1
|
Dinis TBV, e Silva FA, Sousa F, Freire MG. Advances Brought by Hydrophilic Ionic Liquids in Fields Involving Pharmaceuticals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6231. [PMID: 34771756 PMCID: PMC8585031 DOI: 10.3390/ma14216231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
The negligible volatility and high tunable nature of ionic liquids (ILs) have been the main drivers of their investigation in a wide diversity of fields, among which is their application in areas involving pharmaceuticals. Although most literature dealing with ILs is still majorly devoted to hydrophobic ILs, evidence on the potential of hydrophilic ILs have been increasingly provided in the past decade, viz., ILs with improved therapeutic efficiency and bioavailability, ILs with the ability to increase drugs' aqueous solubility, ILs with enhanced extraction performance for pharmaceuticals when employed in biphasic systems and other techniques, and ILs displaying low eco/cyto/toxicity and beneficial biological activities. Given their relevance, it is here overviewed the applications of hydrophilic ILs in fields involving pharmaceuticals, particularly focusing on achievements and advances witnessed during the last decade. The application of hydrophilic ILs within fields involving pharmaceuticals is here critically discussed according to four categories: (i) to improve pharmaceuticals solubility, envisioning improved bioavailability; (ii) as IL-based drug delivery systems; (iii) as pretreatment techniques to improve analytical methods performance dealing with pharmaceuticals, and (iv) in the recovery and purification of pharmaceuticals using IL-based systems. Key factors in the selection of appropriate ILs are identified. Insights and perspectives to bring renewed and effective solutions involving ILs able to compete with current commercial technologies are finally provided.
Collapse
Affiliation(s)
- Teresa B. V. Dinis
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.B.V.D.); (F.A.eS.)
| | - Francisca A. e Silva
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.B.V.D.); (F.A.eS.)
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.B.V.D.); (F.A.eS.)
| |
Collapse
|
2
|
Yan K, Mu C, Meng L, Fei Z, Dyson PJ. Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. NANOSCALE ADVANCES 2021; 3:3708-3729. [PMID: 36133016 PMCID: PMC9419292 DOI: 10.1039/d1na00257k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/27/2021] [Indexed: 05/04/2023]
Abstract
Bacterial infections and transmission threaten human health and well-being. Graphite carbon nitride (g-C3N4), a promising photocatalytic antibacterial nanomaterial, has attracted increasing attention to combat bacterial transmission, due to the outstanding stability, high efficiency and environmental sustainability of this material. However, the antibacterial efficiency of g-C3N4 is affected by several factors, including its specific surface area, rapid electron/hole recombination processes and optical absorption properties. To improve the efficiency of the antibacterial properties of g-C3N4 and extend its range of applications, various nanocomposites have been prepared and evaluated. In this review, the advances in amplifying the photocatalytic antibacterial efficiency of g-C3N4-based nanocomposites is discussed, including different topologies, noble metal decoration, non-noble metal doping and heterojunction construction. The enhancement mechanisms and synergistic effects in g-C3N4-based nanocomposites are highlighted. The remaining challenges and future perspectives of antibacterial g-C3N4-based nanocomposites are also discussed.
