1
|
Yu S, Zhang Q, Zhong X, Wang C, Shi W, Zhuang J, Zhang R, Jin F, Zhang J, Zhao Q, Chen GZ, Ye W, Lin GQ. Scalable Protecting-Group-Free Total Synthesis of Resibufogenin and Bufalin. Org Lett 2024; 26:9704-9709. [PMID: 39496285 DOI: 10.1021/acs.orglett.4c03433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
A chemoenzymatic synthesis access to resibufogenin and bufalin was developed in seven steps without protecting groups. Starting with androstenedione (AD), an α-OH was introduced directly at C14 by hydroxylase P-450lun, which was further used as the directing group for hydrogenation to fully control the C17 configuration in the β-orientation after Suzuki cross-coupling. Dehydration of 14α-OH followed by an epoxidation delivered resibufogenin. Simultaneously, bufalin was also obtained via a challenging anaerobic Mukaiyama hydration.
Collapse
Affiliation(s)
- Shaopeng Yu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiuheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueqing Zhong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenqing Shi
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiahua Zhuang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fangjie Jin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gu-Zhou Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenbo Ye
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Liu B, Bi S, Wang J, Xu P, Yu B. Synthesis of Acovenosides: Cardiac Glycosides with Potent Antitumor Activities. Org Lett 2024; 26:8725-8729. [PMID: 39420814 DOI: 10.1021/acs.orglett.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Acovenoside A (1), a cardiac glycoside featuring a unique l-acovenose at C-3 and a 1β,3β,14β-trihydroxy aglycone (namely, acovenosigenin A), shows promising antiproliferative activities. Herein, we report the synthesis of acovenoside A (1) together with a panel of its congeners. The synthesis features the stereoselective introduction of the 1β,14β-OH and C17-butenolide moieties starting from androstenedione (7) and gold(I)-catalyzed glycosylation with superarmed glycosyl ortho-alkynylbenzoates as donors.
Collapse
Affiliation(s)
- Benzhang Liu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuyang Bi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jing Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
3
|
Tichvon C, Zviagin E, Surma Z, Nagorny P. Synthesis of Bufadienolide Cinobufagin via Late-Stage Singlet Oxygen Oxidation/Rearrangement Approach. Org Lett 2024; 26:2445-2450. [PMID: 38488174 PMCID: PMC10980571 DOI: 10.1021/acs.orglett.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
This manuscript describes a concise synthesis of cinobufagin, a natural steroid of the bufadienolide family, from readily available dehydroepiandrosterone (DHEA), as well as its α5-epimer derived from 3-epi-andosterone. This synthesis features expedient installation of the 17β-pyrone moiety with the 14β,15β-epoxide and the 16β-acetoxy group using a photochemical regioselective singlet oxygen [4 + 2] cycloaddition followed by CoTPP-promoted in situ endoperoxide rearrangement to provide a 14β,16β-bis-epoxide in 64% yield with a 1.6:1 d.r. This β,β-bis-epoxide intermediate was subsequently subjected to a regioselective scandium(III) trifluoromethanesulfonate catalyzed House-Meinwald rearrangement to establish the 17β-configuration. The synthesis of cinobufagin is achieved in 12 steps (LLS) and 7.6% overall yield, and we demonstrate that it could be used as a platform for the subsequent medicinal chemistry exploration of cinobufagin analogs such as cinobufagin 5α-epimer.
Collapse
Affiliation(s)
- Colin Tichvon
- Chemistry Department, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109
| | - Eugene Zviagin
- Chemistry Department, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109
| | - Zoey Surma
- Chemistry Department, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109
| |
Collapse
|
4
|
Watanabe Y, Sakata K, Urabe D, Hagiwara K, Inoue M. Formal Total Synthesis of Batrachotoxin Enabled by Radical and Weix Coupling Reactions. J Org Chem 2023. [PMID: 38051654 DOI: 10.1021/acs.joc.3c02290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Batrachotoxin (1), originally isolated from a Columbian poison-dart frog, is a steroidal alkaloid. Its 6/6/6/5-membered carbocycle (ABCD-ring) contains two double bonds, one nitrogen, and five oxygen functionalities. We developed a radical-based convergent strategy and realized the total synthesis of 1 in 28 steps. The AB-ring and D-ring fragments were efficiently synthesized and linked by exploiting a powerful Et3B/O2-mediated radical coupling reaction. Vinyl triflate and vinyl bromide were then utilized for a Pd/Ni-promoted Weix coupling reaction to cyclize the C-ring. A hydroxy group of the C-ring was stereoselectively installed by a decarboxylative hydroxylation reaction to prepare an advanced intermediate of our previous total synthesis of 1.
Collapse
Affiliation(s)
- Yuuki Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Komei Sakata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Watanabe Y, Morozumi H, Mutoh H, Hagiwara K, Inoue M. Total Synthesis of (-)-Batrachotoxin Enabled by a Pd/Ag-Promoted Suzuki-Miyaura Coupling Reaction. Angew Chem Int Ed Engl 2023; 62:e202309688. [PMID: 37582693 DOI: 10.1002/anie.202309688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Batrachotoxin is an extremely potent cardio- and neurotoxic steroidal alkaloid found in certain species of frogs, birds, and beetles. The steroidal 6/6/6/5-membered carbocycle (ABCD-ring) is U-shaped and functionalized with two double bonds, a six-membered C3-hemiacetal across the AB-ring, a seven-membered oxazepane on the CD-ring, and a dimethylpyrrolecarboxy group at the D-ring carbon chain. These structural features present an unusual and formidable synthetic challenge. Herein we report a total synthesis of batrachotoxin based on a newly devised convergent strategy through a 22-step sequence. Enantiopure AB-ring and D-ring fragments were prepared and subjected to a crucial C(sp2 )-C(sp2 ) coupling reaction. Although both C(sp2 ) centers were sterically encumbered by proximal tetrasubstituted carbon atoms, Ag2 O strongly promoted the Pd(PPh3 )4 -catalyzed Suzuki-Miyaura coupling reaction at room temperature, thereby connecting the two fragments without damaging their preexisting functionalities. Subsequent treatment with t-BuOK induced Dieckmann condensation to cyclize the C-ring. The judiciously optimized functionalizations realized oxazepane formation, carbon chain extension, and pyrrole carboxylic acid condensation to deliver batrachotoxin.
