1
|
Toupin N, Steinke SJ, Nadella S, Li A, Rohrabaugh TN, Samuels ER, Turro C, Sevrioukova IF, Kodanko JJ. Photosensitive Ru(II) Complexes as Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4. J Am Chem Soc 2021; 143:9191-9205. [PMID: 34110801 DOI: 10.1021/jacs.1c04155] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the synthesis and photochemical and biological characterization of the first selective and potent metal-based inhibitors of cytochrome P450 3A4 (CYP3A4), the major human drug metabolizing enzyme. Five Ru(II)-based derivatives were prepared from two analogs of the CYP3A4 inhibitor ritonavir, 4 and 6: [Ru(tpy)(L)(6)]Cl2 (tpy = 2,2':6',2″-terpyridine) with L = 6,6'-dimethyl-2,2'-bipyridine (Me2bpy; 8), dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2dppn; 10) and 3,6-dimethyl-10,15-diphenylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2Ph2dppn; 11), [Ru(tpy)(Me2bpy)(4)]Cl2 (7) and [Ru(tpy)(Me2dppn)(4)]Cl2 (9). Photochemical release of 4 or 6 from 7-11 was demonstrated, and the spectrophotometric evaluation of 7 showed that it behaves similarly to free 4 (type II heme ligation) after irradiation with visible light but not in the dark. Unexpectedly, the intact Ru(II) complexes 7 and 8 were found to inhibit CYP3A4 potently and specifically through direct binding to the active site without heme ligation. Caged inhibitors 9-11 showed dual action properties by combining photoactivated dissociation of 4 or 6 with efficient 1O2 production. In prostate adenocarcinoma DU-145 cells, compound 9 had the best synergistic effect with vinblastine, the anticancer drug primarily metabolized by CYP3A4 in vivo. Thus, our study establishes a new paradigm in CYP inhibition using metalated complexes and suggests possible utilization of photoactive CYP3A4 inhibitory compounds in clinical applications, such as enhancement of therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sandeep Nadella
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ao Li
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
2
|
|
3
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Hirahara M, Goto H, Yamamoto R, Yagi M, Umemura Y. Photoisomerization and thermal isomerization of ruthenium aqua complexes with chloro-substituted asymmetric bidentate ligands. RSC Adv 2019; 9:2002-2010. [PMID: 35516112 PMCID: PMC9059708 DOI: 10.1039/c8ra08943d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022] Open
Abstract
A series of ruthenium complexes with chloro-substituted bidentate ligands, proximal-[Ru(tpy)(Cl-pyqu)L] n+ [n = 1 for L = Cl, and n = 2 for L = OH2, tpy = 2,2';6',2''-terpyridine, pyqu = 2-(2'-pyridyl)quinoline] were synthesized and their reversible photoisomerizations and thermal isomerizations were investigated experimentally. The crystal structures of the complexes indicated that introduction of a chloro substituent at the 4- or 4'-position of the pyqu ligand did not change the structure around the metal center from that of the non-substituted complex, proximal-[Ru(tpy)(pyqu)L] n+. In contrast, the 6'-substituted complexes had sterically hindered environments around the metal center. The ruthenium aqua complexes showed reversible photoisomerization between the proximal and distal isomers. The quantum yield for photoisomerization of the 6'-substituted ruthenium aqua complex was almost twice as large as those of the other derivatives. This is explained by weakening of the ligand field on the ruthenium center by introduction of a chloro substituent at the 6'-position. Thermal back isomerization from the distal isomer to the proximal one was observed for the 6'-substituted complex, but such reactions were not observed for the other derivatives. The steric hindrance in the 6'-substituted aqua complex enhanced both thermal isomerization and photoisomerization.