Collapse
Affiliation(s)
- Kai Yan
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chenglong Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Lingjie Meng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
3
|
Li J, Zheng L, Li C, Xiao Y, Liu J, Wu S, Zhang B. Mannose modified zwitterionic polyester-conjugated second near-infrared organic fluorophore for targeted photothermal therapy. Biomater Sci 2021; 9:4648-4661. [PMID: 34008632 DOI: 10.1039/d1bm00396h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer resistance has been the huge challenge to clinical treatment. A photothermal therapy of second near-infrared (NIR-II) organic dye small molecule has been used to conquer the cancer resistance. However, the available NIR-II dye lacks selectivity and spreads throughout the body. It has toxicity and indiscriminate burn injuries normal cells and tissues during therapy. Hence, to improve the therapeutic outcomes, herein, for the first time, we report the mannose-modified zwitterionic nanoparticles loading IR1048 dye, aiming to overcome cancer cellular resistance. The targeting molecule mannose has been applied to modify zwitterionic polyester, and the obtained polyester is employed to load IR1048 to prolong the circulation time in the blood and improve the stability of loaded dye, due to the good cytocompatibility of polyester and the antifouling properties of zwitterions. In vitro experimental results show that the pH-responsive targeted nanoparticles display satisfactory photophysical properties, prominent photothermal conversion efficiency (44.07%), excellent photothermal stability, negligible cytotoxicity for normal cells and strong photothermal toxicity to drug-resistant cancer cells. Moreover, due to the mannose targeting effect, cancer cells can endocytose the nanoparticles effectively. All these results demonstrate potential application of this alternative hyperthermal delivery system with remote-controllable photothermal therapy of tumor for accurate diagnosis by NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Jiaxu Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China. and School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Yaonan Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Jiajian Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Shaohua Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Bo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| |
Collapse
|
4
|
Jindal M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Gold Nanoparticles- Boon in Cancer Theranostics. Curr Pharm Des 2021; 26:5134-5151. [PMID: 32611300 DOI: 10.2174/1381612826666200701151403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cancer is the world's second-largest cause of death, with an estimated 9.6 million fatalities in 2018. Malignant tumour (cancer) is caused by a mixture of genetic modifications due to the environmental variables that tend to activate or inactivate different genes, ultimately resulting in neoplastic transformations. Cancer is a multi-stage process that results from the conversion of the ordinary cells to tumour cells and progresses from a pre-cancer lesion to abnormal growth. METHODS Chemotherapy inhibits the ability of the cells to divide rapidly in an abnormal manner, but this treatment simultaneously affects the entire cellular network in the human body leading to cytotoxic effects. In this review article, the same issue has been addressed by discussing various aspects of the newer class of drugs in cancer therapeutics, i.e., Gold Nanoparticles (AuNPs) from metal nanoparticle (NP) class. RESULTS Metal NPs are advantageous over conventional chemotherapy as the adverse drug reactions are lesser. Additionally, ease of drug delivery, targeting and gene silencing are salient features of this treatment. Functionalized ligand-targeting metal NPs provide better energy deposition control in tumour. AuNPs are promising agents in the field of cancer treatment and are comprehensively studied as contrast agents, carriers of medicinal products, radiosensitizers and photothermal agents. For the targeted delivery of chemotherapeutic agents, AuNPs are used and also tend to enhance tumour imaging in vivo for a variety of cancer types and diseased organs. CONCLUSION The first part of the review focuses on various nano-carriers that are used for cancer therapy and deals with the progression of metal NPs in cancer therapy. The second part emphasizes the use of nanotechnology by considering the latest studies for diagnostic and therapeutic properties of AuNPs. AuNPs present the latest studies in the field of nanotechnology, which leads to the development of early-stage clinical trials. The next part of the review discusses the major features of five principal types of AuNPs: gold nanorods, gold nanoshells, gold nanospheres, gold nanocages, and gold nanostars that have their application in photothermal therapy (PTT).
Collapse
Affiliation(s)
- Mehak Jindal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | | |
Collapse
|
5
|
Yaghoubi A, Ramazani A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J Control Release 2020; 327:198-224. [DOI: 10.1016/j.jconrel.2020.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022]
|
6
|
Fan SY, Hao YN, Zhang WX, Kapasi A, Shu Y, Wang JH, Chen W. Poly(ionic liquid)-Gated CuCo 2S 4 for pH-/Thermo-Triggered Drug Release and Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9000-9007. [PMID: 32013385 DOI: 10.1021/acsami.9b21292] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel hybrid drug nanocarrier is developed with CuCo2S4 nanoparticles as the core to be encapsulated by poly(ionic liquid) (PIL), that is, poly(tetrabutylphosphonium styrenesulfonate) (P[P4,4,4,4][SS]), as the shell. Doxorubicin (DOX) is loaded onto the PIL shell via electrostatic attraction involving amine in DOX and styrenesulfonate in PIL. pH- and thermal-responsive characteristics of P[P4,4,4,4][SS] endow the multifunctional hybrid nanocarrier system DOX-CuCo2S4@PIL with sensitive dual-stimuli-triggered drug release behaviors. The CuCo2S4 core converts near-infrared (NIR) irradiation into thermal energy to trigger the shrinkage of the PIL shell, which subsequently promotes drug release, and the pH-responsive release of DOX involves pH-sensitive electrostatic interaction of the PIL shell with DOX. A favorable controlled release of 90.5% is achieved under pH/thermo dual stimuli. In vitro experiments with MCF-7 cells well demonstrated that the drug release is controlled by the acidic intracellular environment with NIR irradiation. The CuCo2S4 core also serves as a photoacoustic (PA) imaging contrast agent, as demonstrated by in vivo treatment of the MCF-7-carrying mice.
