1
|
Nag T, Terskikh VV, Bryce DL. Experimental Evidence for Non-Fermi-Contact J Coupling Across Chalcogen Bonds in Ionic Salt Cocrystal Polymorphs. Angew Chem Int Ed Engl 2024; 63:e202402441. [PMID: 38498337 DOI: 10.1002/anie.202402441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
A pair of novel polymorphic ionic cocrystals of 3,4-dicyanotelluradiazole and tetraphenylphosphonium bromide are synthesized and are characterized by single-crystal XRD. Strong and directional non-covalent chalcogen bonds (ChB) between Te and Br are analyzed via solid-state NMR to reveal large and anisotropic J(125Te,79/81Br) coupling tensors, providing unequivocal evidence for non-Fermi contact contributions across ChBs. Along with large 79/81Br quadrupolar couplings for the Br- anions, these data provide new tools to characterize chalcogen bonds and to differentiate between ChB polymorphs.
Collapse
Affiliation(s)
- Tamali Nag
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1H 5H5
| | - Victor V Terskikh
- Metrology, National Research Council Canada, Ottawa, Ontario, Canada, K1A 0R6
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1H 5H5
| |
Collapse
|
2
|
Holmes ST, Vojvodin CS, Veinberg N, Iacobelli EM, Hirsh DA, Schurko RW. Hydrates of active pharmaceutical ingredients: A 35Cl and 2H solid-state NMR and DFT study. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101837. [PMID: 36434925 DOI: 10.1016/j.ssnmr.2022.101837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
This study uses 35Cl and 2H solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations to characterize the molecular-level structures and dynamics of hydrates of active pharmaceutical ingredients (APIs). We use 35Cl SSNMR to measure the EFG tensors of the chloride ions to characterize hydrated forms of hydrochloride salts of APIs, along with two corresponding anhydrous forms. DFT calculations are used to refine the crystal structures of the APIs and determine relationships between the 35Cl EFG tensors and the spatial arrangements of proximate hydrogen bonds, which are particularly influenced by interactions with water molecules. We find that the relationship between 35Cl EFG tensors and local hydrogen bonding geometries is complex, but meaningful structure/property relationships can be garnered through use of DFT calculations. Specifically, for every case in which such a comparison could be made, we find that the hydrate has a smaller magnitude of CQ than the corresponding anhydrous form, indicating a chloride ion environment with a ground-state electron density of higher spherical symmetry in the former. Finally, variable-temperature 35Cl and 2H SSNMR experiments on a deuterium-exchanged sample of the API cimetidine hydrochloride monohydrate are used to monitor temperature-dependent influences on the spectra that may arise from motional influences on the 35Cl and 2H EFG tensors. From the 2H SSNMR spectra, we determine that the motions of water molecules are characterized by jump-like motions about their C2 rotational axes that occur on timescales that are unlikely to influence the 35Cl central-transition (+1/2 ↔︎ -1/2) powder patterns (this is confirmed by 35Cl SSNMR). Together, these methods show great promise for the future study of APIs in their bulk and dosage forms, especially variable hydrates in which crystallographic water content varies with external conditions such as humidity.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Cameron S Vojvodin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Natan Veinberg
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - Emilia M Iacobelli
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - David A Hirsh
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
| |
Collapse
|
3
|
O’Rourke B, Lauderback C, Teodoro LI, Grimm M, Zeller M, Mirjafari A, Guillet GL, Hillesheim PC. Developing Structural First Principles for Alkylated Triphenylphosphonium-Based Ionic Liquids. ACS OMEGA 2021; 6:32285-32296. [PMID: 34870049 PMCID: PMC8638304 DOI: 10.1021/acsomega.1c05241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
While ionic liquids have proved to be versatile materials for a wide spectrum of applications, e.g., energy, materials, and medicine, several challenges remain concerning the rational design of novel materials. In light of this, a series of four triphenylphosphonium-based ionic liquids have been synthesized for the first time. These compounds exhibit high thermal stability with decomposition temperatures up to 450 °C. Their solid-state structures are characterized by single-crystal X-ray diffraction and the intermolecular interactions rigorously analyzed via Hirshfeld surface analysis. It was found that the unique geometries of the anions used in the study form distinct interactions with the cations. The interactions in the crystalline state are correlated with the thermal properties of the four ionic liquids to rationalize the melting points and phase transitions for each compound. The observed arrangements of the alkyl chains on the cations are investigated computationally to gain an understanding of how rotational freedom may impact the thermal properties of the compounds. By intention, each IL reported in this work offers a unique property profile and contributes to the ever-growing ionic liquid catalog.