Collapse
Affiliation(s)
- Masanari Hirahara
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| | - Hiroki Goto
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| | - Rei Yamamoto
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Yasushi Umemura
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan Hashirimizu 1-10-20 Yokosuka Kanagawa 239-8686 Japan
| |
Collapse
|
5
|
Siewert B, Langerman M, Pannwitz A, Bonnet S. Synthesis and Avidin Binding of Ruthenium Complexes Functionalized with a Light-Cleavable Free Biotin Moiety. Eur J Inorg Chem 2018; 2018:4117-4124. [PMID: 31031567 PMCID: PMC6473509 DOI: 10.1002/ejic.201800644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 01/01/2023]
Abstract
In this work the synthesis, photochemistry, and streptavidin interaction of new [Ru(tpy)(bpy)(SRR')](PF6)2 complexes where the R' group contains a free biotin ligand, are described. Two different ligands SRR' were investigated: An asymmetric ligand 1 where the Ru-bound thioether is a N-acetylmethionine moiety linked to the free biotin fragment via a triethylene glycol spacer and a symmetrical ligand 2 containing two identical biotin moieties. The coordination of these two ligands to the precursor [Ru(tpy)(bpy)Cl]Cl was studied in water at 80 °C. In such conditions the coordination of the asymmetric ligand 1 occurred under thermodynamic control. After the reaction, a mononuclear and a binuclear complex were isolated. In the mononuclear complex, the ratio of methionine- {[6](PF6)2} vs. biotin-bound {[7](PF6)2} regioisomer was 5.3 and the free biotin fragment of [6](PF6)2 allowed to purify it from its isomer [7](PF6)2 at small scales using avidin affinity chromatography. Coordination of the symmetrical ligand 2 afforded [Ru(tpy)(bpy)(2)](PF6)2 {[8](PF6)2} in synthetically useful scales (100 mg), good yield (82 %), and without traces of the binuclear impurity. In this complex, one of the biotin remains free whereas the second one is coordinated to ruthenium. Photochemical release of ligand 2 from [8](PF6)2 occurred upon blue light irradiation (465 nm) with a photosubstitution quantum yield of 0.011 that was independent of the binding of streptavidin to the free biotin ligand.
Collapse
Affiliation(s)
- Bianka Siewert
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| | - Michiel Langerman
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| | - Andrea Pannwitz
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| |
Collapse
|
6
|
Xie C, Sun W, Lu H, Kretzschmann A, Liu J, Wagner M, Butt HJ, Deng X, Wu S. Reconfiguring surface functions using visible-light-controlled metal-ligand coordination. Nat Commun 2018; 9:3842. [PMID: 30242263 PMCID: PMC6154962 DOI: 10.1038/s41467-018-06180-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Most surfaces are either static or switchable only between “on” and “off” states for a specific application. It is a challenge to develop reconfigurable surfaces that can adapt to rapidly changing environments or applications. Here, we demonstrate fabrication of surfaces that can be reconfigured for user-defined functions using visible-light-controlled Ru–thioether coordination chemistry. We modify substrates with Ru complex Ru-H2O. To endow a Ru-H2O-modified substrate with a certain function, a functional thioether ligand is immobilized on the substrate via Ru–thioether coordination. To change the surface function, the immobilized thioether ligand is cleaved from the substrate by visible-light-induced ligand dissociation, and then another thioether ligand with a distinct function is immobilized on the substrate. Different thioethers endow the surface with different functions. Based on this strategy, we rewrite surface patterns, manipulate protein adsorption, and control surface wettability. This strategy enables the fabrication of reconfigurable surfaces with customizable functions on demand. Configuring surfaces on-demand for desired functionalities is an ongoing challenge. Here, diverse and tailorable modifications of quartz and porous silica surfaces that are rapidly and reversibly switchable by the use of visible light are achieved via ruthenium-thioether coordination.