Collapse
Affiliation(s)
- Shao-Ying Fan
- Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Ya-Nan Hao
- Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Wen-Xin Zhang
- Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Aliasger Kapasi
- Department of Physics , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Yang Shu
- Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Wei Chen
- Department of Physics , University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
7
|
Zhang X, Liu Y, Luo L, Li L, Xing S, Yin T, Bian K, Zhu R, Gao D. A chemo-photothermal synergetic antitumor drug delivery system: Gold nanoshell coated wedelolactone liposome. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:505-512. [PMID: 31029345 DOI: 10.1016/j.msec.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/08/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
In this study, an antitumor drug delivery system, gold nanoshell coated wedelolactone liposomes (AuNS-Wed-Lip), were designed and synthesized. In the drug delivery system, wedelolactone liposome and gold-nanoshell were linked by l-cysteine, which had been shown an effective nanocarrier for antitumor drug delivery, on-demand drug release, and phototherapy under near-infrared (NIR) light irradiation. It was capable of absorbing 780-850 nm NIR light and converting light energy to heat rapidly. The hyperthermia promoted wedelolactone release rapidly from the systems. The release amount of AuNS-Wed-Lip under NIR irradiation reached up to 97.34% over 8 h, achieving the on-demand drug release. Moreover, a high inhibition rate up to 95.73% for 143B tumor cells by AuNS-Wed-Lip upon laser irradiation at 808 nm was observed. The excellent inhibition efficacy was also displayed in vivo antitumor study with S180 tumor-bearing mice. The results demonstrated that AuNS-Wed-Lip, as an antitumor drug delivery system, achieved chemo-photothermal synergetic effect, which has great potential in cancer therapy.
Collapse
Affiliation(s)
- Xuwu Zhang
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Yanping Liu
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Liyao Luo
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Lei Li
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Shanshan Xing
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Tian Yin
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Kexin Bian
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Ruiyan Zhu
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China; Hebei Province Asparagus Industry Technology Research Institute, China
| | - Dawei Gao
- Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China.
| |
Collapse
|
8
|
Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic Imaging: Contrast Agents and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805875. [PMID: 30556205 DOI: 10.1002/adma.201805875] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Indexed: 05/20/2023]
Abstract
Photoacoustic (PA) imaging as a fast-developing imaging technique has great potential in biomedical and clinical applications. It is a noninvasive imaging modality that depends on the light-absorption coefficient of the imaged tissue and the injected PA-imaging contrast agents. Furthermore, PA imaging provides superb contrast, super spatial resolution, and high penetrability and sensitivity to tissue functional characteristics by detecting the acoustic wave to construct PA images. In recent years, a series of PA-imaging contrast agents are developed to improve the PA-imaging performance in biomedical applications. Here, recent progress of PA contrast agents and their biomedical applications are outlined. PA contrast agents are classified according to their components and function, and gold nanocrystals, gold-nanocrystal assembly, transition-metal chalcogenides/MXene-based nanomaterials, carbon-based nanomaterials, other inorganic imaging agents, small organic molecules, semiconducting polymer nanoparticles, and nonlinear PA-imaging contrast agents are discussed. The applications of PA contrast agents as biosensors (in the sensing of metal ions, pH, enzymes, temperature, hypoxia, reactive oxygen species, and reactive nitrogen species) and in bioimaging (lymph nodes, vasculature, tumors, and brain tissue) are discussed in detail. Finally, an outlook on the future research and investigation of PA-imaging contrast agents and their significance in biomedical research is presented.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Sun MQ, Ding ZL, Wang H, Yu GP, Li BZ, Li MC, Zhen MM. Antifungal effects of BiOBr nanosheets carrying surfactant cetyltrimethylammonium bromide. J Biomed Res 2018; 32:380-388. [PMID: 30269124 PMCID: PMC6163115 DOI: 10.7555/jbr.32.20180043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BiOBr nanosheets are important photocatalytic nanomaterials. However, their biological effects remain to be explored. In this study, we investigated the antifungal effect of BiOBr nanosheets on Candida albicans. Strikingly, the nanosheets strongly inhibited the growth of C. albicans [IC50=(96±4.7) mg/L], hyphal development and biofilm formation. Compareed to the antifungal effect of the cationic surfactant cetyltrimethylammonium bromide, the inhibitory effect of the nanosheets on fungal pathogen was attributed to cetyltrimethylammonium bromide adsorbed by the nanosheets. Thermal gravity analysis and cetyltrimethylammonium bromide release experiment indicated that only 0.42% cetyltrimethylammonium bromide on BiOBr nanosheets was released. Taken together, this study uncovers the contribution of surfactant released from the nanosheets to their antifungal activity.
