1
|
Cropley JD, Mitchell AC, Fritsch NA, Ho M, Wells TD, Reynolds TM, Brennessel WW, McNamara WR. Mononuclear Fe(III) Schiff base antipyrine complexes for catalytic hydrogen generation. Dalton Trans 2024; 53:15421-15426. [PMID: 39246062 DOI: 10.1039/d4dt01876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Mononuclear Fe(III) complexes containing an antipyrine Schiff base ligand were prepared and fully characterized, demonstrating a planar tetradentate coordination geometry. These complexes were found to be active for the hydrogen evolution reaction. Catalysis occurs at -1.4 V vs. Fc+/Fc, with an overpotential of 700 mV. The complexes are active electrocatalysts with a turnover frequency of 700 s-1. Furthermore, when paired with a chromophore and sacrificial donor, the complexes are active photocatalysts demonstrating >1700 turnovers during 40 hours of irradiation with a quantum yield of up to 5.4%. The catalysts have also been found to operate in natural water samples of varying salinity.
Collapse
Affiliation(s)
- Jessica D Cropley
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Amanda C Mitchell
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Nicole A Fritsch
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Marissa Ho
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Timothy D Wells
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - Todd M Reynolds
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| | - William W Brennessel
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, USA
| | - William R McNamara
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, USA.
| |
Collapse
|
2
|
Keszei S, Wang Y, Zhou H, Ollár T, Kováts É, Frey K, Tapasztó L, Shen S, Pap JS. Hydrogen evolution driven by heteroatoms of bidentate N-heterocyclic ligands in iron(II) complexes. Dalton Trans 2024; 53:14817-14829. [PMID: 39171517 DOI: 10.1039/d4dt02081b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
While Pt is considered the best catalyst for the electrocatalytic hydrogen evolution reaction (HER), it is evident that non-noble metal alternatives must be explored. In this regard, it is well known that the binding sites for non-noble metals play a pivotal role in facilitating efficient catalysis. Herein, we studied Fe(II) complexes with bidentate 2-(2'-pyridyl)benzoxazole (LO), 2-(2'-pyridyl)benzthiazole (LS), 2-(2'-pyridyl)benzimidazole (LNH), and 2-2'-bipyridyl (Lpy) ligands - by adding trifluoroacetic acid (TFA) to their acetonitrile solution - in order to examine how their reactivity towards protons under reductive conditions could be impacted by the non-coordinating heteroatoms (S, O, N, or none). By applying this ligand series, we found that the reduction potentials relevant for HER correlate with ligand basicity in the presence of TFA. Moreover, DFT calculations underlined the importance of charge distribution in the ligand-based LUMO and LUMO+1 orbitals of the complexes, dependent on the heterocycle. Kinetic studies and controlled potential electrolysis - using TFA as a proton source - revealed HER activities for the complexes with LNH, LO, and LS of kobs = 0.03, 1.1, and 10.8 s-1 at overpotentials of 0.81, 0.76, and 0.79 V, respectively, and pointed towards a correlation between the kinetics of the reaction and the non-coordinating heteroatoms of the ligands. In particular, the activity was associated with the [Fe(LS/O/NH)2(S)2]2+ form (S = solvent or substrate molecule), and the rate-determining step involved the formation of [Fe(H-H)]+, during the weakening of Fe-H and CF3CO2-H bonds, according to the experimental and DFT results.
Collapse
Affiliation(s)
- Soma Keszei
- Centre for Energy Research, Institute of Technical Physics and Materials Science, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary.
