1
|
Santos CMM, Silva AMS. Transition Metal-Catalyzed Transformations of Chalcones. CHEM REC 2024; 24:e202400060. [PMID: 39008887 DOI: 10.1002/tcr.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Chalcones are a class of naturally occurring flavonoid compounds associated to a variety of biological and pharmacological properties. Several reviews have been published describing the synthesis and biological properties of a vast array of analogues. However, overviews on the reactivity of chalcones has only been explored in a few accounts. To fill this gap, a systematic survey on the most recent developments in the transition metal-catalyzed transformation of chalcones was performed. The chemistry of copper, palladium, zinc, iron, manganese, nickel, ruthenium, cobalt, rhodium, iridium, silver, indium, gold, titanium, platinum, among others, as versatile catalysts will be highlighted, covering the literature from year 2000 to 2023, in more than 380 publications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Bragança, Apolónia, 5300-253, Bragança, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Chen J, Zhang J, Sun Y, Xu Y, Yang Y, Lee YM, Ji W, Wang B, Nam W, Wang B. Mononuclear Non-Heme Manganese-Catalyzed Enantioselective cis-Dihydroxylation of Alkenes Modeling Rieske Dioxygenases. J Am Chem Soc 2023; 145:27626-27638. [PMID: 38064642 DOI: 10.1021/jacs.3c09508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The practical catalytic enantioselective cis-dihydroxylation of olefins that utilize earth-abundant first-row transition metal catalysts under environmentally friendly conditions is an important yet challenging task. Inspired by the cis-dihydroxylation reactions catalyzed by Rieske dioxygenases and non-heme iron models, we report the biologically inspired cis-dihydroxylation catalysis that employs an inexpensive and readily available mononuclear non-heme manganese complex bearing a tetradentate nitrogen-donor ligand and aqueous hydrogen peroxide (H2O2) and potassium peroxymonosulfate (KHSO5) as terminal oxidants. A wide range of olefins are efficiently oxidized to enantioenriched cis-diols in practically useful yields with excellent cis-dihydroxylation selectivity and enantioselectivity (up to 99% ee). Mechanistic studies, such as isotopically 18O-labeled water experiments, and density functional theory (DFT) calculations support that a manganese(V)-oxo-hydroxo (HO-MnV═O) species, which is formed via the water-assisted heterolytic O-O bond cleavage of putative manganese(III)-hydroperoxide and manganese(III)-peroxysulfate precursors, is the active oxidant that effects the cis-dihydroxylation of olefins; this is reminiscent of the frequently postulated iron(V)-oxo-hydroxo (HO-FeV═O) species in the catalytic arene and alkene cis-dihydroxylation reactions by Rieske dioxygenases and synthetic non-heme iron models. Further, DFT calculations for the mechanism of the HO-MnV═O-mediated enantioselective cis-dihydroxylation of olefins reveal that the first oxo attack step controls the enantioselectivity, which exhibits a high preference for cis-dihydroxylation over epoxidation. In this study, we are able to replicate both the catalytic function and the key chemical principles of Rieske dioxygenases in mononuclear non-heme manganese-catalyzed enantioselective cis-dihydroxylation of olefins.
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ying Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuankai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yinan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
3
|
Qi H, Xu D, Lin J, Sun W. Copper-catalyzed direct hydroxylation of arenes to phenols with hydrogen peroxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Asymmetric Epoxidation of Olefins with Sodium Percarbonate Catalyzed by Bis-amino- bis-pyridine Manganese Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082538. [PMID: 35458734 PMCID: PMC9027068 DOI: 10.3390/molecules27082538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
Asymmetric epoxidation of a series of olefinic substrates with sodium percarbonate oxidant in the presence of homogeneous catalysts based on Mn complexes with bis-amino-bis-pyridine ligands is reported. Sodium percarbonate is a readily available and environmentally benign oxidant that is studied in these reactions for the first time. The epoxidation proceeded with good to high yields (up to 100%) and high enantioselectivities (up to 99% ee) using as low as 0.2 mol. % catalyst loadings. The epoxidation protocol is suitable for various types of substrates, including unfunctionalized alkenes, α,β-unsaturated ketones, esters (cis- and trans-), and amides (cis- and trans-). The reaction mechanism is discussed.