Collapse
Affiliation(s)
- Mei-Qing Sun
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Zhan-Lin Ding
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Hong Wang
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Guang-Ping Yu
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ming-Chun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Meng-Meng Zhen
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300071, China
| |
Collapse
|
10
|
Egorova KS, Gordeev EG, Ananikov VP. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem Rev 2017; 117:7132-7189. [PMID: 28125212 DOI: 10.1021/acs.chemrev.6b00562] [Citation(s) in RCA: 911] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia.,Department of Chemistry, Saint Petersburg State University , Stary Petergof 198504, Russia
| |
Collapse
|
11
|
Wang D, Hou C, Meng L, Long J, Jing J, Dang D, Fei Z, Dyson PJ. Stepwise growth of gold coated cancer targeting carbon nanotubes for the precise delivery of doxorubicin combined with photothermal therapy. J Mater Chem B 2017; 5:1380-1387. [PMID: 32264630 DOI: 10.1039/c6tb02755e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Combining doxorubicin with thermal therapy in the clinic has led to startling results in the treatment of problematic cancers. Here, we describe a multimodal multi-walled carbon nanotube material that combines tumor targeting, doxorubicin delivery, and photothermal therapy for localized cancer treatment. The agent was constructed layer-by-layer from polypyrrole and gold nanoparticles on multi-walled carbon nanotubes. The gold surface was modified with tumor targeting folic acid terminated PEGylated chains, which also provide water-dispersibility, biocompatibility and should extend the half-life in blood. The material has a high loading/unloading capacity for the cytotoxic agent doxorubicin. Release of the doxorubicin, combined with the photothermal properties of the material that induces localized hyperthermia, leads to efficient cancer cell death.
Collapse
Affiliation(s)
- Daquan Wang
- School of Science, State Key Laboratory for Mechanical Behavior of Materials and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhao L, Yang J, Ye H, Zhao F, Zeng B. Preparation of hydrophilic surface-imprinted ionic liquid polymer on multi-walled carbon nanotubes for the sensitive electrochemical determination of imidacloprid. RSC Adv 2017. [DOI: 10.1039/c6ra25969c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hydrophilic ionic liquid monomer was immobilized on carboxylated MWNTs by ion exchange, then reversible addition–fragmentation chain transfer precipitation polymerization was performed in the presence of a template, imidacloprid.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Juan Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Huili Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
13
|
Ondera TJ, Hamme AT. Magnetic-optical nanohybrids for targeted detection, separation, and photothermal ablation of drug-resistant pathogens. Analyst 2016; 140:7902-11. [PMID: 26469636 DOI: 10.1039/c5an00497g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A rapid, sensitive and quantitative immunoassay for the targeted detection and decontamination of E. coli based on Fe3O4 magnetic nanoparticles (MNPs) and plasmonic popcorn-shaped gold nanostructure attached single-walled carbon nanotubes (AuNP@SWCNT) is presented. The MNPs were synthesized as the support for a monoclonal antibody (mAb@MNP). E. coli (49979) was captured and rapidly preconcentrated from the sample with the mAb@MNP, followed by binding with Raman-tagged concanavalin A-AuNP@SWCNTs (Con A-AuNP@SWCNTs) as detector nanoprobes. A Raman tag 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) generated a Raman signal upon 670 nm laser excitation enabling the detection and quantification of E. coli concentration with a limit of detection of 10(2) CFU mL(-1) and a linear logarithmic response range of 1.0 × 10(2) to 1.0 × 10(7) CFU mL(-1). The mAb@MNP could remove more than 98% of E. coli (initial concentration of 1.3 × 10(4) CFU mL(-1)) from water. The potential of the immunoassay to detect E. coli bacteria in real water samples was investigated and the results were compared with the experimental results from the classical count method. There was no statistically significant difference between the two methods (p > 0.05). Furthermore, the MNP/AuNP@SWCNT hybrid system exhibits an enhanced photothermal killing effect. The sandwich-like immunoassay possesses potential for rapid bioanalysis and the simultaneous biosensing of multiple pathogenic agents.