Collapse
Affiliation(s)
- Chaoming Xie
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China.,Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Wen Sun
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Hao Lu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | | | - Jiahui Liu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Si Wu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany. .,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
7
|
Li A, Turro C, Kodanko JJ. Ru(II) Polypyridyl Complexes Derived from Tetradentate Ancillary Ligands for Effective Photocaging. Acc Chem Res 2018; 51:1415-1421. [PMID: 29870227 DOI: 10.1021/acs.accounts.8b00066] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metal complexes have many proven applications in the caging and photochemical release of biologically active compounds. Photocaging groups derived from Ru(II) traditionally have been composed of ancillary ligands that are planar and bi- or tridentate, such as 2,2'-bipyridine (bpy), 2,2':6',2″-terpyridine (tpy), and 1,10-phenanthroline (phen). Complexes bearing ancillary ligands with denticities higher than three represent a new class of Ru(II)-based photocaging groups that are grossly underdeveloped. Because high-denticity ancillary ligands provide the ability to increase the structural rigidity and control the stereochemistry, our groups initiated a research program to explore the applications of such ligands in Ru(II)-based photocaging. Ru(TPA), bearing the tetradentate ancillary ligand tris(2-pyridylmethyl)amine (TPA), has been successfully utilized to effectively cage nitriles and aromatic heterocycles. Nitriles and aromatic heterocycles caged by the Ru(TPA) group show excellent stability in aqueous solutions in the dark, and the complexes can selectively release the caged molecules upon irradiation with light. Ru(TPA) is applicable as a photochemical agent to offer precise spatiotemporal control over biological activity without undesired toxicity. In addition, Ru(II) polypyridyl complexes with desired photochemical properties can be synthesized and identified by solid-phase synthesis, and the resulting complexes show properties to similar to those of complexes obtained by solution-phase synthesis. Density functional theory (DFT) calculations reveal that orbital mixing between the π* orbitals of the ancillary ligand and the Ru-N dσ* orbital is essential for ligand photodissociation in these complexes. Furthermore, the introduction of steric bulk enhances the photoliability of the caged molecules, validating that steric effects can largely influence the quantum efficiency of photoinduced ligand exchange in Ru(II) polypyridyl complexes. Recently, two new photocaging groups, Ru(cyTPA) and Ru(1-isocyTPQA), have been designed and synthesized for caging of nitriles and aromatic heterocycles, and these complexes exhibit unique photochemical properties distinct from those derived from Ru(TPA). Notably, the unusually greater quantum efficiency for the ligand exchange in [Ru(1-isocyTPQA)(MeCN)2](PF6)2, Φ400 = 0.033(3), uncovers a trans-type effect in the triplet metal-to-ligand charge transfer (3MLCT) state that enhances photoinduced ligand exchange in a new manner. DFT calculations and ultrafast transient spectroscopy reveal that the lowest-energy triplet state in [Ru(1-isocyTPQA)(MeCN)2](PF6)2 is a highly mixed 3MLCT/3ππ* excited state rather than a triplet metal-centered ligand-field (3LF) excited state; the latter is generally accepted for ligand photodissociation. In addition, Mulliken spin density calculations indicate that a majority of the spin density in [Ru(1-isocyTPQA)(MeCN)2](PF6)2 is localized on the isoquinoline arm, which is opposite to the cis MeCN, rather than on the ruthenium center. This significantly weakens the Ru-N6 ( cis MeCN) bond, which then promotes the ligand photodissociation. This newly discovered effect gives a clearer perception of the interplay between the 3MLCT and 3LF excited states of Ru(II) polypyridyl complexes, which may be useful in the design and applications of ruthenium complexes in the areas of photoactivated drug delivery and photosensitizers.
Collapse
Affiliation(s)
- Ao Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
8
|
Herder M, Lehn JM. The Photodynamic Covalent Bond: Sensitized Alkoxyamines as a Tool To Shift Reaction Networks Out-of-Equilibrium Using Light Energy. J Am Chem Soc 2018; 140:7647-7657. [DOI: 10.1021/jacs.8b03633] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Martin Herder
- Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
9
|
Li A, Turro C, Kodanko JJ. Ru(ii) polypyridyl complexes as photocages for bioactive compounds containing nitriles and aromatic heterocycles. Chem Commun (Camb) 2018; 54:1280-1290. [PMID: 29323683 PMCID: PMC5904840 DOI: 10.1039/c7cc09000e] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photocaging allows for precise spatiotemporal control over the release of biologically active compounds with light. Most photocaged molecules employ organic photolabile protecting groups; however, biologically active compounds often contain functionalities such as nitriles and aromatic heterocycles that cannot be caged with organic groups. Despite their prevalence, only a few studies have reported successful caging of nitriles and aromatic heterocycles. Recently, Ru(ii)-based photocaging has emerged as a powerful method for the release of bioactive molecules containing these functional groups, in many cases providing high levels of spatial and temporal control over biological activity. This Feature Article discusses recent developments in applying Ru(ii)-based photocaging towards biological problems. Our groups designed and synthesized Ru(ii)-based platforms for the photoinduced delivery of cysteine protease and cytochrome P450 inhibitors in order to achieve selective control over enzyme inhibition. We also reported Ru(ii) photocaging groups derived from higher-denticity ancillary ligands that possess photophysical and photochemical properties distinct from more traditional Ru(ii)-based caging groups. In addition, for the first time, we are able to rapidly synthesize and screen Ru(ii) polypyridyl complexes that elicit desired properties by solid-phase synthesis. Finally, our work also defined steric and orbital mixing effects that are important factors in controlling photoinduced ligand exchange.