Collapse
|
5
|
Wang B, Lin J, Xia C, Sun W. Porous organic polymer-supported manganese catalysts with tunable wettability for efficient oxidation of secondary alcohols. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Tian J, Lin J, Zhang J, Xia C, Sun W. Asymmetric Epoxidation of Olefins Catalyzed by Substituted Aminobenzimidazole Manganese Complexes Derived from
L
‐Proline. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jing Tian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Jisheng Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
7
|
Wang B, Lin J, Sun Q, Xia C, Sun W. Efficient Aliphatic C–H Oxidation and C═C Epoxidation Catalyzed by Porous Organic Polymer-Supported Single-Site Manganese Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bingyang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wang L, Lin J, Sun Q, Xia C, Sun W. Amino Acid Derived Chiral Aminobenzimidazole Manganese Catalysts for Asymmetric Transfer Hydrogenation of Ketones. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Lixian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
9
|
Philip RM, Radhika S, Abdulla CMA, Anilkumar G. Recent Trends and Prospects in Homogeneous Manganese‐Catalysed Epoxidation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rose Mary Philip
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| | - Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| | - C. M. Afsina Abdulla
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| |
Collapse
|
10
|
Masferrer-Rius E, Li F, Lutz M, Klein Gebbink RJM. Exploration of highly electron-rich manganese complexes in enantioselective oxidation catalysis; a focus on enantioselective benzylic oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01642c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of highly electron-rich manganese complexes for enantioselective benzylic oxidation (and asymmetric epoxidation) is described, to provide chiral benzylic alcohols and epoxides in good yields and enantioselectivites.
Collapse
Affiliation(s)
- Eduard Masferrer-Rius
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fanshi Li
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Sun Q, Sun W. Catalytic Enantioselective Methylene C(sp 3)-H Hydroxylation Using a Chiral Manganese Complex/Carboxylic Acid System. Org Lett 2020; 22:9529-9533. [PMID: 33300804 DOI: 10.1021/acs.orglett.0c03585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Achieving direct C-H hydroxylation in a highly diastereo- and enantioselective manner is still a challenging goal. This reaction is mainly hindered by the potential for overoxidation of the generated alcohols as well as low stereoselectivity. Herein, we present an enantioselective benzylic C-H hydroxylation catalyzed by a manganese complex, H2O2, and a carboxylic acid in 2,2,2-trifluoroethanol. The benzylic alcohols were successfully furnished in excellent diastereoselectivities (up to >95:5) and enantioselectivities (up to 95% ee). As a highlight of this work, high diastereoselectivity of C-H hydroxylation could be achieved by tuning the amount of carboxylic acid additive.
Collapse
Affiliation(s)
- Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Majdecki M, Tyszka-Gumkowska A, Jurczak J. Highly Enantioselective Epoxidation of α,β-Unsaturated Ketones Using Amide-Based Cinchona Alkaloids as Hybrid Phase-Transfer Catalysts. Org Lett 2020; 22:8687-8691. [PMID: 33112627 PMCID: PMC7660942 DOI: 10.1021/acs.orglett.0c03272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
A series of 20 one chiral epoxides
were obtained with excellent
yields (up to 99%) and enantioselectivities (up to >99% ee) using
hybrid amide-based Cinchona alkaloids. Our method
is characterized by low catalyst loading (0.5 mol %) and short reaction
times. Moreover, the epoxidation process can be carried out in 10
cycles, without further catalyst addition to the reaction mixture.
This methodology significantly enhance the scale of the process using
very low catalyst loading.