Collapse
Affiliation(s)
- Thomas J Ondera
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA.
| | - Ashton T Hamme
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA.
| |
Collapse
|
14
|
Feng W, Chen L, Qin M, Zhou X, Zhang Q, Miao Y, Qiu K, Zhang Y, He C. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Sci Rep 2015; 5:17422. [PMID: 26632249 PMCID: PMC4668368 DOI: 10.1038/srep17422] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/29/2015] [Indexed: 12/28/2022] Open
Abstract
Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy.
Collapse
Affiliation(s)
- Wei Feng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Liang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Ming Qin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaojun Zhou
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qianqian Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yingke Miao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kexin Qiu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Qin J, Peng Z, Li B, Ye K, Zhang Y, Yuan F, Yang X, Huang L, Hu J, Lu X. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. NANOSCALE 2015; 7:13991-4001. [PMID: 26228112 DOI: 10.1039/c5nr02521d] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Molecularly imprinted polymer grown on multiwalled carbon nanotube surface for the sensitive electrochemical determination of amoxicillin. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.156] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Feng W, Zhou X, Nie W, Chen L, Qiu K, Zhang Y, He C. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4354-67. [PMID: 25664659 DOI: 10.1021/am508837v] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Construction of multifunctional nanocomposites as theranostic platforms has received considerable biomedical attention. In this study, a triple-functional theranostic agent based on the cointegration of gold nanorods (Au NRs) and superparamagnetic iron oxide (Fe3O4) into polypyrrole was developed. Such a theranostic agent (referred to as Au/PPY@Fe3O4) not only exhibits strong magnetic property and high near-infrared (NIR) optical absorbance but also produces high contrast for magnetic resonance (MR) and X-ray computed tomography (CT) imaging. Importantly, under the irradiation of the NIR 808 nm laser at the power density of 2 W/cm(2) for 10 min, the temperature of the solution containing Au/PPY@Fe3O4 (1.4 mg/mL) increased by about 35 °C. Cell viability assay showed that these nanocomposites had low cytotoxicity. Furthermore, an in vitro photothermal treatment test demonstrates that the cancer cells can be efficiently killed by the photothermal effects of the Au/PPY@Fe3O4 nanocomposites. In summary, this study demonstrates that the highly versatile multifunctional Au/PPY@Fe3O4 nanocomposites have great potential in simultaneous multimodal imaging-guided cancer theranostic applications.
Collapse
Affiliation(s)
- Wei Feng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , 2999 North Renmin Road, Shanghai 201620, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Modugno G, Ménard-Moyon C, Prato M, Bianco A. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br J Pharmacol 2015; 172:975-91. [PMID: 25323135 PMCID: PMC4314189 DOI: 10.1111/bph.12984] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023] Open
Abstract
Among targeted delivery systems, platforms with nanosize dimensions, such as carbon nanomaterials (CNMs) and metal nanoparticles (NPs), have shown great potential in biomedical applications. They have received considerable interest in recent years, especially with respect to their potential utilization in the field of cancer diagnosis and therapy. The many functions of nanomaterials provide opportunities to use them as multimodal agents for theranostics, a combination of therapy and diagnosis. Carbon nanotubes and graphene are some of the most widely used CNMs because of their unique structural and physicochemical properties. Their high specific surface area allows for efficient drug loading and the possibility of functionalization with various bioactive molecules. In addition, CNMs are ideal platforms for the attachment of NPs. In the biomedical field, NPs have also shown tremendous potential for use in drug delivery, non-invasive tumour imaging and early detection due to their optical and magnetic properties. NP/CNM hybrids not only combine the unique properties of the NPs and CNMs but they also exhibit new properties arising from interactions between the two entities. In this review, the preparation of CNMs conjugated to different types of metal NPs and their applications in diagnosis, imaging, therapy and theranostics are presented.