Collapse
Affiliation(s)
- Ao Li
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
10
|
Swavey S, Wang M, Lundy N, Allen J. Photoreactions of DNA with a bimetallic ruthenium(II) polypyridyl complex bridged by an organic chromophore. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Light-driven molecular machines based on ruthenium(II) polypyridine complexes: Strategies and recent advances. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Singha Hazari A, Ray R, Hoque MA, Lahiri GK. Electronic Structure and Multicatalytic Features of Redox-Active Bis(arylimino)acenaphthene (BIAN)-Derived Ruthenium Complexes. Inorg Chem 2016; 55:8160-73. [DOI: 10.1021/acs.inorgchem.6b01280] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Arijit Singha Hazari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ritwika Ray
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Md Asmaul Hoque
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Siewert B, van Rixel VHS, van Rooden EJ, Hopkins SL, Moester MJB, Ariese F, Siegler MA, Bonnet S. Chemical Swarming: Depending on Concentration, an Amphiphilic Ruthenium Polypyridyl Complex Induces Cell Death via Two Different Mechanisms. Chemistry 2016; 22:10960-8. [PMID: 27373895 PMCID: PMC5096026 DOI: 10.1002/chem.201600927] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 01/08/2023]
Abstract
The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [3](PF6 )2 are reported. Complex [3](PF6 )2 contains a Ru-S bond that is stable in the dark in cell-growing medium, but is photosensitive. Upon blue-light irradiation, complex [3](PF6 )2 releases the cholesterol-thioether ligand 2 and an aqua ruthenium complex [1](PF6 )2 . Although ligand 2 and complex [1](PF6 )2 are by themselves not cytotoxic, complex [3](PF6 )2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50 ), against six human cancer cell lines (A375, A431, A549, MCF-7, MDA-MB-231, and U87MG). Blue-light irradiation (λ=450 nm, 6.3 J cm(-2) ) had little influence on the cytotoxicity of [3](PF6 )2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [3](PF6 )2 in the dark elucidated an as-yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [1](2+) inside the cell upon blue-light activation. At higher concentrations (>3-5 μm), complex [3](PF6 )2 forms supramolecular aggregates that induce non-apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins.
Collapse
Affiliation(s)
- Bianka Siewert
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX
| | - Vincent H S van Rixel
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX
| | - Eva J van Rooden
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX
| | - Samantha L Hopkins
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX
| | - Miriam J B Moester
- Department of Physics & Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Freek Ariese
- Department of Physics & Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Maxime A Siegler
- Small Molecule X-ray Crystallography Facility, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX.
| |
Collapse
|
14
|
Hopkins SL, Siewert B, Askes SHC, Veldhuizen P, Zwier R, Heger M, Bonnet S. An in vitro cell irradiation protocol for testing photopharmaceuticals and the effect of blue, green, and red light on human cancer cell lines. Photochem Photobiol Sci 2016; 15:644-53. [PMID: 27098927 PMCID: PMC5044800 DOI: 10.1039/c5pp00424a] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/30/2016] [Indexed: 12/21/2022]
Abstract
Traditionally, ultraviolet light (100-400 nm) is considered an exogenous carcinogen while visible light (400-780 nm) is deemed harmless. In this work, a LED irradiation system for in vitro photocytotoxicity testing is described. The LED irradiation system was developed for testing photopharmaceutical drugs, but was used here to determine the basal level response of human cancer cell lines to visible light of different wavelengths, without any photo(chemo)therapeutic. The effects of blue (455 nm, 10.5 mW cm(-2)), green (520 nm, 20.9 mW cm(-2)), and red light (630 nm, 34.4 mW cm(-2)) irradiation was measured for A375 (human malignant melanoma), A431 (human epidermoid carcinoma), A549 (human lung carcinoma), MCF7 (human mammary gland adenocarcinoma), MDA-MB-231 (human mammary gland adenocarcinoma), and U-87 MG (human glioblastoma-grade IV) cell lines. In response to a blue light dose of 19 J cm(-2), three cell lines exhibited a minimal (20%, MDA-MB-231) to moderate (30%, A549 and 60%, A375) reduction in cell viability, compared to dark controls. The other cell lines were not affected. Effective blue light doses that produce a therapeutic response in 50% of the cell population (ED50) compared to dark conditions were found to be 10.9 and 30.5 J cm(-2) for A375 and A549 cells, respectively. No adverse effects were observed in any of the six cell lines irradiated with a 19 J cm(-2) dose of 520 nm (green) or 630 nm (red) light. The results demonstrate that blue light irradiation can have an effect on the viability of certain human cancer cell types and controls should be used in photopharmaceutical testing, which uses high-energy (blue or violet) visible light activation.