Collapse
Affiliation(s)
- Maciej Majdecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agata Tyszka-Gumkowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
13
|
Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213443] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Abstract
This review concentrates on success stories from the synthesis of approved medicines and drug candidates using epoxide chemistry in the development of robust and efficient syntheses at large scale. The focus is on those parts of each synthesis related to the substrate-controlled/diastereoselective and catalytic asymmetric synthesis of epoxide intermediates and their subsequent ring-opening reactions with various nucleophiles. These are described in the form of case studies of high profile pharmaceuticals spanning a diverse range of indications and molecular scaffolds such as heterocycles, terpenes, steroids, peptidomimetics, alkaloids and main stream small molecules. Representative examples include, but are not limited to the antihypertensive diltiazem, the antidepressant reboxetine, the HIV protease inhibitors atazanavir and indinavir, efinaconazole and related triazole antifungals, tasimelteon for sleep disorders, the anticancer agent carfilzomib, the anticoagulant rivaroxaban the antibiotic linezolid and the antiviral oseltamivir. Emphasis is given on aspects of catalytic asymmetric epoxidation employing metals with chiral ligands particularly with the Sharpless and Jacobsen–Katsuki methods as well as organocatalysts such as the chiral ketones of Shi and Yang, Pages’s chiral iminium salts and typical chiral phase transfer agents.
Collapse
|
15
|
Xu D, Sun Q, Lin J, Sun W. Ligand regulation for manganese-catalyzed enantioselective epoxidation of olefins without acid. Chem Commun (Camb) 2020; 56:13101-13104. [PMID: 32974625 DOI: 10.1039/d0cc04440g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel manganese catalyst bearing an l-proline-derived N4 ligand has been developed for enabling acid-free asymmetric epoxidation of olefins with tert-butyl hydroperoxide as the oxidant. A variety of olefins that are well-matched in size with the ligand pocket can be transformed to epoxides with excellent enantioselectivities. The smaller ligand pocket is also beneficial to the enantioselective epoxidation of simple olefins. Cryospray ionization mass spectrometry experiments reveal that a MnIV[double bond, length as m-dash]O species serves as an active epoxidizing species.
Collapse
Affiliation(s)
- Daqian Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Department, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | | | | | | |
Collapse
|
16
|
Lin J, Miao C, Wang F, Yang P, Sun Q, Sun W. Effect of Ligand Topology on the Reactivity of Chiral Tetradentate Aminopyridine Manganese Complexes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Department, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengxia Miao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Department, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- College of Chemistry and Material Science, Shandong Agricultural University, Daizong Road No. 61, Taian 271018, P. R. China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Department, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Peiju Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Department, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Department, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Department, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
17
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
18
|
Larson VA, Battistella B, Ray K, Lehnert N, Nam W. Iron and manganese oxo complexes, oxo wall and beyond. Nat Rev Chem 2020; 4:404-419. [PMID: 37127969 DOI: 10.1038/s41570-020-0197-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 11/09/2022]
Abstract
High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.
Collapse
|
19
|
Beaver MG, Shi X, Riedel J, Patel P, Zeng A, Corbett MT, Robinson JA, Parsons AT, Cui S, Baucom K, Lovette MA, Içten E, Brown DB, Allian A, Flick TG, Chen W, Yang N, Walker SD. Continuous Process Improvement in the Manufacture of Carfilzomib, Part 2: An Improved Process for Synthesis of the Epoxyketone Warhead. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew G. Beaver
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| | - Xianqing Shi
- Process Development, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Jan Riedel
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| | - Parth Patel
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| | - Alicia Zeng
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| | - Michael T. Corbett
- Process Development, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Jo Anna Robinson
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| | - Andrew T. Parsons
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| | - Sheng Cui
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| | - Kyle Baucom
- Process Development, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Michael A. Lovette
- Process Development, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Elçin Içten
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| | - Derek B. Brown
- Process Development, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Ayman Allian
- Process Development, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya G. Flick