Collapse
Affiliation(s)
- Brianna O’Rourke
- Department
of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States
| | - Clare Lauderback
- Department
of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States
| | - Lara I. Teodoro
- Department
of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States
| | - Morgan Grimm
- Department
of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States
| | - Matthias Zeller
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arsalan Mirjafari
- Department
of Chemistry and Physics, Florida Gulf Coast
University, Fort Myers, Florida 33965, United States
| | - Gary L. Guillet
- Department
of Chemistry and Biochemistry, Georgia Southern
University, Savannah, Georgia 31419, United
States
| | - Patrick C. Hillesheim
- Department
of Chemistry and Physics, Ave Maria University, Ave Maria, Florida 34142, United States
- Department
of Chemistry and Physics, Florida Gulf Coast
University, Fort Myers, Florida 33965, United States
| |
Collapse
|
4
|
Holmes ST, Hook JM, Schurko RW. Nutraceuticals in Bulk and Dosage Forms: Analysis by 35Cl and 14N Solid-State NMR and DFT Calculations. Mol Pharm 2021; 19:440-455. [PMID: 34792373 DOI: 10.1021/acs.molpharmaceut.1c00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study uses 35Cl and 14N solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations for the structural characterization of chloride salts of nutraceuticals in their bulk and dosage forms. For eight nutraceuticals, we measure the 35Cl EFG tensor parameters of the chloride ions and use plane-wave DFT calculations to elucidate relationships between NMR parameters and molecular-level structure, which provide rapid NMR crystallographic assessments of structural features. We employ both 35Cl direct excitation and 1H→35Cl cross-polarization methods to characterize a dosage form containing α-d-glucosamine HCl, observe possible impurity and/or adulterant phases, and quantify the weight percent of the active ingredient. To complement this, we also investigate 14N SSNMR spectroscopy and DFT calculations to characterize nitrogen atoms in the nutraceuticals. This includes a discussion of targeted acquisition experimental protocols (i.e., acquiring a select region of the overall pattern that features key discontinuities) that allow ultrawideline spectra to be acquired rapidly, even for unreceptive samples (i.e., those with long values of T1(14N), short values of T2eff(14N), or very broad patterns). It is hoped that these experimental and computational protocols will be useful for the characterization of various solid forms of nutraceuticals (i.e., salts, polymorphs, hydrates, solvates, cocrystals, amorphous solid dispersions, etc.), help detect impurity and counterfeit solid phases in dosage forms, and serve as a foundation for future NMR crystallographic studies of nutraceutical solid forms, including studies using ab initio crystal structure prediction algorithms.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia.,School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
5
|
Abstract
Magnetic shielding depends on molecular structure and noncovalent interactions. This study shows that it is also measurably dependent on the electric field generated by surrounding molecules. This effect has been observed explicitly for 31P nucleus using the adduct under field approach. The results obtained indicate that the field strength experienced by molecules in crystals consisting of molecules with large dipole moments is similar to that in polar solvents. Therefore, magnetic shielding should explicitly depend on solvent polarity. It is important to note that this effect cannot be reproduced correctly within the polarizable continuum model approach.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Makrinich M, Sambol M, Goldbourt A. Distance measurements between carbon and bromine using a split-pulse PM-RESPDOR solid-state NMR experiment. Phys Chem Chem Phys 2020; 22:21022-21030. [PMID: 32700697 DOI: 10.1039/d0cp01162b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Solid-state nuclear magnetic resonance has long been used to probe atomic distances between nearby nuclear spins by virtue of the dipolar interaction. New technological advances have recently enabled simultaneous tuning of the radio-frequency resonance circuits to nuclei with close Larmor frequencies, bringing great promise, among other experiments, also to distance measurements between such nuclei, in particular for nuclei with a spin larger than one-half. However, this new possibility has also required modifications of those experiments since the two nuclei cannot be irradiated simultaneously. When measuring distances between a spin S = 1/2 and a quadrupolar spin (S > ½), this drawback can be overcome by splitting the continuous-wave recoupling pulse applied to the quadrupolar nucleus. We show here that a similar adjustment to a highly-efficient phase-modulated (PM) recoupling pulse enables distance measurements between nuclei with close Larmor frequencies, where the coupled spin experiences a very large coupling. Such an experiment, split phase-modulated RESPDOR, is demonstrated on a 13C-81Br system, where the difference in Larmor frequencies is only 7%, or 11.2 MHz on a 14.1 T magnet. The inter-nuclear distances are extracted using an unscaled analytical formula. Since bromine usually experiences particularly high quadrupolar couplings, as in the current case, we suggest that the split-PM-RESPDOR experiment can be highly beneficial for research on bromo-compounds, including many pharmaceuticals, where carbon-bromine bonds are prevalent, and organo-catalysts utilizing the high reactivity of bromides. We show that for butyl triphenylphosphonium bromide, the solid-state NMR distances are in agreement with a low-hydration compound rather than a water-caged semi-clathrate form. The split-PM-RESPDOR experiment is suitable for distance measurements between any quadrupolar ↔ spin-1/2 pair, in particular when the quadrupolar spin experiences a significantly large coupling.