Collapse
Affiliation(s)
- Yuuki Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisahiro Morozumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Mutoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Hassan S, Atef A, Ali HM, Alshamrani R, Ramadan A. Calotropis procera accumulates Uzarigenin and Calotropagenin in response to environmental lighting and drought. Saudi J Biol Sci 2023; 30:103622. [PMID: 36950364 PMCID: PMC10025005 DOI: 10.1016/j.sjbs.2023.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Calotropis procera (C. procera) was evaluated as a pharmaceutically useful plant and for its therapeutic effects in the most significant studies. Uzarigenin and Calotropagenin are significant components of this plant that have pharmacological effects on certain systems, including the digestive, immunological, and focal, and peripheral sensory systems. In this study, pathway genes are extracted from high throughput data acc.no. SRR1554320. Seven critical enzymes are involved in studying the effects of sunlight on the formation of Uzaragenin and Calotropagenin in C. procera before and after irrigation. Molecular identification and NCBI submission of six enzyme genes were successful; HSD (acc.no. OQ091761) for 3β-hydroxystroid dehydrogenase, OR (acc.no. OQ091762) for 5beta-pregnan oxidoreductase, MO (acc.no. OQ091763) for Pregnan monooxygenase, HOX (acc.no. OQ091764) for Steroid hydroxylase, MAT (acc.no. OQ091765) for Melonyletransferase, UHOX (acc.no. OQ091766) for Uzarigenin hydroxylase. During dawn after irrigation, the Uzargenin pathway showed the highest activity, however midday after irrigation was the lowest. The most period that showed high activity for the Uzargenin pathway was dawn after irrigation, however, midday after irrigation was the lowest. This data is confirmed by chromatography analysis (UPLC) to calculate the accumulation of Uzarigenin and Calotropagenin in different periods.
Collapse
Affiliation(s)
- Sabah Hassan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed Atef
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani M. Ali
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahma Alshamrani
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Ramadan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Plant Molecular Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
- Corresponding author at: Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
7
|
Medina-Ortiz K, Navia F, Mosquera-Gil C, Sánchez A, Sterling G, Fierro L, Castaño S. Identification of the NA +/K +-ATPase α-Isoforms in Six Species of Poison Dart Frogs and their Sensitivity to Cardiotonic Steroids. J Chem Ecol 2023; 49:116-132. [PMID: 36877397 PMCID: PMC10102066 DOI: 10.1007/s10886-023-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 03/07/2023]
Abstract
Cardiotonic steroids (CTS) are a group of compounds known to be toxic due to their ability to inhibit the Na+/K+-ATPase (NKA), which is essential to maintain the balance of ions in animal cells. An evolutionary strategy of molecular adaptation to avoid self-intoxication acquired by CTS defended organisms and their predators is the structural modification of their NKA where specific amino acid substitutions confer resistant phenotypes. Several lineages of poison dart frogs (Dendrobatidae) are well known to sequester a wide variety of lipophilic alkaloids from their arthropod diet, however there is no evidence of CTS-sequestration or dietary exposure. Interestingly this study identified the presence of α-NKA isoforms (α1 and α2) with amino acid substitutions indicative of CTS-resistant phenotypes in skeletal muscle transcriptomes obtained from six species of dendrobatids: Phyllobates aurotaenia, Oophaga anchicayensis, Epipedobates boulengeri, Andinobates bombetes, Andinobates minutus, and Leucostethus brachistriatus, collected in the Valle del Cauca (Colombia). P. aurotaenia, A. minutus, and E. boulengeri presented two variants for α1-NKA, with one of them having these substitutions. In contrast, O. anchicayensis and A. bombetes have only one α1-NKA isoform with an amino acid sequence indicative of CTS susceptibility and an α2-NKA with one substitution that could confer a reduced affinity for CTS. The α1 and α2 isoforms of L. brachistriatus do not contain substitutions imparting CTS resistance. Our findings indicate that poison dart frogs express α-NKA isoforms with different affinities for CTS and the pattern of this expression might be influenced by factors related to evolutionary, physiological, ecological, and geographical burdens.
Collapse
Affiliation(s)
- Katherine Medina-Ortiz
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia.
| | - Felipe Navia
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Claudia Mosquera-Gil
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Adalberto Sánchez
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Gonzalo Sterling
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Leonardo Fierro
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Santiago Castaño
- Laboratorio de Herpetología Y Toxinología, Department of Physiological Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
8
|
Zou D, Wang Q, Chen T, Sang D, Yang T, Wang Y, Gao M, He F, Li Y, He L, Longzhu D. Bufadienolides originated from toad source and their anti-inflammatory activity. Front Pharmacol 2022; 13:1044027. [PMID: 36339575 PMCID: PMC9627299 DOI: 10.3389/fphar.2022.1044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 03/03/2024] Open
Abstract
Bufadienolide, an essential member of the C-24 steroid family, is characterized by an α-pyrone positioned at C-17. As the predominantly active constituent in traditional Chinese medicine of Chansu, bufadienolide has been prescribed in the treatment of numerous ailments. It is a specifically potent inhibitor of Na+/K+ ATPase with excellent anti-inflammatory activity. However, the severe side effects triggered by unbiased inhibition of the whole-body cells distributed α1-subtype of Na+/K+ ATPase, restrict its future applicability. Thus, researchers have paved the road for the structural alteration of desirable bufadienolide derivatives with minimal adverse effects via biotransformation. In this review, we give priority to the present evidence for structural diversity, MS fragmentation principles, anti-inflammatory efficacy, and structure modification of bufadienolides derived from toads to offer a scientific foundation for future in-depth investigations and views.
Collapse
Affiliation(s)
- Denglang Zou
- School of Life Science, Qinghai Normal University, Xining, China
- College of Pharmacy, Jinan University, Guangzhou, China
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qiqi Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Duocheng Sang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Tingqin Yang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yuhan Wang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Mengze Gao
- School of Life Science, Qinghai Normal University, Xining, China
| | - Fangfang He
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Liangliang He
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Duojie Longzhu
- School of Life Science, Qinghai Normal University, Xining, China
| |
Collapse
|
9
|
Chemistry and the Potential Antiviral, Anticancer, and Anti-Inflammatory Activities of Cardiotonic Steroids Derived from Toads. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196586. [PMID: 36235123 PMCID: PMC9571018 DOI: 10.3390/molecules27196586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: “cardiotonic steroids”, “anti-inflammatory”, “antiviral”, “anticancer”, “toad venom”, “bufadienolides”, and “poison chemical composition”. Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms.
Collapse
|
10
|
Abstract
Saponins are a large family of amphiphilic glycosides of steroids and triterpenes found in plants and some marine organisms. By expressing a large diversity of structures on both sugar chains and aglycones, saponins exhibit a wide range of biological and pharmacological properties and serve as major active principles in folk medicines, especially in traditional Chinese medicines. Isolation of saponins from natural sources is usually a formidable task due to the microheterogeneity of saponins in Nature. Chemical synthesis can provide access to large amounts of natural saponins as well as congeners for understanding their structure-activity relationships and mechanisms of action. This article presents a comprehensive account on chemical synthesis of saponins. First highlighted are general considerations on saponin synthesis, including preparation of aglycones and carbohydrate building blocks, assembly strategies, and protecting-group strategies. Next described is the state of the art in the synthesis of each type of saponins, with an emphasis on those representative saponins having sophisticated structures and potent biological activities.