Collapse
Affiliation(s)
- S. L. Hopkins
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300RA Leiden , The Netherlands .
| | - B. Siewert
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300RA Leiden , The Netherlands .
| | - S. H. C. Askes
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300RA Leiden , The Netherlands .
| | - P. Veldhuizen
- Leiden Institute of Physics , Leiden University , Niels Bohrweg 2 , 2333CA Leiden , The Netherlands
| | - R. Zwier
- Leiden Institute of Physics , Leiden University , Niels Bohrweg 2 , 2333CA Leiden , The Netherlands
| | - Michal Heger
- Department of Experimental Surgery , Academic Medical Center , University of Amsterdam , Meibergdreef 9 , 1105 AZ Amsterdam , The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300RA Leiden , The Netherlands .
| |
Collapse
|
15
|
Chen J, Li K, Swavey S, Church KM. A Ruthenium(II) Polypyridyl Nucleoside as a Potential Photodynamic Therapy Agent. ChemistrySelect 2016. [DOI: 10.1002/slct.201600126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jun Chen
- University of Dayton SupraMolecular Applied; Research and Technology Center; Department of Chemistry; University of Dayton; 300 College Park Dayton, OH 45469 USA
| | - Kaiyu Li
- University of Dayton SupraMolecular Applied; Research and Technology Center; Department of Chemistry; University of Dayton; 300 College Park Dayton, OH 45469 USA
| | - Shawn Swavey
- University of Dayton SupraMolecular Applied; Research and Technology Center; Department of Chemistry; University of Dayton; 300 College Park Dayton, OH 45469 USA
| | - Kevin M. Church
- University of Dayton SupraMolecular Applied; Research and Technology Center; Department of Chemistry; University of Dayton; 300 College Park Dayton, OH 45469 USA
| |
Collapse
|
16
|
Chen Z, Xiong Y, Etchenique R, Wu S. Manipulating pH using near-infrared light assisted by upconverting nanoparticles. Chem Commun (Camb) 2016; 52:13959-13962. [DOI: 10.1039/c6cc05287h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of pH was achieved using near-infrared light assisted by upconverting nanoparticles and a ruthenium complex photobase.
Collapse
Affiliation(s)
- Zhijun Chen
- Max Planck Institute for Polymer Research
- 55128, Mainz
- Germany
| | - Yubing Xiong
- Max Planck Institute for Polymer Research
- 55128, Mainz
- Germany
| | - Roberto Etchenique
- Departamento de Química Inorgánica
- Analítica y Química Física
- INQUIMAE
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - Si Wu
- Max Planck Institute for Polymer Research
- 55128, Mainz
- Germany
| |
Collapse
|
17
|
Askes SHC, Kloz M, Bruylants G, Kennis JTM, Bonnet S. Triplet-triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes. Phys Chem Chem Phys 2015; 17:27380-90. [PMID: 26420663 PMCID: PMC4642198 DOI: 10.1039/c5cp04352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
Upconversion is a promising way to trigger high-energy photochemistry with low-energy photons. However, combining upconversion schemes with non-radiative energy transfer is challenging because bringing several photochemically active components in close proximity results in complex multi-component systems where quenching processes may deactivate the whole assembly. In this work, PEGylated liposomes were prepared that contained three photoactive components: a porphyrin dye absorbing red light, a perylene moiety emitting in the blue, and a light-activatable ruthenium prodrug sensitive to blue light. Time-dependent spectroscopic studies demonstrate that singlet perylene excited states are non-radiatively transferred to the nearby ruthenium complex by Förster resonance energy transfer (FRET). Under red-light irradiation of the three-component membranes, triplet-triplet annihilation upconversion (TTA-UC) occurs followed by FRET, which results in a more efficient activation of the ruthenium prodrug compared to a physical mixture of two-component upconverting liposomes and liposomes containing only the ruthenium complex. This work represents a rare example where TTA-UC and Förster resonance energy transfer are combined to achieve prodrug activation in the phototherapeutic window.