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| | - Yiqing Wang
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haotian Zhou
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tamás Ollár
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| | - Éva Kováts
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Krisztina Frey
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| | - Levente Tapasztó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary.
| | - Shaohua Shen
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - József Sándor Pap
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| |
Collapse
|
3
|
Agarwal T, Kaur‐Ghumaan S. [FeFe] Hydrogenase: 2‐Propanethiolato‐Bridged {FeFe} Systems as Electrocatalysts for Hydrogen Production in Acetonitrile‐Water. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Tashika Agarwal
- Department of Chemistry University of Delhi Delhi 110007 India
| | | |
Collapse
|
4
|
Xuan J, He L, Wen W, Feng Y. Hydrogenase and Nitrogenase: Key Catalysts in Biohydrogen Production. Molecules 2023; 28:molecules28031392. [PMID: 36771068 PMCID: PMC9919214 DOI: 10.3390/molecules28031392] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Hydrogen with high energy content is considered to be a promising alternative clean energy source. Biohydrogen production through microbes provides a renewable and immense hydrogen supply by utilizing raw materials such as inexhaustible natural sunlight, water, and even organic waste, which is supposed to solve the two problems of "energy supply and environment protection" at the same time. Hydrogenases and nitrogenases are two classes of key enzymes involved in biohydrogen production and can be applied under different biological conditions. Both the research on enzymatic catalytic mechanisms and the innovations of enzymatic techniques are important and necessary for the application of biohydrogen production. In this review, we introduce the enzymatic structures related to biohydrogen production, summarize recent enzymatic and genetic engineering works to enhance hydrogen production, and describe the chemical efforts of novel synthetic artificial enzymes inspired by the two biocatalysts. Continual studies on the two types of enzymes in the future will further improve the efficiency of biohydrogen production and contribute to the economic feasibility of biohydrogen as an energy source.
Collapse
Affiliation(s)
- Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Correspondence: (J.X.); (Y.F.)
| | - Lingling He
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wen Wen
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.X.); (Y.F.)
| |
Collapse
|
5
|
Realini F, Elleouet C, Pétillon F, Schollhammer P. Tri‐ and tetra‐substituted derivatives of [Fe2(CO)6(µ‐dithiolate)] as novel dinuclear platforms related to the H‐cluster of [FeFe]H2ases. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Natarajan M, Kumar N, Joshi M, Stein M, Kaur‐Ghumaan S. Mechanism of Diiron Hydrogenase Complexes Controlled by Nature of Bridging Dithiolate Ligand. ChemistryOpen 2022; 11:e202100238. [PMID: 34981908 PMCID: PMC8734113 DOI: 10.1002/open.202100238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Bio-inorganic complexes inspired by hydrogenase enzymes are designed to catalyze the hydrogen evolution reaction (HER). A series of new diiron hydrogenase mimic complexes with one or two terminal tris(4-methoxyphenyl)phosphine and different μ-bridging dithiolate ligands and show catalytic activity towards electrochemical proton reduction in the presence of weak and strong acids. A series of propane- and benzene-dithiolato-bridged complexes was synthesized, crystallized, and characterized by various spectroscopic techniques and quantum chemical calculations. Their electrochemical properties as well as the detailed reaction mechanisms of the HER are elucidated by density functional theory (DFT) methods. The nature of the μ-bridging dithiolate is critically controlling the reaction and performance of the HER of the complexes. In contrast, terminal phosphine ligands have no significant effects on redox activities and mechanism. Mono- or di-substituted propane-dithiolate complexes afford a sequential reduction (electrochemical; E) and protonation (chemical; C) mechanism (ECEC), while the μ-benzene dithiolate complexes follow a different reaction mechanism and are more efficient HER catalysts.