Collapse
Affiliation(s)
- You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
11
|
Kumavath R, Paul S, Pavithran H, Paul MK, Ghosh P, Barh D, Azevedo V. Emergence of Cardiac Glycosides as Potential Drugs: Current and Future Scope for Cancer Therapeutics. Biomolecules 2021; 11:1275. [PMID: 34572488 PMCID: PMC8465509 DOI: 10.3390/biom11091275] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac glycosides are natural sterols and constitute a group of secondary metabolites isolated from plants and animals. These cardiotonic agents are well recognized and accepted in the treatment of various cardiac diseases as they can increase the rate of cardiac contractions by acting on the cellular sodium potassium ATPase pump. However, a growing number of recent efforts were focused on exploring the antitumor and antiviral potential of these compounds. Several reports suggest their antitumor properties and hence, today cardiac glycosides (CG) represent the most diversified naturally derived compounds strongly recommended for the treatment of various cancers. Mutated or dysregulated transcription factors have also gained prominence as potential therapeutic targets that can be selectively targeted. Thus, we have explored the recent advances in CGs mediated cancer scope and have considered various signaling pathways, molecular aberration, transcription factors (TFs), and oncogenic genes to highlight potential therapeutic targets in cancer management.
Collapse
Affiliation(s)
- Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala 671320, India;
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012, India;
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Honey Pavithran
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala 671320, India;
| | - Manash K. Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA;
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India;
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-001, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-001, Brazil;
| |
Collapse
|
12
|
Abstract
This article describes a concise synthesis of cardiotonic steroids oleandrigenin (7) and its subsequent elaboration into the natural product rhodexin B (2) from the readily available intermediate (8) that could be derived from the commercially available steroids testosterone or DHEA via three-step sequences. These studies feature an expedient installation of the β16-oxidation based on β14-hydroxyl-directed epoxidation and subsequent epoxide rearrangement. The following singlet oxygen oxidation of the C17 furan moiety provides access to oleandrigenin (7) in 12 steps (LLS) and a 3.1% overall yield from 8. The synthetic oleandrigenin (7) was successfully glycosylated with l-rhamnopyranoside-based donor 28 using a Pd(II)-catalyst, and the subsequent deprotection under acidic conditions provided cytotoxic natural product rhodexin B (2) in a 66% yield (two steps).
Collapse
Affiliation(s)
- Zachary Fejedelem
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nolan Carney
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Choucry M, Shalabi AA, El Halawany AM, El-Sakhawy FS, Zaiter A, Morita H, Chaimbault P, Abdel-Sattar E. New Pregnane Glycosides Isolated from Caralluma hexagona Lavranos as Inhibitors of α-Glucosidase, Pancreatic Lipase, and Advanced Glycation End Products Formation. ACS OMEGA 2021; 6:18881-18889. [PMID: 34337228 PMCID: PMC8320078 DOI: 10.1021/acsomega.1c02056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 05/04/2023]
Abstract
Caralluma hexagona Lavranos (Family Asclepiadaceae) is an endemic herb in Yemen and Saudi Arabia, traditionally used to treat diabetes, abdominal pain, and stomach ulcers. Different extracts, fractions, and main constituents of C. hexagona were evaluated for their inhibitory activity against key enzymes in diabetes and hyperlipidemia, i.e., α-glucosidase and pancreatic lipase. In addition, the antioxidative effect and inhibition of advanced glycation end products (AGEs) were also assayed. Using a bioguided approach, the crude aqueous, methanolic extracts, methylene chloride (CH2Cl2), Diaion HP20 50% MeOH (DCF-1), and 100% MeOH (DCF-2) fractions of C. hexagona were evaluated for their possible α-glucosidase and pancreatic lipase inhibition and antioxidant activity. In addition, inhibition of AGE generation using bovine serum albumin (BSA)-fructose, BSA-methylglyoxal, and arginine-methylglyoxal models was carried out. Moreover, the main constituents of the most active fraction were isolated and identified using different chromatographic and sprectroscopic methods. From the most active CH2Cl2 fraction, four new pregnane glycosides were isolated and identified as 12β-O-benzoyl 3β,8β,12β,14β,20-pentahydroxy-(20S)-pregn-5-ene-3-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-digitaloside (1), 3β,8β,14β,20-tetrahydroxy-(20S)-pregn-5-ene-3-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-digitaloside-20-O-3-isoval-β-d-glucopyranoside (2), 3β,8β,14β,20-tetrahydroxy-(20R)-pregn-5-ene-3-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-digitaloside-20-O-3-isoval-4-benzoyl-β-d-glucopyranoside (3A), and 3β,8β,14β,20-tetrahydroxy-(20R)-pregn-5-ene-3-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-digitaloside-20-O-3,4 di-benzoyl-β-d-glucopyranoside (3B). Among the tested samples, the highest trolox equivalent (TE) antioxidant capacity (TEAC) was observed for DCF-1 with values of 128.53 ± 5.07, 378.58 ± 5.19, and 106.71 ± 5.66 μM TE/mg using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant potential (FRAP) assays, respectively. The isolated apigenin-8-C-neohesperoside showed the highest antioxidant capacity (168.80 ± 1.80 and 278.21 ± 13.26 μM TE/mM) in DPPH and FRAP, respectively, while luteolin 4'-O-β-d-neohesperidoside had the highest TEAC (599.19 ± 9.57 μM TE/mM) in ABTS assay. Compounds 1, 2, and the mixture 3A and 3B inhibited α-glucosidase with IC50 values of 0.92 ± 0.02, 0.67 ± 0.01, and 0.74 ± 0.02 mM, respectively. In the AGE assays, DCF-1 showed the highest inhibitory effect in BSA-fructose and arginine-methylglyoxal models with IC50 values of 0.39 ± 0.02 and 0.77 ± 0.10 mg/mL, respectively. Among the isolated compounds, flavonoid compounds showed the highest antiglycation effect, while pregnanes revealed higher α-glucosidase inhibition. In conclusion, the current study revealed that C. hexagona is a promising Yemeni natural remedy, of which the major content of pregnane glycosides and flavonoids could be considered as a new therapeutic candidate targeting the metabolic syndrome.