Collapse
Affiliation(s)
- Gloria Modugno
- Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, CNRSStrasbourg, France
| | - Cécilia Ménard-Moyon
- Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, CNRSStrasbourg, France
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di TriesteTrieste, Italy
| | - Alberto Bianco
- Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, CNRSStrasbourg, France
| |
Collapse
|
19
|
Chiappe C, Pomelli CS. Point-Functionalization of Ionic Liquids: An Overview of Synthesis and Applications. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402093] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Meng L, Xia W, Liu L, Niu L, Lu Q. Golden single-walled carbon nanotubes prepared using double layer polysaccharides bridge for photothermal therapy. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4989-96. [PMID: 24606763 DOI: 10.1021/am406031n] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Golden single-walled carbon nanotubes (SWNTs) were prepared by growing gold nanoparticles onto the bilayer polysaccharide functionalized SWNTs. The layer-by-layer self-assembly of sodium alginate and chitosan on SWNTs provided an ideal surface with high density of active metal-binding groups such as amino and carboxylic acid groups, and then an approach of seed growth was adopted to facilitate the formation of gold nanoparticles coated SWNTs. The resulting golden SWNT hybrids have good water dispersibility and biocompatibility and tend to enter cancer cells. Interestingly, they have an enhanced NIR absorption and effectively transfer NIR laser into heat. The material can quickly cause localized hyperthermia, resulting in rapid cell death, and therefore appears to act as a highly effective photothermal converter for cancer ablation.
Collapse
Affiliation(s)
- Lingjie Meng
- School of Science, Xi'an Jiao Tong University , Xi'an, 710049, P.R. China
| | | | | | | | | |
Collapse
|
21
|
Dumke JC, Qureshi A, Hamdan S, Rupnik K, El-Zahab B, Hayes DJ, Warner IM. In vitro activity studies of hyperthermal near-infrared nanoGUMBOS in MDA-MB-231 breast cancer cells. Photochem Photobiol Sci 2014; 13:1270-80. [DOI: 10.1039/c4pp00030g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanoparticles devised entirely of ionic liquid-like materials called GUMBOS created a localized hyperthermal effect within breast cancer cells concurrent with near-infrared laser excitation.
Collapse
Affiliation(s)
| | - Ammar Qureshi
- Department of Biological and Agricultural Engineering
- Louisiana State University
- Baton Rouge, USA
| | - Suzana Hamdan
- Department of Chemistry
- Louisiana State University
- Baton Rouge, USA
| | - Kresimir Rupnik
- Department of Chemistry
- Louisiana State University
- Baton Rouge, USA
| | - Bilal El-Zahab
- Department of Chemistry
- Louisiana State University
- Baton Rouge, USA
| | - Daniel J. Hayes
- Department of Biological and Agricultural Engineering
- Louisiana State University
- Baton Rouge, USA
| | - Isiah M. Warner
- Department of Chemistry
- Louisiana State University
- Baton Rouge, USA
| |
Collapse
|
22
|
Liu YT, Duan ZQ, Xie XM, Ye XY. A universal strategy for the hierarchical assembly of functional 0/2D nanohybrids. Chem Commun (Camb) 2013; 49:1642-4. [PMID: 23340978 DOI: 10.1039/c3cc38567a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a universal strategy for the hierarchical assembly of nanoparticles on various 2D materials, resulting in functional 0/2D nanohybrids holding great promise in catalysis, energy storage, and chemical and biological sensing.
Collapse
Affiliation(s)
- Yi-Tao Liu
- Advanced Materials Laboratory, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|