Collapse
Affiliation(s)
| | - Naveen Kumar
- Department of ChemistryUniversity of DelhiDelhi110007India
| | - Meenakshi Joshi
- Max-Planck-Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | - Matthias Stein
- Max-Planck-Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | | |
Collapse
|
7
|
Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Almazahreh LR, Arrigoni F, Abul-Futouh H, El-khateeb M, Görls H, Elleouet C, Schollhammer P, Bertini L, De Gioia L, Rudolph M, Zampella G, Weigand W. Proton Shuttle Mediated by (SCH 2) 2P═O Moiety in [FeFe]-Hydrogenase Mimics: Electrochemical and DFT Studies. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05563] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laith R. Almazahreh
- ERCOSPLAN Ingenieurbüro Anlagentechnik GmbH Arnstädter Straße 28, 99096 Erfurt, Germany
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Hassan Abul-Futouh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733 Jordan
| | - Mohammad El-khateeb
- Chemistry Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Catherine Elleouet
- UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, Cs 93837, 29238 CEDEX 3 Brest, France
| | - Philippe Schollhammer
- UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, Cs 93837, 29238 CEDEX 3 Brest, France
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Manfred Rudolph
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| |
Collapse
|
9
|
Schiffman ZR, Margonis CM, Moyer A, Ott M, McNamara WR. Tridentate bis(2-pyridylmethyl)amine iron catalyst for electrocatalytic proton reduction. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Etinski M, Stanković IM, Puthenkalathil RC, Ensing B. A DFT study of structure and electrochemical properties of diiron-hydrogenase models with benzenedithiolato and benzenediselenato ligands. NEW J CHEM 2020. [DOI: 10.1039/c9nj04887a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chalcogen atom substitution in the Fe2(bdt)(CO)6 complex results in higher and lower proton affinities of iron and chalcogen atoms, respectively.
Collapse
Affiliation(s)
- Mihajlo Etinski
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | | - Rakesh C. Puthenkalathil
- Van't Hoff Institute for Molecular Sciences (HIMS)
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| | - Bernd Ensing
- Van't Hoff Institute for Molecular Sciences (HIMS)
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| |
Collapse
|
11
|
Gao S, Liu Y, Shao Y, Jiang D, Duan Q. Iron carbonyl compounds with aromatic dithiolate bridges as organometallic mimics of [FeFe] hydrogenases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Zaffaroni R, Dzik WI, Detz RJ, van der Vlugt JI, Reek JNH. Proton Relay Effects in Pyridyl‐Appended Hydrogenase Mimics for Proton Reduction Catalysis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Riccardo Zaffaroni
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Wojciech I. Dzik
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Remko J. Detz
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- ECN.TNO Energy Transition Studies Radarweg 60 1043 NT Amsterdam The Netherlands
| | - Jarl Ivar van der Vlugt
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N. H. Reek
- van 't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
13
|
Karayilan M, Brezinski WP, Clary KE, Lichtenberger DL, Glass RS, Pyun J. Catalytic Metallopolymers from [2Fe-2S] Clusters: Artificial Metalloenzymes for Hydrogen Production. Angew Chem Int Ed Engl 2019; 58:7537-7550. [PMID: 30628136 DOI: 10.1002/anie.201813776] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 11/10/2022]
Abstract
Reviewed herein is the development of novel polymer-supported [2Fe-2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small-molecule, [2Fe-2S]-containing mimetics of the active site (H-cluster) of these metalloenzymes have been synthesized for years. These small [2Fe-2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production. Recently, modern polymer chemistry has been utilized to construct an outer coordination sphere around the [2Fe-2S] clusters to provide site isolation, water solubility, and improved catalytic activity. In this review, the various macromolecular motifs and the catalytic properties of these polymer-supported [2Fe-2S] materials are surveyed. The most recent catalysts that incorporate a single [2Fe-2S] complex, termed single-site [2Fe-2S] metallopolymers, exhibit superior activity for H2 production.