Collapse
Affiliation(s)
- Sven H. C. Askes
- Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , P.O. Box 9502 , 2300 RA Leiden , The Netherlands .
| | - Miroslav Kloz
- Laserlab Amsterdam , VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems , Université Libre de Bruxelles , 50 av. F.D. Roosevelt , 1050 Brussels , Belgium
| | - John T. M. Kennis
- Laserlab Amsterdam , VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , P.O. Box 9502 , 2300 RA Leiden , The Netherlands .
| |
Collapse
|
18
|
Svane S, Kuntsche J, Steiniger F, Eich A, Duelund L, McKee V, McKenzie C. Dimetallic functionalities in liposome bilayers. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1067316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- S. Svane
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - J. Kuntsche
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - F. Steiniger
- Center for Electron Microscopy of the Medical Faculty, Friedrich Schiller University, Jena 07740, Germany
| | - A. Eich
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
- Department of Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53012 Bonn, Germany
| | - L. Duelund
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - V. McKee
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - C.J. McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
19
|
Levin E, Mavila S, Eivgi O, Tzur E, Lemcoff NG. Regioselective Chromatic Orthogonality with Light-Activated Metathesis Catalysts. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Levin E, Mavila S, Eivgi O, Tzur E, Lemcoff NG. Regioselective chromatic orthogonality with light-activated metathesis catalysts. Angew Chem Int Ed Engl 2015; 54:12384-8. [PMID: 25782974 DOI: 10.1002/anie.201500740] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/26/2015] [Indexed: 02/06/2023]
Abstract
The ability to selectively guide consecutive chemical processes towards a preferred pathway by using light of different frequencies is an appealing concept. Herein we describe the coupling of two photochemical reactions, one the photoisomerization and consequent activation of a sulfur-chelated latent olefin-metathesis catalyst at 350 nm, and the other the photocleavage of a silyl protecting group at 254 nm. Depending on the steric stress exerted by a photoremovable neighboring chemical substituent, we demonstrate the selective formation of either five- or six-membered-ring frameworks by light-triggered ring-closing metathesis. The orthogonality of these light-induced reactions allows the initiation of these processes independently and in interchangeable order, according to the wavelength of light used to promote them.
Collapse
Affiliation(s)
- Efrat Levin
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)
| | - Sudheendran Mavila
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)
| | - Or Eivgi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)
| | - Eyal Tzur
- Department of Chemical Engineering, Shamoon College of Engineering, Ashdod 77245 (Israel)
| | - N Gabriel Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel).
| |
Collapse
|
21
|
Cadranel A, Hodak JH. Four chromophores in one building block: synthesis, structure and characterization of trans-[Ru(MQ)4Cl2]4+ and trans-[Ru(4,4’-bpy)4Cl2] (MQ+ = N-methyl-4,4’-bipyridinium, bpy = bipyridine). J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1014351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alejandro Cadranel
- Departamento de Química Analítica, Inorgánica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José H. Hodak
- Departamento de Química Analítica, Inorgánica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Mårtensson AKF, Lincoln P. Binding of Ru(terpyridine)(pyridine)dipyridophenazine to DNA studied with polarized spectroscopy and calorimetry. Dalton Trans 2015; 44:3604-13. [DOI: 10.1039/c4dt02642j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Achiral Ru(tpy)(py)dppz2+ intercalated into DNA has similar intermolecular interactions as opposite enantiomers of its structural isomer, the “light-switch” complex Ru(bpy)2dppz2+.
Collapse
Affiliation(s)
- Anna K. F. Mårtensson
- Department of Chemical and Biological Engineering
- Chalmers University of Technology
- SE-41296 Gothenburg
- Sweden
| | - Per Lincoln
- Department of Chemical and Biological Engineering
- Chalmers University of Technology
- SE-41296 Gothenburg
- Sweden
| |
Collapse
|
23
|
Limburg B, Laisné G, Bouwman E, Bonnet S. Enhanced photoinduced electron transfer at the surface of charged lipid bilayers. Chemistry 2014; 20:8965-72. [PMID: 24958670 DOI: 10.1002/chem.201402712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 11/10/2022]
Abstract
Photocatalytic systems often suffer from poor quantum yields due to fast charge recombination: The energy-wasting annihilation of the photochemically created charge-separated state. In this report, we show that the efficiency of photoinduced electron transfer from a sacrificial electron donor to positively charged methyl viologen, or to negatively charged 5,5'-dithiobis(2-nitrobenzoate), increases dramatically upon addition of charged phospholipid vesicles if the charge of the lipids is of the same sign as that of the electron acceptor. Centrifugation and UV/Vis titration experiments showed that the charged photosensitizers adsorb at the liposome surface, that is, where the photocatalytic reaction takes place. The increased photoelectron transfer efficiency in the presence of charged liposomes has been ascribed to preferential electrostatic interactions between the photosensitizer and the membrane, which prevents the formation of photosensitizer-electron-acceptor complexes that are inactive towards photoreduction. Furthermore, it is shown that the addition of liposomes results in a decrease in photoproduct inhibition, which is caused by repulsion of the reduced electron acceptor by the photocatalytic site. Thus, liposomes can be used as a support to perform efficient photocatalysis; the charged photoproducts are pushed away from the liposomes and represent "soluble electrons" that can be physically separated from the place where they were generated.