Collapse
Affiliation(s)
- M Makrinich
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel.
| | | | | |
Collapse
|
7
|
Morin VM, Szell PMJ, Caron‐Poulin E, Gabidullin B, Bryce DL. Mechanochemical Preparations of Anion Coordinated Architectures Based on 3-Iodoethynylpyridine and 3-Iodoethynylbenzoic Acid. ChemistryOpen 2019; 8:1328-1336. [PMID: 31692837 PMCID: PMC6826240 DOI: 10.1002/open.201900194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/12/2019] [Indexed: 11/29/2022] Open
Abstract
The halogen bond has previously been explored as a versatile tool in crystal engineering and anion coordination chemistry, with mechanochemical synthetic techniques having been shown to provide convenient routes towards cocrystals. In an effort to expand our knowledge on the role of halogen bonding in anion coordination, here we explore a series of cocrystals formed between 3-iodoethynylpyridine and 3-iodoethynylbenzoic acid with halide salts. In total, we report the single-crystal X-ray structures of six new cocrystals prepared by mechanochemical ball milling, with all structures exhibiting C≡C-I⋅⋅⋅X- (X=Cl, Br) halogen bonds. Whereas cocrystals featuring a pyridine group favoured the formation of discrete entities, cocrystals featuring a benzoic acid group yielded an alternation of halogen and hydrogen bonds. The compounds studied herein were further characterized by 13C and 31P solid-state nuclear magnetic resonance, with the chemical shifts offering a clear and convenient method of identifying the occurrence of halogen bonding, using the crude product obtained directly from the mechanochemical ball milling. Whereas the 31P chemical shifts were quickly able to identify the occurrence of cocrystallization, 13C solid-state NMR was diagnostic of both the occurrence of halogen bonding and of hydrogen bonding.
Collapse
Affiliation(s)
- Vincent M. Morin
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa10 Marie Curie Private OttawaOntarioK1N 6N5Canada
| | - Patrick M. J. Szell
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa10 Marie Curie Private OttawaOntarioK1N 6N5Canada
| | - Estelle Caron‐Poulin
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa10 Marie Curie Private OttawaOntarioK1N 6N5Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa10 Marie Curie Private OttawaOntarioK1N 6N5Canada
| | - David L. Bryce
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa10 Marie Curie Private OttawaOntarioK1N 6N5Canada
| |
Collapse
|
8
|
Makrinich M, Nimerovsky E, Goldbourt A. Pushing the limit of NMR-based distance measurements - retrieving dipolar couplings to spins with extensively large quadrupolar frequencies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 92:19-24. [PMID: 29751342 DOI: 10.1016/j.ssnmr.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31P-79/81Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13C-209Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure.
Collapse
Affiliation(s)
- M Makrinich
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - E Nimerovsky
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - A Goldbourt
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
9
|
Abstract
Multiple-phenyl phosphorous compounds are a group of chemical materials that have been used as reactants, pharmaceutical intermediates, extractants, and catalysts in organic synthetic reactions. However, the crystal growth of bulk crystals of multiple-phenyl phosphorous compounds, which may expand their applications in photonics technology, have been largely overlooked. In this article, the crystal growth of tetraphenylphosphonium bromide (TPPB) has been studied in organic solvents and water. The crystal structures and crystallization features are analyzed by X-ray diffraction data. By a slow temperature-lowering method, a single-crystal of TPPB (2H2O) with the size of 27 × 20 × 20 mm3 has been obtained in water. The basic thermal and optical properties were characterized. We find that the TPPB (2H2O) crystal shows excellent transparent property in the near-IR region. Large Raman shifts and strong Raman scattering intensity indicate that TPPB is a potential candidate in Raman-scattering-based nonlinearity applications.
