1
|
Wagner HE, Frank N, Barani E, Anson CE, Bayer L, Powell AK, Fink K, Breher F. Asymmetrically Difunctionalized 1,1′‐Ferrocenyl Metalloligands and Their Transition Metal Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hanna E. Wagner
- Karlsruhe Institute of Technology (KIT) Institute of Inorganic Chemistry Engesserstraße 15 76131 Karlsruhe Germany
| | - Nils Frank
- Karlsruhe Institute of Technology (KIT) Institute of Nanotechnology Postfach 3630 76021 Karlsruhe Germany
| | - Elham Barani
- Karlsruhe Institute of Technology (KIT) Institute of Nanotechnology Postfach 3630 76021 Karlsruhe Germany
| | - Christopher E. Anson
- Karlsruhe Institute of Technology (KIT) Institute of Inorganic Chemistry Engesserstraße 15 76131 Karlsruhe Germany
| | - Lea Bayer
- Karlsruhe Institute of Technology (KIT) Institute of Inorganic Chemistry Engesserstraße 15 76131 Karlsruhe Germany
| | - Annie K. Powell
- Karlsruhe Institute of Technology (KIT) Institute of Inorganic Chemistry Engesserstraße 15 76131 Karlsruhe Germany
| | - Karin Fink
- Karlsruhe Institute of Technology (KIT) Institute of Nanotechnology Postfach 3630 76021 Karlsruhe Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT) Institute of Inorganic Chemistry Engesserstraße 15 76131 Karlsruhe Germany
| |
Collapse
|
2
|
Abstract
Abiotic allosterism is most commonly observed in hetero-bimetallic supramolecular complexes and less frequently in homo-bimetallic complexes. The use of hemilabile ligands with high synthetic complexity enables the catalytic center by the addition or removal of allosteric effectors and simplicity is unusually seen in these systems. Here we describe a simpler approach to achieve kinetic regulation by the use of dimeric Schiff base copper complexes connected by a chlorido ligand bridge. The chlorido ligand acts as a weak link between monomers, generating homo-bimetallic self-aggregating supramolecular complexes that generate monomeric species in different reaction rates depending on the solvent and on the radical moiety of the ligand. The ligand exchange was observed by electron paramagnetic resonance (EPR) and conductivity measurements, indicating that complexes with ligands bearing methoxyl (CuIIL2) and ethoxyl (CuIIL5) radicals were more prone to form dimeric complexes in comparison to ligands bearing hydrogen (CuIIL1), methyl (CuIIL3), or t-butyl (CuIIL4) radicals. The equilibrium between dimer and monomer afforded different reactivities of the complexes in acetonitrile/water and methanol/water mixtures toward urea hydrolysis as a model reaction. It was evident that the dimeric species were inactive and that by increasing the water concentration in the reaction medium, the dimeric structures dissociated to form the active monomeric structures. This behavior was more pronounced when methanol/water mixtures were employed due to a slower displacement of the chlorido bridge in this medium than in the acetonitrile/water mixtures, enabling the reaction kinetics to be evaluated. This effect was attributed to the preferential solvation shell by the organic solvents and in essence, an upregulation behavior was observed due to the intrinsic nature of the complexes to form dimeric structures in solution that could be dismantled in the presence of water, indicating their possible use as water-sensors in organic solvents.
Collapse
|
3
|
The effects of macrocyclic dinaphtho diamide on the oxidative states and stimulating the CSF production on lung tissue and colony formation of bone marrow cells. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Lu X, Wu N, Zhang B, Deng K. Copper(II) complexes of two TEMPO-functionalized polypyridyl ligands: structure and catalytic activity in alcohol oxidation. J COORD CHEM 2017. [DOI: 10.1080/00958972.2016.1272675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaoshuang Lu
- Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan, China
| | - Nini Wu
- Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan, China
| | - Bingguang Zhang
- Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan, China
| | - Kejian Deng
- Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
5
|
Chiral benzimidazole-derived mono azacrowns: synthesis and enantiomer recognition studies with chiral amines and their ammonium salts. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
|