Collapse
Affiliation(s)
- Mouchira
A. Choucry
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, El-Kasr El-Aini Street, 11771 Cairo, Egypt
| | - Akram A. Shalabi
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, El-Kasr El-Aini Street, 11771 Cairo, Egypt
| | - Ali M. El Halawany
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, El-Kasr El-Aini Street, 11771 Cairo, Egypt
| | - Fatma S. El-Sakhawy
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, El-Kasr El-Aini Street, 11771 Cairo, Egypt
| | - Ali Zaiter
- Université
de Lorraine, LCP-A2MC, 57000 Metz, France
| | - Hiroyuki Morita
- Institute
of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | - Essam Abdel-Sattar
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, El-Kasr El-Aini Street, 11771 Cairo, Egypt
- . Tel: +20-1065847211
| |
Collapse
|
14
|
Morais PAB, Francisco CS, de Paula H, Ribeiro R, Eloy MA, Javarini CL, Neto ÁC, Júnior VL. Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, medicinal chemistry has been concerned with the approach of organic
chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities,
the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new
and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since
the 19th century, notoriously applying isolated and characterized plant-derived compounds in
modern drug discovery and various stages of clinical development highlight its viability and
significance. Natural products influence a broad range of biological processes, covering transcription,
translation, and post-translational modification, being effective modulators of most
basic cellular processes. The research of new chemical entities through “click chemistry”
continuously opens up a map for the remarkable exploration of chemical space towards leading
natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a
broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Carla Santana Francisco
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Rayssa Ribeiro
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Mariana Alves Eloy
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Clara Lirian Javarini
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Álvaro Cunha Neto
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| |
Collapse
|
15
|
Parulava MJ, Kotovshchikov YN, Latyshev GV, Sokolova DV, Beletskaya IP, Lukashev NV. Synthesis of novel cytotoxic 3-azolylsteroids via Cu-catalyzed C–N coupling. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Parulava MJ, Kotovshchikov YN, Latyshev GV, Sokolova DV, Beletskaya IP, Lukashev NV. Synthesis of novel cytotoxic 3-azolylsteroids via Cu-catalyzed C–N coupling. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021; 60:5512-5518. [PMID: 33206427 DOI: 10.1002/anie.202013881] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/11/2022]
Abstract
We describe herein the assembly of the cis-decalin framework through radical cyclization initiated by metal-catalyzed hydrogen atom transfer (MHAT), further applied it in the asymmetric synthesis of dankasterones A and B and periconiastone A. Position-selective C-H oxygenation allowed for installation of the necessary functionality. A radical rearrangement was adopted to create 13(14→8)abeo-8-ergostane skeleton. Interconversion of dankasterone B and periconiastone A was realized through biomimetic intramolecular aldol and retro-aldol reactions. The MHAT-based approach, serves as a new dissection means, is complementary to the conventional ways to establish cis-decalin framework.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| |
Collapse
|
18
|
Watanabe S, Nishikawa T, Nakazaki A. Total Synthesis of the Cardiotonic Steroid (+)-Cannogenol. J Org Chem 2021; 86:3605-3614. [PMID: 33538172 DOI: 10.1021/acs.joc.0c02966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total synthesis of (+)-cannogenol, an aglycon common to various biologically important cardiotonic glycosides, has been achieved. Synthesis of the versatile intermediate involves Mizoroki-Heck and intramolecular Diels-Alder reactions from the enantiomerically pure CD-ring segment, newly prepared in a multidecagram scale this time. Total synthesis by the site-selective transformations of the versatile intermediate demonstrated the applicability of our synthetic approach.
Collapse
Affiliation(s)
- Shogo Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
19
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Kai Chen
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| |
Collapse
|
20
|
Ayogu JI, Odoh AS. Prospects and Therapeutic Applications of Cardiac Glycosides in Cancer Remediation. ACS COMBINATORIAL SCIENCE 2020; 22:543-553. [PMID: 32786321 DOI: 10.1021/acscombsci.0c00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Active metabolites from natural sources are the predominant molecular targets in numerous biological studies owing to their appropriate compatibility with biological systems and desirable selective toxicities. Thus, their potential for therapeutic development could span a broad scope of disease areas, including pathological and neurological dysfunctions. Cardiac glycosides are a unique class of specialized metabolites that have been extensively applied as therapeutic agents for the treatment of numerous heart conditions, and more recently, they have also been explored as probable antitumor agents. They are a class of naturally derived compounds that bind to and inhibit Na+/K+-ATPase. This study presents cardiac glycosides and their analogues with highlights on their applications, challenges, and prospects as lead compounds for cancer treatment.
Collapse
Affiliation(s)
- Jude I. Ayogu
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka 410001, Nigeria
- Department of Chemistry, School of Physical and Chemical Science, University of Canterbury, Christchurch 8041, New Zealand
| | - Amaechi S. Odoh
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
21
|
Abstract
We report a unified total synthesis of five bufadienolides: bufalin (1), bufogenin B (2), bufotalin (3), vulgarobufotoxin (4), and 3-(N-succinyl argininyl) bufotalin (5). After the steroidal ABCD ring 8 was produced, the D ring was cross-coupled with a 2-pyrone moiety and stereoselectively epoxidized to generate 6. TMSOTf promoted a stereospecific 1,2-hydride shift from 6 to establish the β-oriented 2-pyrone of 19. Functional group manipulations from 19 furnished 1-5, which potently inhibited cancer cell growth.
Collapse
Affiliation(s)
- Shinsuke Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Syeda SS, Sánchez G, McDermott JP, Hong KH, Blanco G, Georg GI. The Na+ and K+ transport system of sperm (ATP1A4) is essential for male fertility and an attractive target for male contraception†. Biol Reprod 2020; 103:343-356. [PMID: 32588885 PMCID: PMC7401355 DOI: 10.1093/biolre/ioaa093] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
One of the mechanisms that cells have developed to fulfil their specialized tasks is to express different molecular variants of a particular protein that has unique functional properties. Na,K-ATPase (NKA), the ion transport mechanism that maintains the transmembrane Na+ and K+ concentrations across the plasma membrane of cells, is one of such protein systems that shows high molecular and functional heterogeneity. Four different isoforms of the NKA catalytic subunit are expressed in mammalian cells (NKAα1, NKAα2, NKAα3, and NKAα4). NKAα4 (ATP1A4) is the isoform with the most restricted pattern of expression, being solely produced in male germ cells of the testis. NKAα4 is abundant in spermatozoa, where it is required for sperm motility and hyperactivation. This review discusses the expression, functional properties, mechanism of action of NKAα4 in sperm physiology, and its role in male fertility. In addition, we describe the use of NKAα4 as a target for male contraception and a potential approach to pharmacologically block its ion transport function to interfere with male fertility.