Collapse
Affiliation(s)
- Metin Karayilan
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - William P Brezinski
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Kayla E Clary
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Dennis L Lichtenberger
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Richard S Glass
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ, 85721, USA.,Program for Chemical Convergence of Energy & Environment, School of Chemical & Biological Engineering, Seoul National University, Seoul, Korea
| |
Collapse
|
14
|
Karayilan M, Brezinski WP, Clary KE, Lichtenberger DL, Glass RS, Pyun J. Catalytic Metallopolymers from [2Fe‐2S] Clusters: Artificial Metalloenzymes for Hydrogen Production. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Metin Karayilan
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - William P. Brezinski
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Kayla E. Clary
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Dennis L. Lichtenberger
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Richard S. Glass
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry The University of Arizona 1306 E. University Blvd. Tucson AZ 85721 USA
- Program for Chemical Convergence of Energy & Environment School of Chemical & Biological Engineering Seoul National University Seoul Korea
| |
Collapse
|
15
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 452] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
16
|
Esmieu C, Raleiras P, Berggren G. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. SUSTAINABLE ENERGY & FUELS 2018; 2:724-750. [PMID: 31497651 PMCID: PMC6695573 DOI: 10.1039/c7se00582b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen gas is used extensively in industry today and is often put forward as a suitable energy carrier due its high energy density. Currently, the main source of molecular hydrogen is fossil fuels via steam reforming. Consequently, novel production methods are required to improve the sustainability of hydrogen gas for industrial processes, as well as paving the way for its implementation as a future solar fuel. Nature has already developed an elaborate hydrogen economy, where the production and consumption of hydrogen gas is catalysed by hydrogenase enzymes. In this review we summarize efforts on engineering and optimizing these enzymes for biological hydrogen gas production, with an emphasis on their inorganic cofactors. Moreover, we will describe how our understanding of these enzymes has been applied for the preparation of bio-inspired/-mimetic systems for efficient and sustainable hydrogen production.
Collapse
Affiliation(s)
- C Esmieu
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - P Raleiras
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - G Berggren
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| |
Collapse
|
17
|
Zaffaroni R, Detz RJ, van der Vlugt JI, Reek JNH. A Functional Hydrogenase Mimic Chemisorbed onto Fluorine-Doped Tin Oxide Electrodes: A Strategy towards Water Splitting Devices. CHEMSUSCHEM 2018; 11:209-218. [PMID: 29077275 PMCID: PMC5814736 DOI: 10.1002/cssc.201701757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Indexed: 06/07/2023]
Abstract
A diiron benzenedithiolate hydrogen-evolving catalyst immobilized onto fluorine-doped tin oxide (FTO) electrodes is prepared, characterized, and studied in the context of the development of water splitting devices based on molecular components. FTO was chosen as the preferred electrode material owing to its conductive properties and electrochemical stability. An FTO nanocrystalline layer is also used to greatly improve the surface area of commercially available FTO while preserving the properties of the material. Electrodes bearing a covalently anchored diiron catalyst are shown to be competent for electrocatalytic hydrogen evolution from acidic aqueous media at relatively low overpotential (500 mV) with a faradaic efficiency close to unity. Compared with bulk solution catalysts, the catalyst immobilized onto the electrode surface operates at roughly 160 mV lower overpotentials, yet with similar rates.
Collapse
Affiliation(s)
- Riccardo Zaffaroni
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Remko J. Detz
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Jarl Ivar van der Vlugt
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
18
|
Fukuzumi S, Lee YM, Nam W. Thermal and photocatalytic production of hydrogen with earth-abundant metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.07.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Hartley CL, DiRisio RJ, Screen ME, Mayer KJ, McNamara WR. Iron Polypyridyl Complexes for Photocatalytic Hydrogen Generation. Inorg Chem 2016; 55:8865-70. [PMID: 27548389 DOI: 10.1021/acs.inorgchem.6b01413] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of Fe(III) complexes were recently reported that are stable and active electrocatalysts for reducing protons into hydrogen gas. Herein, we report the incorporation of these electrocatalysts into a photocatalytic system for hydrogen production. Hydrogen evolution is observed when these catalysts are paired with fluorescein (chromophore) and triethylamine (sacrificial electron source) in a 1:1 ethanol:water mixture. The photocatalytic system is highly active and stable, achieving TONs > 2100 (with respect to catalyst) after 24 h. Catalysis proceeds through a reductive quenching pathway with a quantum yield of over 3%.
