular recognition. Such notions would clarify the chemistry of lipid binding to iLBPs and set the basis for the development of new drugs.
Collapse
Affiliation(s)
- Laura Ragona
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy
| | - Katiuscia Pagano
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy
| | - Simona Tomaselli
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy
| | - Filippo Favretto
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alberto Ceccon
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Mariapina D'Onofrio
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michael Assfalg
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Henriette Molinari
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Bassini 15, 20133 Milano, Italy.
| |
Collapse
|
9
|
Pagano K, Tomaselli S, Zanzoni S, Assfalg M, Molinari H, Ragona L. Bile acid binding protein: a versatile host of small hydrophobic ligands for applications in the fields of MRI contrast agents and bio-nanomaterials. Comput Struct Biotechnol J 2013; 6:e201303021. [PMID: 24688729 PMCID: PMC3962148 DOI: 10.5936/csbj.201303021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 01/02/2023] Open
Abstract
During the last decade a growing amount of evidence has been obtained, supporting the role of the beta-clamshell family of intracellular lipid binding proteins (iLBPs) not only in the translocation of lipophilic molecules but also in lipid mediated signalling and metabolism. Given the central role of lipids in physiological processes, it is essential to have detailed knowledge on their interactions with cognate binding proteins. Structural and dynamical aspects of the binding mechanisms have been widely investigated by means of NMR spectroscopy, docking and molecular dynamics simulation approaches. iLBPs share a stable beta-barrel fold, delimiting an internal cavity capable of promiscuous ligand binding and display significant flexibility at the putative ligand portal. These features make this class of proteins good scaffolds to build host-guest systems for applications in nanomedicine and nanomaterials.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Simona Tomaselli
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Serena Zanzoni
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| |
Collapse
|
10
|
Tomaselli S, Giovanella U, Pagano K, Leone G, Zanzoni S, Assfalg M, Meinardi F, Molinari H, Botta C, Ragona L. Encapsulation of a Rhodamine Dye within a Bile Acid Binding Protein: Toward Water Processable Functional Bio Host–Guest Materials. Biomacromolecules 2013; 14:3549-56. [DOI: 10.1021/bm400904s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Simona Tomaselli
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Umberto Giovanella
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Katiuscia Pagano
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Giuseppe Leone
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Serena Zanzoni
- Dipartimento
di Biotecnologie, Università degli Studi di Verona, Strada
Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Dipartimento
di Biotecnologie, Università degli Studi di Verona, Strada
Le Grazie 15, 37134, Verona, Italy
| | - Francesco Meinardi
- Università degli Studi Milano Bicocca, Via Cozzi 53, 20125, Milano, Italy
| | - Henriette Molinari
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Chiara Botta
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| | - Laura Ragona
- Istituto
per lo Studio delle Macromolecole, CNR, via Bassini 15, 20133 Milano, Italy
| |
Collapse
|
11
|
Ceccon A, D'Onofrio M, Zanzoni S, Longo DL, Aime S, Molinari H, Assfalg M. NMR investigation of the equilibrium partitioning of a water-soluble bile salt protein carrier to phospholipid vesicles. Proteins 2013; 81:1776-91. [DOI: 10.1002/prot.24329] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Alberto Ceccon
- Department of Biotechnology; University of Verona; 37134 Verona Italy
| | | | - Serena Zanzoni
- Department of Biotechnology; University of Verona; 37134 Verona Italy
| | - Dario Livio Longo
- Department of Molecular Biotechnologies and Health Sciences; Molecular Imaging Center, University of Torino; 10126 Torino Italy
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences; Molecular Imaging Center, University of Torino; 10126 Torino Italy
| | | | - Michael Assfalg
- Department of Biotechnology; University of Verona; 37134 Verona Italy
| |
Collapse
|
12
|
Favretto F, Assfalg M, Gallo M, Cicero DO, D'Onofrio M, Molinari H. Ligand Binding Promiscuity of Human Liver Fatty Acid Binding Protein: Structural and Dynamic Insights from an Interaction Study with Glycocholate and Oleate. Chembiochem 2013; 14:1807-19. [DOI: 10.1002/cbic.201300156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/09/2022]
|
13
|
Zanzoni S, D’Onofrio M, Molinari H, Assfalg M. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy. Biochem Biophys Res Commun 2012; 427:677-81. [DOI: 10.1016/j.bbrc.2012.09.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
|