Collapse
Affiliation(s)
- Shameem Sultana Syeda
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Gladis Sánchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey P McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kwon Ho Hong
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, College of Pharmacy, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
23
|
Novel d-Annulated Pentacyclic Steroids: Regioselective Synthesis and Biological Evaluation in Breast Cancer Cells. Molecules 2020; 25:molecules25153499. [PMID: 32752019 PMCID: PMC7435891 DOI: 10.3390/molecules25153499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
The acid-catalyzed cyclization of benzylidenes based on 16-dehydropregnenolone acetate (16-DPA) was studied. It was found that these compounds readily undergo regioselective interrupted Nazarov cyclization with trapping chloride ion and an efficient method of the synthesis of d-annulated pentacyclic steroids based on this reaction was proposed. The structures of the synthesized pentacyclic steroids were determined by NMR and X-ray diffraction. It was found that the reaction affords a single diastereomer, but the latter can crystallize as two conformers depending on the structure. Antiproliferative activity of synthesized compounds was evaluated against two breast cancer cell lines: MCF-7 and MDA-MB-231. All tested compounds showed relatively high antiproliferative activity. The synthetic potential of the protocol developed was illustrated by the gram-scale experiment.
Collapse
|
24
|
Michalak K, Rárová L, Kubala M, Štenclová T, Strnad M, Wicha J. Synthesis and evaluation of Na +/K +-ATP-ase inhibiting and cytotoxic in vitro activities of oleandrigenin and its selected 17β-(butenolidyl)- and 17β-(3-furyl)- analogues. Eur J Med Chem 2020; 202:112520. [PMID: 32645647 DOI: 10.1016/j.ejmech.2020.112520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Natural cardiac-active principles built upon the 14,16β-dihydroxy-5β,14β-androstane core and bearing a heterocyclic substituent at 17β, in particular, a cardenolide - oleandrin and a bufadienolide - bufotalin, are receiving a great deal of attention as potential anticancer drugs. The densely substituted and sterically shielded ring D is the particular structural feature of these compounds. The first synthesis of oleandrigenin from easily available steroid starting material is reported here. Furthermore, selected 17β-(4-butenolidyl)- and 17β-(3-furyl)-14,16β-dihydroxy-androstane derivatives were en route synthesized and examined for their Na+/K+-ATP-ase inhibitory properties as well as cytotoxic activities in normal and cancer cell lines. It was found that the furyl-analogue of oleandrigenin/bufatalin (7) and some related 17-(3-furyl)- derivatives (19, 21) show remarkably high Na+/K+-ATP-ase inhibitory activity as well as significant cytotoxicity in vitro. In addition, oleandrigenin 2 compared to derivatives 21 and 25 induced strong apoptosis in human cervical carcinoma HeLa cells after 24 h of treatment.
Collapse
Affiliation(s)
- Karol Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic; Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, CZ-775 20, Olomouc, Czech Republic
| | - Martin Kubala
- Department of Experimental Physics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 41, Olomouc, Czech Republic
| | - Tereza Štenclová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic; Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, CZ-775 20, Olomouc, Czech Republic.
| | - Jerzy Wicha
- Institute of Organic Chemistry, Polish Academy of Sciences, Ul. Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
25
|
Recent Progress in Steroid Synthesis Triggered by the Emergence of New Catalytic Methods. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Fu S, Liu B. Recent progress in the synthesis of limonoids and limonoid-like natural products. Org Chem Front 2020. [DOI: 10.1039/d0qo00203h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent progress in syntheses of limonoids and limonoid-like natural products is reviewed. The current “state-of-art” advance on novel synthetic strategy are summarized and future outlook will be presented.
Collapse
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry &Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Bo Liu
- Key Laboratory of Green Chemistry &Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|
27
|
Abstract
Covering: 1989-2017 Saponins are characteristic metabolites of starfish and sea cucumbers, and occasionally are also found in sponges, soft coral, and small fish. These steroid or triterpenoid glycosides often show remarkable biological and pharmacological activities, such as antifungal, antifouling, shark repellent, antitumor and anti-inflammatory activities. Over one thousand marine saponins have been characterized; the majority of them can be categorized into three major structural types, i.e., asterosaponins, polyhydroxysteroid glycosides, and holostane glycosides. Thus far, only 12 marine saponins have been synthesized; those representing the major types were successfully synthesized recently. The syntheses involve preparation of the aglycones from the terrestrial steroid or triterpene materials, installation of the carbohydrate units, and manipulation of the protecting groups. Herein, we provide a comprehensive review on these syntheses.
Collapse
Affiliation(s)
- Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | | | | | | |
Collapse
|
28
|
Michalak K, Rárová L, Kubala M, Čechová P, Strnad M, Wicha J. Synthesis and evaluation of cytotoxic and Na+/K+-ATP-ase inhibitory activity of selected 5α-oleandrigenin derivatives. Eur J Med Chem 2019; 180:417-429. [DOI: 10.1016/j.ejmech.2019.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
|
29
|
Watanabe S, Nishikawa T, Nakazaki A. Synthesis of Oxy-Functionalized Steroidal Skeletons via Mizoroki-Heck and Intramolecular Diels-Alder Reactions. Org Lett 2019; 21:7410-7414. [PMID: 31498649 DOI: 10.1021/acs.orglett.9b02716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Estrogenic and cardiotonic steroidal skeletons were concisely constructed via Mizoroki-Heck and intramolecular Diels-Alder (IMDA) reactions. Simple modification of the dienophile unsaturation of the IMDA precursor enabled representative AB-ring systems of both steroid classes to be accessed from the same intermediate. The diastereoselectivity of the IMDA reaction used to access the cardiotonic steroidal skeleton was found to be significantly enhanced by performing the reaction in water.
Collapse
Affiliation(s)
- Shogo Watanabe
- Graduate School of Bioagricultural Sciences , Nagoya University , Furo-cho , Chikusa , Nagoya 464-8601 , Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences , Nagoya University , Furo-cho , Chikusa , Nagoya 464-8601 , Japan
| | - Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences , Nagoya University , Furo-cho , Chikusa , Nagoya 464-8601 , Japan
| |
Collapse
|
30
|
Regioselective single pot C3-glycosylation of strophanthidol using methylboronic acid as a transient protecting group. J Antibiot (Tokyo) 2019; 72:437-448. [PMID: 30948784 DOI: 10.1038/s41429-019-0172-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
This manuscript describes a single pot protocol for the selective introduction of unprotected sugars to the C3 position of the cardiotonic steroid strophanthidol. These reactions proceed with high levels of regiocontrol (>20:1 rr) in the presence of three other hydroxyl functionalities including the C19 primary hydroxyl group and could be applied to different sugars to provide the deprotected cardiac glycosides upon work up (5 examples, 77-69% yield per single operation). The selective glycosylation of the less reactive C3 position is accomplished by the use of traceless protection with methylboronic acid that blocks the C5 and C19 hydroxyls by forming a cyclic boronic ester, followed by in situ glycosylation and a work up with ammonia in methanol to remove the boronic ester and the carbohydrate ester protecting groups.