- Process Development, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Wendy Chen
- Process Development, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Ning Yang
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| | - Shawn D. Walker
- Process Development, Amgen, Inc., Cambridge, Massachusetts 02142, United States
| |
Collapse
|
20
|
Zhang K, Lu L, Jia Y, Wang Y, Lu F, Pan F, Xiao W. Exploration of a Chiral Cobalt Catalyst for Visible‐Light‐Induced Enantioselective Radical Conjugate Addition. Angew Chem Int Ed Engl 2019; 58:13375-13379. [DOI: 10.1002/anie.201907478] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/07/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yue Jia
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Fu‐Dong Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Fangfang Pan
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
21
|
Sun W, Sun Q. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond. Acc Chem Res 2019; 52:2370-2381. [PMID: 31333021 DOI: 10.1021/acs.accounts.9b00285] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of efficient methods for the enantioselective oxidation of organic molecules continues to be an important goal in organic synthesis; in particular, the use of earth-abundant metal catalysts and environmentally friendly oxidants in catalytic asymmetric oxidation reactions has attracted significant interest over the last several decades. In nature, metalloenzymes catalyze a wide range of oxidation reactions by activating dioxygen under mild conditions. Inspired by selective and efficient oxidation reactions catalyzed by metalloenzymes, researchers have developed a number of synthetic model compounds that mimic the functionality of metalloenzymes. Among the reported biomimetic model compounds, tetradentate aminopyridine (N4) ligands have emerged as appealing frameworks because of their easy synthesis and facile diversification, and their complexes with metals such as Fe and Mn have proven to be versatile and powerful catalysts for a variety of (enantioselective) oxidation reactions. In this Account, we describe our efforts on the design of chiral N4 ligands and the use of their manganese and iron complexes in asymmetric oxidation reactions with H2O2 as the terminal oxidant, aiming to show general strategies for asymmetric oxidation reactions that can guide the rational design of ligands and relevant metal catalysts. In studies of manganese catalysts, the aryl-substituted (R,R)-mcp [mcp = N,N'-dimethyl-N,N'-bis(pyridine-2-ylmethyl)cyclohexane-1,2-diamine] manganese complexes exhibited high enantioselectivity in the asymmetric epoxidation (AE) of various olefins with H2O2 while requiring stoichiometric acetic acid as an additive for the activation of H2O2. To address this issue, we established bulkier N4 ligands for this catalytic system in which a catalytic amount of sulfuric acid enables the manganese-complex-catalyzed AE with improved stereocontrol and efficiency. In addition, this system was found to be active for the oxidative kinetic resolution of secondary alcohols. Further exploration of the structure-reactivity relationships has shown that aminobenzimidazole N4 ligands derived from l-proline, in which the conventional pyridine donors are replaced by benzimidazoles, act as promising ligands. These novel C1-symmetric manganese catalysts showed dramatically improved activities with unprecedented turnover numbers in the AE reactions. Notably, this class of manganese complexes can catalyze the oxidation of the C-H bonds of spirocyclic hydrocarbons and spiroazacyclic compounds in a highly enantioselective manner, providing ready access to chiral spirocyclic β,β'-diketones and spirocyclic alcohols. Remarkably, iron catalysts with these chiral N4 ligands are effective for AE of olefins, enabling rare examples of highly enantioselective syntheses of epoxides by the iron catalysts. Finally, mechanistic studies provide valuable insights into the roles of the carboxylic acid and sulfuric acid in the catalytic oxidation reactions. Thus, the results described in this Account have demonstrated the importance of tunability and compatibility of the ligands for the development of efficient oxidation catalysts with earth-abundant transition metals and environmentally benign oxidants, and we hope that our study will pave the way for the discovery of efficient oxidation catalysis.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
22
|
Zhang K, Lu L, Jia Y, Wang Y, Lu F, Pan F, Xiao W. Exploration of a Chiral Cobalt Catalyst for Visible‐Light‐Induced Enantioselective Radical Conjugate Addition. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yue Jia
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Fu‐Dong Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Fangfang Pan
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
23
|
Clarasó C, Vicens L, Polo A, Costas M. Enantioselective Epoxidation of β,β-Disubstituted Enamides with a Manganese Catalyst and Aqueous Hydrogen Peroxide. Org Lett 2019; 21:2430-2435. [PMID: 30883137 DOI: 10.1021/acs.orglett.9b00729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enantioselective epoxidation of β,β-disubstituted enamides with aqueous hydrogen peroxide and a novel manganese catalyst is described. Epoxidation is stereospecific and proceeds fast under mild conditions. Amides are disclosed as key functional groups to enable high enantioselectivity.