Collapse
|
10
|
Endo T, Imanari M, Hidaka Y, Seki H, Nishikawa K, Sen S. Structure and dynamics of room temperature ionic liquids with bromide anion: results from 81Br NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:369-378. [PMID: 25783567 DOI: 10.1002/mrc.4208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
We report the results of a comprehensive (81)Br NMR spectroscopic study of the structure and dynamics of two room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium bromide ([C(4)mim]Br) and 1-butyl-2,3-dimethylimidazolium bromide ([C(4)C(1)mim]Br), in both liquid and crystalline states. NMR parameters in the gas phase are also simulated for stable ion pairs using quantum chemical calculations. The combination of (81)Br spin-lattice and spin-spin relaxation measurements in the motionally narrowed region of the stable liquid state provides information on the correlation time of the translational motion of the cation. (81) Br quadrupolar coupling constants (C(Q)) of the two RTILs were estimated to be 6.22 and 6.52 MHz in the crystalline state which were reduced by nearly 50% in the liquid state, although in the gas phase, the values are higher and span the range of 7-53 MHz depending on ion pair structure. The C(Q) can be correlated with the distance between the cation-anion pairs in all the three states. The (81)Br C(Q) values of the bromide anion in the liquid state indicate the presence of some structural order in these RTILs, the degree of which decreases with increasing temperature. On the other hand, the ionicity of these RTILs is estimated from the combined knowledge of the isotropic chemical shift and the appropriate mean energy of the excited state. [C(4)C(1)mim]Br has higher ionicity than [C(4)mim]Br in the gas phase, while the situation is reverse for the liquid and the crystalline states.
Collapse
Affiliation(s)
- Takatsugu Endo
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa, 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Martineau C. NMR crystallography: Applications to inorganic materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 63-64:1-12. [PMID: 25112798 DOI: 10.1016/j.ssnmr.2014.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 05/15/2023]
Abstract
Current developments of NMR crystallography as well as some recent applications to diamagnetic inorganic solids are presented. First, we illustrate how solid-state NMR data can be used in combination with diffraction data for the determination of the periodic part of the crystal structures, from the space group selection, to the structure determination over the refinement and validation processes. As ss-NMR, contrary to diffraction (powder and single-crystal), is not restricted to periodic boundary conditions, ss-NMR data can be used to further complete the structural description of materials, including studies of local order/disorder, etc. This illustrated through examples, which are shown and discussed in the second part of this review.
Collapse
Affiliation(s)
- Charlotte Martineau
- Tectospin, Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, 45, avenue des Etats-Unis, 78035 Versailles cedex, France.
| |
Collapse
|
12
|
Viger-Gravel J, Leclerc S, Korobkov I, Bryce DL. Direct Investigation of Halogen Bonds by Solid-State Multinuclear Magnetic Resonance Spectroscopy and Molecular Orbital Analysis. J Am Chem Soc 2014; 136:6929-42. [DOI: 10.1021/ja5013239] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jasmine Viger-Gravel
- Department
of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Sophie Leclerc
- Department
of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Ilia Korobkov
- Department
of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - David L. Bryce
- Department
of Chemistry and Center for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
13
|
Burgess KMN, Xu Y, Leclerc MC, Bryce DL. Insight into Magnesium Coordination Environments in Benzoate and Salicylate Complexes through 25Mg Solid-State NMR Spectroscopy. J Phys Chem A 2013; 117:6561-70. [DOI: 10.1021/jp405145b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kevin M. N. Burgess
- Department of Chemistry
and Centre for Catalysis Research and
Innovation, University of Ottawa, 10 Marie
Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Yang Xu
- Department of Chemistry
and Centre for Catalysis Research and
Innovation, University of Ottawa, 10 Marie
Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Matthew C. Leclerc
- Department of Chemistry
and Centre for Catalysis Research and
Innovation, University of Ottawa, 10 Marie
Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - David L. Bryce
- Department of Chemistry
and Centre for Catalysis Research and
Innovation, University of Ottawa, 10 Marie
Curie Private, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|