Collapse
|
31
|
Khatri HR, Bhattarai B, Kaplan W, Li Z, Curtis Long MJ, Aye Y, Nagorny P. Modular Total Synthesis and Cell-Based Anticancer Activity Evaluation of Ouabagenin and Other Cardiotonic Steroids with Varying Degrees of Oxygenation. J Am Chem Soc 2019; 141:4849-4860. [PMID: 30802047 PMCID: PMC6516474 DOI: 10.1021/jacs.8b12870] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Cu(II)-catalyzed diastereoselective Michael/aldol cascade approach is used to accomplish concise total syntheses of cardiotonic steroids with varying degrees of oxygenation including cardenolides ouabagenin, sarmentologenin, 19-hydroxysarmentogenin, and 5- epi-panogenin. These syntheses enabled the subsequent structure activity relationship (SAR) studies on 37 synthetic and natural steroids to elucidate the effect of oxygenation, stereochemistry, C3-glycosylation, and C17-heterocyclic ring. Based on this parallel evaluation of synthetic and natural steroids and their derivatives, glycosylated steroids cannogenol-l-α-rhamnoside (79a), strophanthidol-l-α-rhamnoside (92), and digitoxigenin-l-α-rhamnoside (97) were identified as the most potent steroids demonstrating broad anticancer activity at 10-100 nM concentrations and selectivity (nontoxic at 3 μM against NIH-3T3, MEF, and developing fish embryos). Further analyses indicate that these molecules show a general mode of anticancer activity involving DNA-damage upregulation that subsequently induces apoptosis.
Collapse
Affiliation(s)
- Hem Raj Khatri
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109 USA
| | - Bijay Bhattarai
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109 USA
| | - Will Kaplan
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109 USA
| | - Zhongzheng Li
- Department of Chemistry, Nankai University, Nankai, People Republic of China
| | | | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
32
|
Fan JH, Hu YJ, Guo Q, Li S, Zhao J, Li CC. Asymmetric synthesis of the tetracyclic core of bufogargarizin C by an intramolecular [5 + 2] cycloaddition. Org Chem Front 2019. [DOI: 10.1039/c8qo01089g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A concise asymmetric synthesis of the synthetically challenging 7/5/6/5-tetracyclic core of bufogargarizin C by a unique intramolecular [5 + 2] cycloaddition was reported.
Collapse
Affiliation(s)
- Jian-Hong Fan
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
- Shenzhen Grubbs Institute and Department of Chemistry
| | - Ya-Jian Hu
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
- Shenzhen Grubbs Institute and Department of Chemistry
| | - Qiang Guo
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Shaoping Li
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Jing Zhao
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen 518055
- China
| |
Collapse
|
33
|
Shiina I, Miesch M, Peter C, Geoffroy P, Murata T, Tonoi T. Diastereo–/Enantioselective Diels–Alder Synthesis of 14β-Hydroxysteroid Scaffolds: A Combined Experimental and DFT Study. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Hou W, Huang ZX, Xu HG, Lin J, Zhang DM, Peng QL, Lin H, Chang YQ, Wang LH, Yao Z, Sun PH, Chen WM. Hybrids of arenobufagin and benzoisoselenazol reducing the cardiotoxicity of arenobufagin. Bioorg Med Chem Lett 2018; 28:3391-3394. [DOI: 10.1016/j.bmcl.2018.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
|
35
|
Urabe D, Nakagawa Y, Mukai K, Fukushima KI, Aoki N, Itoh H, Nagatomo M, Inoue M. Total Synthesis and Biological Evaluation of 19-Hydroxysarmentogenin-3-O-α-l-rhamnoside, Trewianin, and Their Aglycons. J Org Chem 2018; 83:13888-13910. [DOI: 10.1021/acs.joc.8b02219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daisuke Urabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Nakagawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken Mukai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kei-ichiro Fukushima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoto Aoki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Mestre J, Collado D, Benito-Alifonso D, Rodríguez MA, Matheu MI, Díaz Y, Castillón S, Boutureira O. Highly reactive 2-deoxy-2-iodo-d- allo and d- gulo pyranosyl sulfoxide donors ensure β-stereoselective glycosylations with steroidal aglycones. RSC Adv 2018; 8:30076-30079. [PMID: 35546863 PMCID: PMC9085402 DOI: 10.1039/c8ra06619a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/11/2018] [Indexed: 12/31/2022] Open
Abstract
The preparation of well-defined d-xylo and d-ribo glycosides represents a synthetic challenge due to the limited configurational availability of starting materials and the laborious synthesis of homogeneous 2-deoxy-β-glycosidic linkages, in particular that of the sugar-steroid motif, which represents the "stereoselective determining step" of the overall synthesis. Herein we describe the use of 2-deoxy-2-iodo-glycopyranosyl sulfoxides accessible from widely available d-xylose and d-ribose monosaccharides as privileged glycosyl donors that permit activation at very low temperature. This ensures a precise kinetic control for a complete 1,2-trans stereoselective glycosylation of particularly challenging steroidal aglycones.
Collapse
Affiliation(s)
- Jordi Mestre
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - David Collado
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - David Benito-Alifonso
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Miguel A Rodríguez
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - M Isabel Matheu
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Yolanda Díaz
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| |
Collapse
|
37
|
Kreibich M, Petrović D, Brückner R. Mechanistic Studies of the Deslongchamps Annulation. J Org Chem 2018; 83:1116-1133. [PMID: 29131961 DOI: 10.1021/acs.joc.7b02341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Cs2CO3-mediated annulations ("Deslongchamps annulations") of three spirocyclic benzoquinone monoketals 5b-d with an ester or acyl substituent at C-2 to two tert-butyl esters of γ,δ-unsaturated β-ketocarboxyl acids ("Nazarov reagents"; 2a,b) were monitored 1H NMR spectroscopically. This revealed that a primary product, by all likelihood the Michael adduct, forms fast and prior to the appearance of the Deslongchamps adduct. These primary products form reversibly. This was proved by two crossover and four scavenging experiments. Therein, components already incorporated in one of the mentioned primary products ended up in Deslongchamps adducts different from the one, which would have resulted if the respective primary product had reacted alone. However, these experiments leave open whether our primary products are intermediates en route to Deslongchamps products or whether they represent dead ends.