Collapse
Affiliation(s)
- Bart Limburg
- Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden (The Netherlands)
| | | | | | | |
Collapse
|
24
|
Bahreman A, Rabe M, Kros A, Bruylants G, Bonnet S. Binding of a ruthenium complex to a thioether ligand embedded in a negatively charged lipid bilayer: a two-step mechanism. Chemistry 2014; 20:7429-38. [PMID: 24782232 DOI: 10.1002/chem.201400377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 01/14/2023]
Abstract
The interaction between the ruthenium polypyridyl complex [Ru(terpy)(dcbpy)(H2O)](2+) (terpy = 2,2';6',2"-terpyridine, dcbpy = 6,6'-dichloro-2,2'-bipyridine) and phospholipid membranes containing either thioether ligands or cholesterol were investigated using UV-visible spectroscopy, Langmuir-Blodgett monolayer surface pressure measurements, and isothermal titration calorimety (ITC). When embedded in a membrane, the thioether ligand coordinated to the dicationic metal complex only when the phospholipids of the membrane were negatively charged, that is, in the presence of attractive electrostatic interaction. In such a case coordination is much faster than in homogeneous conditions. A two-step model for the coordination of the metal complex to the membrane-embedded sulfur ligand is proposed, in which adsorption of the complex to the negative surface of the monolayers or bilayers occurs within minutes, whereas formation of the coordination bond between the surface-bound metal complex and ligand takes hours. Finally, adsorption of the aqua complex to the membrane is driven by entropy. It does not involve insertion of the metal complex into the hydrophobic lipid layer, but rather simple electrostatic adsorption at the water-bilayer interface.
Collapse
Affiliation(s)
- Azadeh Bahreman
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden, 2300 RA (The Netherlands)
| | | | | | | | | |
Collapse
|
25
|
Bahreman A, Cuello-Garibo JA, Bonnet S. Yellow-light sensitization of a ligand photosubstitution reaction in a ruthenium polypyridyl complex covalently bound to a rhodamine dye. Dalton Trans 2014; 43:4494-505. [DOI: 10.1039/c3dt52643g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rhodamine dye was covalently attached to a ruthenium complex to enhance the rate of ligand photosubstitution under yellow light irradiation.
Collapse
Affiliation(s)
- Azadeh Bahreman
- Leiden Institute of Chemistry
- Gorlaeus Laboratories
- Leiden University
- Leiden, The Netherlands
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry
- Gorlaeus Laboratories
- Leiden University
- Leiden, The Netherlands
| |
Collapse
|
26
|
Askes SHC, Bahreman A, Bonnet S. Activation of a Photodissociative Ruthenium Complex by Triplet-Triplet Annihilation Upconversion in Liposomes. Angew Chem Int Ed Engl 2013; 53:1029-33. [DOI: 10.1002/anie.201309389] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Indexed: 11/11/2022]
|
27
|
Askes SHC, Bahreman A, Bonnet S. Activation of a Photodissociative Ruthenium Complex by Triplet-Triplet Annihilation Upconversion in Liposomes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201309389] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Frasconi M, Liu Z, Lei J, Wu Y, Strekalova E, Malin D, Ambrogio MW, Chen X, Botros YY, Cryns VL, Sauvage JP, Stoddart JF. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J Am Chem Soc 2013; 135:11603-13. [PMID: 23815127 PMCID: PMC4086662 DOI: 10.1021/ja405058y] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ruthenium(II) polypyridyl complexes have emerged both as promising probes of DNA structure and as anticancer agents because of their unique photophysical and cytotoxic properties. A key consideration in the administration of those therapeutic agents is the optimization of their chemical reactivities to allow facile attack on the target sites, yet avoid unwanted side effects. Here, we present a drug delivery platform technology, obtained by grafting the surface of mesoporous silica nanoparticles (MSNPs) with ruthenium(II) dipyridophenazine (dppz) complexes. This hybrid nanomaterial displays enhanced luminescent properties relative to that of the ruthenium(II) dppz complex in a homogeneous phase. Since the coordination between the ruthenium(II) complex and a monodentate ligand linked covalently to the nanoparticles can be cleaved under irradiation with visible light, the ruthenium complex can be released from the surface of the nanoparticles by selective substitution of this ligand with a water molecule. Indeed, the modified MSNPs undergo rapid cellular uptake, and after activation with light, the release of an aqua ruthenium(II) complex is observed. We have delivered, in combination, the ruthenium(II) complex and paclitaxel, loaded in the mesoporous structure, to breast cancer cells. This hybrid material represents a promising candidate as one of the so-called theranostic agents that possess both diagnostic and therapeutic functions.