Collapse
Affiliation(s)
- Carlota Clarasó
- Department de Química , Universitat de Girona . Campus de Montilivi, E-17003 Girona , Catalonia , Spain.,Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , E-17003 Girona , Catalonia , Spain
| | - Laia Vicens
- Department de Química , Universitat de Girona . Campus de Montilivi, E-17003 Girona , Catalonia , Spain.,Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , E-17003 Girona , Catalonia , Spain
| | - Alfonso Polo
- Department de Química , Universitat de Girona . Campus de Montilivi, E-17003 Girona , Catalonia , Spain
| | - Miquel Costas
- Department de Química , Universitat de Girona . Campus de Montilivi, E-17003 Girona , Catalonia , Spain.,Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , E-17003 Girona , Catalonia , Spain
| |
Collapse
|
24
|
Qiu B, Xia C, Sun W. Bioinspired manganese complexes catalyzed epoxidation for the synthesis of the epoxyketone fragment of carfilzomib. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Qiu B, Xu D, Sun Q, Lin J, Sun W. Manganese-Catalyzed Asymmetric Oxidation of Methylene C–H of Spirocyclic Oxindoles and Dihydroquinolinones with Hydrogen Peroxide. Org Lett 2019; 21:618-622. [DOI: 10.1021/acs.orglett.8b03652] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Qiu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqian Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
26
|
Cruchter T, Larionov VA. Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
A novel manganese(III)-peroxo complex bearing a proline-derived pentadentate aminobenzimidazole ligand. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Wang W, Sun Q, Xia C, Sun W. Enantioselective epoxidation of olefins with hydrogen peroxide catalyzed by bioinspired aminopyridine manganese complexes derived from L-proline. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63116-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Shehata MF, Ayer SK, Roizen JL. Iron(MCP) Complexes Catalyze Aziridination with Olefins As Limiting Reagents. J Org Chem 2018; 83:5072-5081. [DOI: 10.1021/acs.joc.8b00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mina F. Shehata
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708−0354, United States
| | - Suraj K. Ayer
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708−0354, United States
| | - Jennifer L. Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708−0354, United States
| |
Collapse
|
30
|
Wang W, Xu D, Sun Q, Sun W. Efficient Aliphatic C−H Bond Oxidation Catalyzed by Manganese Complexes with Hydrogen Peroxide. Chem Asian J 2018; 13:2458-2464. [DOI: 10.1002/asia.201800068] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/07/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Wenfang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Center for Excellence in Molecular Synthesis; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Daqian Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Center for Excellence in Molecular Synthesis; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P. R. China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Center for Excellence in Molecular Synthesis; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P. R. China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Center for Excellence in Molecular Synthesis; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P. R. China
| |
Collapse
|
31
|
Qiu B, Xu D, Sun Q, Miao C, Lee YM, Li XX, Nam W, Sun W. Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03601] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Qiu
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqian Xu
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangsheng Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengxia Miao
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong-Min Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
32
|
Affiliation(s)
| | - Normand Voyer
- Département de chimie and PROTEO, Université Laval , Québec, Canada
| |
Collapse
|
33
|
Bryliakov KP. Catalytic Asymmetric Oxygenations with the Environmentally Benign Oxidants H2O2 and O2. Chem Rev 2017; 117:11406-11459. [DOI: 10.1021/acs.chemrev.7b00167] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Konstantin P. Bryliakov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| |
Collapse
|
34
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Chiral Manganese Aminopyridine Complexes: the Versatile Catalysts of Chemo- and Stereoselective Oxidations with H2
O2. CHEM REC 2017; 18:78-90. [DOI: 10.1002/tcr.201700032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Roman V. Ottenbacher
- Chemistry Department; Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
| | - Evgenii P. Talsi
- Chemistry Department; Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
| | - Konstantin P. Bryliakov
- Chemistry Department; Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russia
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russia
| |
Collapse
|
35
|
The synthesis of chiral tridentate ligands from l -proline and their application in the copper(II)-catalyzed enantioselective Henry reaction. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Talsi EP, Samsonenko DG, Bryliakov KP. Asymmetric Autoamplification in the Oxidative Kinetic Resolution of Secondary Benzylic Alcohols Catalyzed by Manganese Complexes. ChemCatChem 2017. [DOI: 10.1002/cctc.201700438] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Evgenii P. Talsi