Collapse
Affiliation(s)
- Michael Kreibich
- Institut für Organische Chemie, Albert-Ludwigs-Universität , Albertstraße 21, D-79104 Freiburg im Breisgau, Germany
| | - Denis Petrović
- Institut für Organische Chemie, Albert-Ludwigs-Universität , Albertstraße 21, D-79104 Freiburg im Breisgau, Germany.,Noramco GmbH , Badische Bahnhofstrasse 16, CH-8212 Neuhausen, Switzerland
| | - Reinhard Brückner
- Institut für Organische Chemie, Albert-Ludwigs-Universität , Albertstraße 21, D-79104 Freiburg im Breisgau, Germany
| |
Collapse
|
38
|
Bhattarai B, Nagorny P. Enantioselective Total Synthesis of Cannogenol-3-O-α-l-rhamnoside via Sequential Cu(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions. Org Lett 2017; 20:154-157. [PMID: 29244520 DOI: 10.1021/acs.orglett.7b03513] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A concise and scalable enantioselective total synthesis of the natural cardenolides cannogenol and cannogenol-3-O-α-l-rhamnoside has been achieved in 18 linear steps. The synthesis features a Cu(II)-catalyzed enantioselective and diastereoselective Michael reaction/tandem aldol cyclization and a one-pot reduction/transposition, which resulted in a rapid (6 linear steps) assembly of a functionalized intermediate containing C19 oxygenation that could be elaborated to cardenolide cannogenol. In addition, a strategy for achieving regio- and stereoselective glycosylation at the C3 position of synthetic cannogenol was developed and applied to the preparation of cannogenol-3-O-α-l-rhamnoside.
Collapse
Affiliation(s)
- Bijay Bhattarai
- Chemistry Department, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Chemistry Department, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Sakata K, Wang Y, Urabe D, Inoue M. Synthesis of the Tetracyclic Structure of Batrachotoxin Enabled by Bridgehead Radical Coupling and Pd/Ni-Promoted Ullmann Reaction. Org Lett 2017; 20:130-133. [PMID: 29232148 DOI: 10.1021/acs.orglett.7b03482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The steroidal ABCD-ring system of the potent neurotoxin batrachotoxin was efficiently assembled in a convergent fashion. Bridgehead radical coupling between the simple AB-ring and D-ring fragments (3 and 4) formed the sterically congested linkage at the C9-oxygen-attached tetrasubstituted carbon. The C-ring was then cyclized by the Pd/Ni-promoted Ullmann reaction of the vinyl triflate and vinyl bromide of 19, giving rise to tetracyclic structure 1.
Collapse
Affiliation(s)
- Komei Sakata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yinghua Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Nakazaki A, Hashimoto K, Ikeda A, Shibata T, Nishikawa T. De Novo Synthesis of Possible Candidates for the Inagami-Tamura Endogenous Digitalis-like Factor. J Org Chem 2017; 82:9097-9111. [PMID: 28787161 DOI: 10.1021/acs.joc.7b01640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
De novo synthesis of possible candidates for the Inagami-Tamura endogenous digitalis-like factor (EDLF) was achieved to validate a previously proposed structure. Our synthetic approach involves a highly regio- and diastereoselective Mizoroki-Heck reaction and a Friedel-Crafts-type cyclodehydration to construct steroidal tetracycle 14 as a versatile common intermediate leading to seven 2,14β-dihydroxyestradiol analogues 1a-c, 2a-c, and 3 as possible candidates. By comparing the potency of inhibitory activity against Na+/K+-ATPase between the synthesized candidates and the EDLF, it was found that the proposed structure is not likely to be a true structure of the Inagami-Tamura EDLF.
Collapse
Affiliation(s)
- Atsuo Nakazaki
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Keiko Hashimoto
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Ai Ikeda
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University , Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
41
|
Qing X, Guo Y, Shan X, Ding Y, Gao Q, Li Y, Wang C. An efficient synthesis of 3β,14β-dihydroxy-5α-androst-15-en-17-one. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14944355549168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient four-step method has been developed for the synthesis of 3 β,14 β-dihydroxy-5 α-androst-15-en-17-one from a common androstane derivative. The X-ray crystal structures of the alkenes, the epoxide and the 14-hydroxy compound have been determined.
Collapse
Affiliation(s)
- Xushun Qing
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Yayun Guo
- Shandong Academy of Grape, 1–27 Shanda South Road, Licheng District, Jinan 250100, P.R. China
| | - Xiaojie Shan
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Qi Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P.R. China
| |
Collapse
|
42
|
Michalak M, Michalak K, Wicha J. The synthesis of cardenolide and bufadienolide aglycones, and related steroids bearing a heterocyclic subunit. Nat Prod Rep 2017; 34:361-410. [PMID: 28378871 DOI: 10.1039/c6np00107f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: early studies through to March 2016Cardenolides and bufadienolides constitute an attractive class of biologically active steroid derivatives which have been used for the treatment of heart disease in traditional remedies as well as in modern medicinal therapy. Due to their application as therapeutic agents and their unique molecular structures, bearing unsaturated 5- or 6-membered lactones (or other heterocycles) attached to the steroid core, cardio-active steroids have received great attention, which has intensified during the last decade, in the synthetic organic community. Advances in the field of cross-coupling reactions have provided a powerful tool for the attachment of lactone subunits to the steroid core. This current review covers a methodological analysis of synthetic efforts to cardenolide and bufadienolide aglycones. Special emphasis is given to cross-coupling reactions applied for the attachment of lactone subunits at sterically very hindered positions of the steroid core. The carefully selected partial and total syntheses of representative cardio-active steroids will also be presented to exemplify recent achievements (improvements) in the field.
Collapse
Affiliation(s)
- Michał Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
43
|
Mestre J, Matheu MI, Díaz Y, Castillón S, Boutureira O. Chemical Access to d-Sarmentose Units Enables the Total Synthesis of Cardenolide Monoglycoside N-1 from Nerium oleander. J Org Chem 2017; 82:3327-3333. [PMID: 28233998 DOI: 10.1021/acs.joc.7b00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein we present a chemical approach for the ready preparation of d-sarmentosyl donors enabling the first total synthesis and structure validation of cardenolide N-1, a challenging 2,6-dideoxy-3-O-methyl-β-d-xylo-hexopyranoside extracted from Nerium oleander twigs that displays anti-inflammatory properties and cell growth inhibitory activity against tumor cells. The strategy highlights the synthetic value of the sequential methodology developed in our group for the synthesis of 2-deoxyglycosides. Key steps include Wittig-Horner olefination of a d-xylofuranose precursor, [I+]-induced 6-endo cyclization, and 1,2-trans stereoselective glycosylation.