Collapse
Affiliation(s)
- Marco Frasconi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhichang Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Juying Lei
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yilei Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Elena Strekalova
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 3018 WIMR, 111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Dmitry Malin
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 3018 WIMR, 111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Michael W. Ambrogio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Xinqi Chen
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Youssry Y. Botros
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Intel Labs, Building RNB-6-61, 2200 Mission College Boulevard, Santa Clara, California 95054, United States
- National Center for Nano Technology Research, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 3018 WIMR, 111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jean-Pierre Sauvage
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institut de Science et d’Ingénierie Supramoléculaires, University of Strasbourg, 8 Allée Gaspard Monge, Strasbourg F-67000, France
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Bahreman A, Limburg B, Siegler MA, Bouwman E, Bonnet S. Spontaneous formation in the dark, and visible light-induced cleavage, of a Ru-S bond in water: a thermodynamic and kinetic study. Inorg Chem 2013; 52:9456-69. [PMID: 23909908 DOI: 10.1021/ic401105v] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this work the thermal and photochemical reactivity of a series of ruthenium complexes [Ru(terpy)(N-N)(L)](X)2 (terpy = 2,2';6',2″-terpyridine, L = 2-(methylthio)ethanol (Hmte) or water, and X is Cl(-) or PF6(-)) with four different bidentate chelates N-N = bpy (2,2'-bipyridine), biq (2,2'-biquinoline), dcbpy (6,6'-dichloro-2,2'-bipyridine), or dmbpy (6,6'-dimethyl-2,2'-bipyridine), is described. For each chelate N-N the thermodynamic constant of the dark equilibrium between the aqua- and Hmte- complexes, the Hmte photosubstitution quantum yield, and the rate constants of the thermal interconversion between the aqua and Hmte complexes were measured at room temperature. By changing the steric hindrance and electronic properties of the spectator N-N ligand along the series bpy, biq, dcbpy, dmbpy the dark reactivity clearly shifts from a nonlabile equilibrium with N-N = bpy to a very labile thermal equilibrium with N-N = dmbpy. According to variable-temperature rate constant measurements in the dark near pH = 7 the activation enthalpies for the thermal substitution of H2O by Hmte are comparable for all ruthenium complexes, whereas the activation entropies are negative for bpy and biq, and positive for dcbpy and dmbpy complexes. These data are indicative of a change in the substitution mechanism, being interchange associative with nonhindered or poorly hindered chelates (bpy, biq), and interchange dissociative for more bulky ligands (dcbpy, dmbpy). For the most labile dmbpy system, the thermal equilibrium is too fast to allow significant modification of the composition of the mixture using light, and for the nonhindered bpy complex the photosubstitution of Hmte by H2O is possible but thermal binding of Hmte to the aqua complex does not occur at room temperature. By contrast, with N-N = biq or dcbpy the thermodynamic and kinetic parameters describing the formation and breakage of the Ru-S bond lie in a range where the bond forms spontaneously in the dark, but is efficiently cleaved under light irradiation. Thus, the ratio between the aqua and Hmte complex in solution can be efficiently controlled at room temperature using visible light irradiation.
Collapse
Affiliation(s)
- Azadeh Bahreman
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden, 2300 RA, The Netherlands
| | | | | | | | | |
Collapse
|