Collapse
Affiliation(s)
- Carolyn L Hartley
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Ryan J DiRisio
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Megan E Screen
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Kathryn J Mayer
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - William R McNamara
- Department of Chemistry, College of William and Mary , 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| |
Collapse
|
20
|
Alcala-Torano R, Sommer DJ, Bahrami Dizicheh Z, Ghirlanda G. Design Strategies for Redox Active Metalloenzymes: Applications in Hydrogen Production. Methods Enzymol 2016; 580:389-416. [PMID: 27586342 DOI: 10.1016/bs.mie.2016.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The last decades have seen an increased interest in finding alternative means to produce renewable fuels in order to satisfy the growing energy demands and to minimize environmental impact. Nature can serve as an inspiration for development of these methodologies, as enzymes are able to carry out a wide variety of redox processes at high efficiency, employing a wide array of earth-abundant transition metals to do so. While it is well recognized that the protein environment plays an important role in tuning the properties of the different metal centers, the structure/function relationships between amino acids and catalytic centers are not well resolved. One specific approach to study the role of proteins in both electron and proton transfer is the biomimetic design of redox active peptides, binding organometallic clusters in well-understood protein environments. Here we discuss different strategies for the design of peptides incorporating redox active FeS clusters, [FeFe]-hydrogenase organometallic mimics, and porphyrin centers into different peptide and protein environments in order to understand natural redox enzymes.
Collapse
Affiliation(s)
- R Alcala-Torano
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - D J Sommer
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Z Bahrami Dizicheh
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - G Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
21
|
Gloaguen F. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water. Inorg Chem 2015; 55:390-8. [PMID: 26641526 DOI: 10.1021/acs.inorgchem.5b02245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.
Collapse
Affiliation(s)
- Frederic Gloaguen
- UMR 6521, CNRS, Université de Bretagne Occidentale, CS 93837 , 29238 Brest, France
| |
Collapse
|
22
|
Hansen M, Troppmann S, König B. Artificial Photosynthesis at Dynamic Self-Assembled Interfaces in Water. Chemistry 2015; 22:58-72. [DOI: 10.1002/chem.201503712] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/11/2022]
|
23
|
Pandey IK, Mobin SM, Deibel N, Sarkar B, Kaur-Ghumaan S. Diiron Benzenedithiolate Complexes Relevant to the [FeFe] Hydrogenase Active Site. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake. Curr Opin Chem Biol 2015; 25:36-47. [DOI: 10.1016/j.cbpa.2014.12.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022]
|
25
|
Cavell AC, Hartley CL, Liu D, Tribble CS, McNamara WR. Sulfinato Iron(III) Complex for Electrocatalytic Proton Reduction. Inorg Chem 2015; 54:3325-30. [DOI: 10.1021/ic5030394] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew C. Cavell
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Carolyn L. Hartley
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Dan Liu
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - Connor S. Tribble
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| | - William R. McNamara
- Department of Chemistry, College of William and Mary, 540 Landrum Drive, Williamsburg, Virginia 23185, United States
| |
Collapse
|
26
|
Wang X, Zhang T, Yang Q, Jiang S, Li B. Synthesis and Characterization of Bio-Inspired Diiron Complexes and Their Catalytic Activity for Direct Hydroxylation of Aromatic Compounds. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201402918] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Pandey IK, Natarajan M, Kaur-Ghumaan S. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J Inorg Biochem 2014; 143:88-110. [PMID: 25528677 DOI: 10.1016/j.jinorgbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The design, syntheses and characteristics of metal carbonyl complexes with aromatic dithiolate linkers reported as bioinspired hydrogenase catalytic site models are described and reviewed. Among these the complexes capable of hydrogen generation have been discussed in detail. Comparisons have been made with carbonyl complexes having alkyl dithiolates as linkers between metal centers.