Collapse
Affiliation(s)
- Jordi Mestre
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - M Isabel Matheu
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Yolanda Díaz
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
44
|
Mizoguchi H. Recent Developments in Synthetic Strategies toward Highly Oxygenated Steroids Cardenolides. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Zeng J, Sun G, Wang R, Zhang S, Teng S, Liao Z, Meng L, Wan Q. Gold-catalyzed diversified synthesis of 3-aminosugar analogues of digitoxin and digoxin. Org Chem Front 2017. [DOI: 10.1039/c7qo00648a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A small library containing 3-aminosugar analogues of digitoxin and digoxin with potent anticancer activities was constructed by gold-catalyzed glycosylation.
Collapse
Affiliation(s)
- Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Guangfei Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Shuang Teng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhiwen Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
- Institute of Brain Research
| |
Collapse
|
46
|
Hui C, Pu F, Xu J. Metal-Catalyzed Asymmetric Michael Addition in Natural Product Synthesis. Chemistry 2016; 23:4023-4036. [DOI: 10.1002/chem.201604110] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Chunngai Hui
- Department of Chemistry; South University of Science and Technology of China; No. 1088 Xueyuan Ave., Nanshan District Shenzhen, Guangdong 518055 P. R. China
| | - Fan Pu
- Department of Chemistry; South University of Science and Technology of China; No. 1088 Xueyuan Ave., Nanshan District Shenzhen, Guangdong 518055 P. R. China
| | - Jing Xu
- Department of Chemistry; South University of Science and Technology of China; No. 1088 Xueyuan Ave., Nanshan District Shenzhen, Guangdong 518055 P. R. China
| |
Collapse
|
47
|
Michalak K, Morawiak M, Wicha J. Synthetic Approach to the Core Structure of Oleandrin and Related Cardiac Glycosides with Highly Functionalized Ring D. Org Lett 2016; 18:6148-6151. [PMID: 27934370 DOI: 10.1021/acs.orglett.6b03157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first synthetic approach to the core structure of cardiac glycoside oleandrin exhibiting a potent cytotoxic activity, starting from a common androstane derivative, has been accomplished. The synthesis is focused on stereoselective transformations in the densely substituted and sterically shielded five-membered ring (steroid ring D). The developed synthesis paves a route to the synthesis of related bufadienolides, i.e., constituents of traditional drug Ch'an Su, bufotalin, and cinobufagin.
Collapse
Affiliation(s)
- Karol Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences , Ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maja Morawiak
- Institute of Organic Chemistry, Polish Academy of Sciences , Ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jerzy Wicha
- Institute of Organic Chemistry, Polish Academy of Sciences , Ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
48
|
Patel S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed Pharmacother 2016; 84:1036-1041. [PMID: 27780131 DOI: 10.1016/j.biopha.2016.10.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac glycosides, the cardiotonic steroids such as digitalis have been in use as heart ailment remedy since ages. They manipulate the renin-angiotensin axis to improve cardiac output. However; their safety and efficacy have come under scrutiny in recent times, as poisoning and accidental mortalities have been observed. In order to better understand and exploit them as cardiac ionotropes, studies are being pursued using different cardiac glycosides such as digitoxin, digoxin, ouabain, oleandrin etc. Several cardiac glycosides as peruvoside have shown promise in cancer control, especially ovary cancer and leukemia. Functional variability of these glycosides has revealed that not all cardiac glycosides are alike. Apart from their specific affinity to sodium-potassium ATPase, their therapeutic dosage and behavior in poly-morbidity conditions needs to be considered. This review presents a concise account of the key findings in recent years with adequate elaboration of the mechanisms. This compilation is expected to contribute towards management of cardiac, cancer, even viral ailments.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr San Diego, CA 92182, USA.
| |
Collapse
|
49
|
Pandey A, Swarnkar V, Pandey T, Srivastava P, Kanojiya S, Mishra DK, Tripathi V. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera. Sci Rep 2016; 6:34464. [PMID: 27703261 PMCID: PMC5050527 DOI: 10.1038/srep34464] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Calotropis procera is a medicinal plant of immense importance due to its pharmaceutical active components, especially cardiac glycosides (CG). As genomic resources for this plant are limited, the genes involved in CG biosynthetic pathway remain largely unknown till date. Our study on stage and tissue specific metabolite accumulation showed that CG's were maximally accumulated in stems of 3 month old seedlings. De novo transcriptome sequencing of same was done using high throughput Illumina HiSeq platform generating 44074 unigenes with average mean length of 1785 base pair. Around 66.6% of unigenes were annotated by using various public databases and 5324 unigenes showed significant match in the KEGG database involved in 133 different pathways of plant metabolism. Further KEGG analysis resulted in identification of 336 unigenes involved in cardenolide biosynthesis. Tissue specific expression analysis of 30 putative transcripts involved in terpenoid, steroid and cardenolide pathways showed a positive correlation between metabolite and transcript accumulation. Wound stress elevated CG levels as well the levels of the putative transcripts involved in its biosynthetic pathways. This result further validated the involvement of identified transcripts in CGs biosynthesis. The identified transcripts will lay a substantial foundation for further research on metabolic engineering and regulation of cardiac glycosides biosynthesis pathway genes.
Collapse
Affiliation(s)
- Akansha Pandey
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vishakha Swarnkar
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Tushar Pandey
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Piush Srivastava
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Dipak Kumar Mishra
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vineeta Tripathi
- Botany division, CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
50
|
Peter C, Ressault B, Geoffroy P, Miesch M. Concise Approach to (ent)-14 β-Hydroxysteroids through Highly Diastereo-/Enantioselective Diels-Alder Reactions. Chemistry 2016; 22:10808-12. [PMID: 27192692 DOI: 10.1002/chem.201601926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/07/2022]
Abstract
14β-Hydroxysteroids, especially 14β-hydroxyandrostane derivatives are closely related to the cardenolide skeletons. The latter were readily available through highly diastero/enantioselective Diels-Alder (DA) reactions requiring high pressure or Lewis acid activation. Moreover, in the presence of (R)- or (S)-carvone as a chiral dienophile, the DA-reaction takes place under chemodivergent parallel kinetic resolution control affording highly enantiomerically enriched 14β-hydroxysteroid derivatives or the corresponding (ent)-14β-hydroxysteroid derivatives.
Collapse
Affiliation(s)
- Clovis Peter
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, BP296/R8-67008, Strasbourg Cedex, France
| | - Blandine Ressault
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, BP296/R8-67008, Strasbourg Cedex, France
| | - Philippe Geoffroy
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, BP296/R8-67008, Strasbourg Cedex, France
| | - Michel Miesch
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, BP296/R8-67008, Strasbourg Cedex, France.
| |
Collapse
|