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russian Federation
| | - Denis G. Samsonenko
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russian Federation
- Nikolaev Institute of Inorganic Chemistry; Pr. Lavrentieva 3 Novosibirsk 630090 Russian Federation
| | - Konstantin P. Bryliakov
- Novosibirsk State University; Pirogova 2 Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis; Pr. Lavrentieva 5 Novosibirsk 630090 Russian Federation
| |
Collapse
|
37
|
Chen X, Gao B, Su Y, Huang H. Enantioselective Epoxidation of Electron-Deficient Alkenes Catalyzed by Manganese Complexes with Chiral N4
Ligands Derived from Rigid Chiral Diamines. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700541] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiangning Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Bao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale; Department of Chemistry; University of Science and Technology of China; Hefei 230026 People's Republic of China
| | - Yijin Su
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Hanmin Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale; Department of Chemistry; University of Science and Technology of China; Hefei 230026 People's Republic of China
| |
Collapse
|
38
|
Miao C, Yan X, Xu D, Xia C, Sun W. Bioinspired Manganese Complexes and Graphene Oxide Synergistically Catalyzed Asymmetric Epoxidation of Olefins with Aqueous Hydrogen Peroxide. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chengxia Miao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Xingbin Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Daqian Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| |
Collapse
|
39
|
Wang W, Sun Q, Xu D, Xia C, Sun W. Asymmetric Epoxidation of Olefins with H2O2Catalyzed by a Bioinspired Aminopyridine N4 Iron Complex. ChemCatChem 2017. [DOI: 10.1002/cctc.201601293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenfang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation and Suzhou Research Institute of Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation and Suzhou Research Institute of Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| | - Daqian Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation and Suzhou Research Institute of Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation and Suzhou Research Institute of Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation and Suzhou Research Institute of Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| |
Collapse
|
40
|
Hughes DL. Patent Review of Manufacturing Routes to Oncology Drugs: Carfilzomib, Osimertinib, and Venetoclax. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00374] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David L. Hughes
- Cidara Therapeutics, Inc., 6310 Nancy Ridge Dr., Suite 101, San Diego, California 92121, United States
| |
Collapse
|
41
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Bioinspired Mn-aminopyridine catalyzed epoxidations of olefins with various oxidants: Enantioselectivity and mechanism. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Saisaha P, Dong JJ, Meinds TG, de Boer JW, Hage R, Mecozzi F, Kasper JB, Browne WR. Mechanism of Alkene, Alkane, and Alcohol Oxidation with H2O2 by an in Situ Prepared MnII/Pyridine-2-carboxylic Acid Catalyst. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pattama Saisaha
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jia Jia Dong
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Tim G. Meinds
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Johannes W. de Boer
- Catexel Ltd, BioPartner Center Leiden, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Ronald Hage
- Catexel Ltd, BioPartner Center Leiden, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Francesco Mecozzi
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Johann B. Kasper
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Mathematics and Natural Sciences, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
43
|
Cussó O, Cianfanelli M, Ribas X, Klein Gebbink RJM, Costas M. Iron Catalyzed Highly Enantioselective Epoxidation of Cyclic Aliphatic Enones with Aqueous H2O2. J Am Chem Soc 2016; 138:2732-8. [DOI: 10.1021/jacs.5b12681] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Olaf Cussó
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia Spain
| | - Marco Cianfanelli
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia Spain
| | - Xavi Ribas
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia Spain
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Miquel Costas
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia Spain
| |
Collapse
|
44
|
Du X, Zhang HY, Lei M, Li ZY, Zhu YQ. An Efficient Preparation of Novel Epoxyketone Intermediates for the Synthesis of Carfilzomib and Its Derivatives. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14539789662063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel and efficient preparation of epoxyketone intermediates for the synthesis of carfilzomib and its derivatives has been developed. Compared to reported methods, this highly stereoselective, environmentally friendly, low-cost method can be used in scaling up the synthesis of carfilzomib and its derivatives.
