1
|
Pfeifer CS, Lucena FS, Logan MG, Nair D, Lewis SH. Current approaches to produce durable biomaterials: Trends in polymeric materials for restorative dentistry applications. Dent Mater 2024:S0109-5641(24)00293-8. [PMID: 39424526 DOI: 10.1016/j.dental.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Dental caries continues to be a public health issue, especially more evident in underserved populations throughout the U.S. Unfortunately, especially with an aging population, hundreds of thousands of resin composite restorations are replaced each year due to recurring decay and fracture. According to several cohort studies, the average life span of this type of restoration is 10 years or less, depending on the caries risk level of the patient and the complexity of the restorative procedure. Any new material development must depart from the simple restoration of form paradigm, in which the filling is simply inert/biocompatible. This review will discuss novel antibiofilm structures, based on a targeted approach specifically against dysbiotic bacteria. Biofilm coalescence can be prevented by using glycosyl transferase - GTF inhibitors, in a non-bactericidal approach. On the tooth substrate side, MMP-inhibiting molecules can improve the stability of the collagen in the hybrid layer. This review will also discuss the importance of testing the materials in a physiologically relevant environment, mimicking the conditions in the mouth in terms of mechanical loading, bacterial challenge, and the presence of saliva. Ultimately, the goal of materials development is to achieve durable restorations, capable of adapting to the oral environment and resisting challenges that go beyond mechanical demands. That way, we can prevent the unnecessary loss of additional tooth structure that comes with every re-treatment. CLINICAL SIGNIFICANCE: While proper restorative technique and patient education in terms of diet and oral hygiene are crucial factors in increasing the longevity of esthetic direct restorations, materials better able to resist and interact with the conditions of the oral environment are still needed. Reproducing the success of dental amalgams with esthetic materials continues to be the Holy Grail of materials development.
Collapse
Affiliation(s)
- Carmem S Pfeifer
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA.
| | - Fernanda S Lucena
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Matthew G Logan
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Devatha Nair
- University of Colorado Anschutz Medical Campus, School of Dental Medicine, Department of Craniofacial Biology, 17500 E 19th Ave, Aurora, CO 80014, USA
| | - Steven H Lewis
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| |
Collapse
|
2
|
Manning JC, Baldoneschi V, Romero-Hernández LL, Pichler KM, GarcÍa Caballero G, André S, Kutzner TJ, Ludwig AK, Zullo V, Richichi B, Windhager R, Kaltner H, Toegel S, Gabius HJ, Murphy PV, Nativi C. Targeting osteoarthritis-associated galectins and an induced effector class by a ditopic bifunctional reagent: Impact of its glycan part on binding measured in the tissue context. Bioorg Med Chem 2022; 75:117068. [PMID: 36327696 DOI: 10.1016/j.bmc.2022.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Pairing glycans with tissue lectins controls multiple effector pathways in (patho)physiology. A clinically relevant example is the prodegradative activity of galectins-1 and -3 (Gal-1 and -3) in the progression of osteoarthritis (OA) via matrix metalloproteinases (MMPs), especially MMP-13. The design of heterobifunctional inhibitors that can block galectin binding and MMPs both directly and by preventing their galectin-dependent induction selectively offers a perspective to dissect the roles of lectins and proteolytic enzymes. We describe the synthesis of such a reagent with a bivalent galectin ligand connected to an MMP inhibitor and of two tetravalent glycoclusters with a subtle change in headgroup presentation for further elucidation of influence on ligand binding. Testing was performed on clinical material with mixtures of galectins as occurring in vivo, using sections of fixed tissue. Two-colour fluorescence microscopy monitored binding to the cellular glycome after optimization of experimental parameters. In the presence of the inhibitor, galectin binding to OA specimens was significantly reduced. These results open the perspective to examine the inhibitory capacity of custom-made ditopic compounds on binding of lectins in mixtures using sections of clinical material with known impact of galectins and MMPs on disease progression.
Collapse
Affiliation(s)
- Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Veronica Baldoneschi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Laura L Romero-Hernández
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Katharina M Pichler
- Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gabriel GarcÍa Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Barbara Richichi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Stefan Toegel
- Karl Chiari Lab for Orthopedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090 Vienna, Austria
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg, Germany
| | - Paul V Murphy
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland; SSPC - Science Foundation Ireland Research Centre for Pharmaceuticals, CÚRAM - Science Foundation Ireland Research Centre for Medical Devices, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy; CeRM, University of Florence, via L. Sacconi, 6, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
3
|
Galectin network in osteoarthritis: galectin-4 programs a pathogenic signature of gene and effector expression in human chondrocytes in vitro. Histochem Cell Biol 2021; 157:139-151. [PMID: 34846578 PMCID: PMC8847242 DOI: 10.1007/s00418-021-02053-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Galectin-4 (Gal-4) is a member of the galectin family, which have been identified as galactose-binding proteins. Gal-4 possesses two tandem repeat carbohydrate recognition domains and acts as a cross-linking bridge in sulfatide-dependent glycoprotein routing. We herein document its upregulation in osteoarthritis (OA) in correlation with the extent of cartilage degradation in vivo. Primary human OA chondrocytes in vitro respond to carbohydrate-inhibitable Gal-4 binding with the upregulation of pro-degradative/-inflammatory proteins such as interleukin-1β (IL-1β) and matrix metalloproteinase-13 (MMP-13), as documented by RT-qPCR-based mRNA profiling and transcriptome data processing. Activation of p65 by phosphorylation of Ser536 within the NF-κB pathway and the effect of three p65 inhibitors on Gal-4 activity support downstream involvement of such signaling. In 3D (pellet) cultures, Gal-4 presence causes morphological and biochemical signs of degradation. Taken together, our findings strongly support the concept of galectins acting as a network in OA pathogenesis and suggest that blocking their activity in disease progression may become clinically relevant in the future.