Collapse
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
28
|
|
29
|
Orain C, Quentel F, Gloaguen F. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution. CHEMSUSCHEM 2014; 7:638-643. [PMID: 24127363 DOI: 10.1002/cssc.201300631] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/06/2013] [Indexed: 06/02/2023]
Abstract
Iron-thiolate complexes of the type [Fe2 (μ-bdt)(CO)6-x P(OMe3 )x ] (bdt=S2 C6 H4 =benzenedithiolate, x≤2) are simplified models of iron-iron hydrogenase enzymes. Recently, we have shown that these water-insoluble organometallic complexes, when included into micelles formed by sodium dodecyl sulfate (SDS), are good catalysts for the electrochemical production of hydrogen in aqueous solutions at pH<6. We herein report that the all-CO derivative [Fe2 (μ-bdt)(CO)6 ] (1), owing to its comparatively low reduction potential, is also a robust molecular catalyst for visible-light-driven production of H2 in aqueous SDS solutions at pH 10.5. Irradiation at λ=455 nm of a system consisting of complex 1, Eosin Y as a sensitizer, and triethylamine as an electron donor produced up to 0.86 mL of H2 in 4.5 h, corresponding to a turnover number of 117 mol of H2 per mol of catalyst. In the presence of a large excess of sensitizer, the production of H2 lasted for more than 30 h, stressing the relative stability of complex 1 under the photocatalytic conditions used herein. Thermodynamic considerations and UV/Vis spectroscopy experiments suggest that the catalytic cycle begins with the photo-driven reduction of complex 1. The reduced intermediate reacts with a proton source to yield iron hydride. Subsequent reduction and protonation steps produce H2 , regenerating the starting complex. As a result, the iron-thiolate complex 1 is a versatile proton reduction catalyst that can utilize either solar or electrical energy inputs, providing a starting point for the construction of noble metal-free molecular systems for renewable H2 production.
Collapse
Affiliation(s)
- Christophe Orain
- UMR 6521, CNRS, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, CS 93837, 29238 Brest (France)
| | | | | |
Collapse
|
30
|
Morikawa M, Ogura Y, Ahmed N, Kawamura S, Mikami G, Okamoto S, Izumi Y. Photocatalytic conversion of carbon dioxide into methanol in reverse fuel cells with tungsten oxide and layered double hydroxide photocatalysts for solar fuel generation. Catal Sci Technol 2014. [DOI: 10.1039/c3cy00959a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photofuel cells comprising WO3 and layered double hydroxide converted gaseous CO2 into methanol whereas hydrogen was formed in the aqueous phase.
Collapse
Affiliation(s)
- Motoharu Morikawa
- Department of Nanomaterial Science
- Graduate School of Advanced Integration Science
- Chiba University
- Chiba 263-8522, Japan
| | - Yuta Ogura
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522, Japan
| | - Naveed Ahmed
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522, Japan
| | - Shogo Kawamura
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522, Japan
| | - Gaku Mikami
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522, Japan
| | - Seiji Okamoto
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522, Japan
| | - Yasuo Izumi
- Department of Chemistry
- Graduate School of Science
- Chiba University
- Chiba 263-8522, Japan
| |
Collapse
|
31
|
Quentel F, Gloaguen F. Kinetic and thermodynamic aspects of the electrocatalysis of acid reduction in organic solvent using molecular diiron-dithiolate compounds. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.05.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Nguyen AD, Rail MD, Shanmugam M, Fettinger JC, Berben LA. Electrocatalytic Hydrogen Evolution from Water by a Series of Iron Carbonyl Clusters. Inorg Chem 2013; 52:12847-54. [DOI: 10.1021/ic4023882] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- An D. Nguyen
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - M. Diego Rail
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Maheswaran Shanmugam
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - James C. Fettinger
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A. Berben
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|