Collapse
Affiliation(s)
- Xiao Du
- College of Life Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Hao-yang Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Zi-yuan Li
- Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yong-qiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing 210023, P.R. China
| |
Collapse
|
45
|
Shen D, Qiu B, Xu D, Miao C, Xia C, Sun W. Enantioselective Epoxidation of Olefins with H2O2 Catalyzed by Bioinspired Aminopyridine Manganese Complexes. Org Lett 2016; 18:372-5. [DOI: 10.1021/acs.orglett.5b03309] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Duyi Shen
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Qiu
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Daqian Xu
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Chengxia Miao
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Chungu Xia
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Wei Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
46
|
Miao C, Wang B, Wang Y, Xia C, Lee YM, Nam W, Sun W. Proton-Promoted and Anion-Enhanced Epoxidation of Olefins by Hydrogen Peroxide in the Presence of Nonheme Manganese Catalysts. J Am Chem Soc 2016; 138:936-43. [DOI: 10.1021/jacs.5b11579] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chengxia Miao
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Wang
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong Wang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong-Min Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
47
|
Ottenbacher RV, Samsonenko DG, Talsi EP, Bryliakov KP. Enantioselective Epoxidations of Olefins with Various Oxidants on Bioinspired Mn Complexes: Evidence for Different Mechanisms and Chiral Additive Amplification. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02299] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roman V. Ottenbacher
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| | - Denis G. Samsonenko
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, Novosibirsk 630090, Russian Federation
| | - Evgenii P. Talsi
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| | - Konstantin P. Bryliakov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| |
Collapse
|
48
|
Krishnan KK, Thomas AM, Sindhu KS, Anilkumar G. Recent advances and perspectives in the manganese-catalysed epoxidation reactions. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Du J, Xu D, Zhang C, Xia C, Wang Y, Sun W. Synthesis, characterization, and reactivity of a side-on manganese(iii)–peroxo complex bearing a pentadentate aminopyridine ligand. Dalton Trans 2016; 45:10131-5. [DOI: 10.1039/c6dt00508j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peroxomanganese(iii) species was prepared by the reaction of [Mn(ii)(Pro3Py)(OTf)](OTf) with H2O2/NEt3 and characterized by UV-vis, EPR, ESI-MS and DFT, which exhibited nucleophilic reactivity in aldehyde deformylation.
Collapse
Affiliation(s)
- Junyi Du
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Daqian Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Chunxi Zhang
- Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
50
|
Cussó O, Ribas X, Costas M. Biologically inspired non-heme iron-catalysts for asymmetric epoxidation; design principles and perspectives. Chem Commun (Camb) 2015; 51:14285-98. [PMID: 26299813 DOI: 10.1039/c5cc05576h] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron coordination complexes with nitrogen and oxygen donor ligands have long since been known to react with peroxides producing powerful oxidizing species. These compounds can be regarded as simple structural and functional models of the active sites of non-heme iron dependent oxygenases. Research efforts during the last decade have uncovered basic principles and structural coordination chemistry motifs that permit us to control the chemistry that evolves when these iron complexes react with peroxides, in order to provide powerful metal-based, but at the same time selective, oxidising agents. Oxidation methodologies with synthetic value are currently emerging from this approach. The current review focuses on asymmetric epoxidation, a reaction which has large value in synthesis, and where iron/H2O2 based methodologies may represent not only a sustainable choice, but may also expand the scope of state-of-the-art oxidation methods. Basic principles that underlay catalyst design as well as H2O2 activation are discussed, whilst limitations and future perspectives are also reviewed.
Collapse
Affiliation(s)
- Olaf Cussó
- Institut de Química Computacional I Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Facultat de Ciéncies, Campus de Montilivi, 17071, Girona, Catalonia, Spain.
| | | | | |
Collapse
|