Collapse
|
4
|
Leone G, Pepi S, Consumi M, Lamponi S, Fragai M, Martinucci M, Baldoneschi V, Francesconi O, Nativi C, Magnani A. Sodium hyaluronate-g-2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide with enhanced affinity towards MMP12 catalytic domain to be used as visco-supplement with increased degradation resistance. Carbohydr Polym 2021; 271:118452. [PMID: 34364546 DOI: 10.1016/j.carbpol.2021.118452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
The present paper describes the functionalization of sodium hyaluronate (NaHA) with a small molecule (2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide) (MMPI) having proven inhibitory activity against membrane metalloproteins involved in inflammatory processes (i.e. MMP12). The obtained derivative (HA-MMPI) demonstrated an increased resistance to the in-vitro degradation by hyaluronidase, viscoelastic properties close to those of healthy human synovial fluid, cytocompatibility towards human chondrocytes and nanomolar affinity towards MMP 12. Thus, HA-MMPI can be considered a good candidate as viscosupplement in the treatment of knee osteoarticular disease.
Collapse
Affiliation(s)
- Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Marco Fragai
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy; Cerm, University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Martinucci
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy
| | - Veronica Baldoneschi
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Cristina Nativi
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
5
|
Cuffaro D, Nuti E, D’Andrea F, Rossello A. Developments in Carbohydrate-Based Metzincin Inhibitors. Pharmaceuticals (Basel) 2020; 13:ph13110376. [PMID: 33182755 PMCID: PMC7696829 DOI: 10.3390/ph13110376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and A disintegrin and Metalloproteinase (ADAMs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. Upregulation of metzincin activity is a major feature in many serious pathologies such as cancer, inflammations, and infections. In the last decades, many classes of small molecules have been developed directed to inhibit these enzymes. The principal shortcomings that have hindered clinical development of metzincin inhibitors are low selectivity for the target enzyme, poor water solubility, and long-term toxicity. Over the last 15 years, a novel approach to improve solubility and bioavailability of metzincin inhibitors has been the synthesis of carbohydrate-based compounds. This strategy consists of linking a hydrophilic sugar moiety to an aromatic lipophilic scaffold. This review aims to describe the development of sugar-based and azasugar-based derivatives as metzincin inhibitors and their activity in several pathological models.
Collapse
|
6
|
Cerofolini L, Fragai M, Luchinat C. Mechanism and Inhibition of Matrix Metalloproteinases. Curr Med Chem 2019; 26:2609-2633. [PMID: 29589527 DOI: 10.2174/0929867325666180326163523] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinases hydrolyze proteins and glycoproteins forming the extracellular matrix, cytokines and growth factors released in the extracellular space, and membrane-bound receptors on the outer cell membrane. The pathological relevance of MMPs has prompted the structural and functional characterization of these enzymes and the development of synthetic inhibitors as possible drug candidates. Recent studies have provided a better understanding of the substrate preference of the different members of the family, and structural data on the mechanism by which these enzymes hydrolyze the substrates. Here, we report the recent advancements in the understanding of the mechanism of collagenolysis and elastolysis, and we discuss the perspectives of new therapeutic strategies for targeting MMPs.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Fischer T, Senn N, Riedl R. Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chemistry 2019; 25:7960-7980. [DOI: 10.1002/chem.201805361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Nicole Senn
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
8
|
Benito-Alifonso D, Richichi B, Baldoneschi V, Berry M, Fragai M, Salerno G, Galan MC, Nativi C. Quantum Dot-Based Probes for Labeling and Imaging of Cells that Express Matrix Metalloproteinases. ACS OMEGA 2018; 3:9822-9826. [PMID: 30198003 PMCID: PMC6120729 DOI: 10.1021/acsomega.8b00633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/21/2018] [Indexed: 05/16/2023]
Abstract
The practical synthesis of novel multivalent fluorescent quantum-dot-based probes to target cellular matrix metalloproteinases (MMPs) (MT-MMPs) is reported. We show that these probes, which are decorated with a nanomolar water-soluble MMP inhibitor, can be used to label preferentially the surface of cancer cells that are known to express MMPs while no binding was observed on cells that do not.
Collapse
Affiliation(s)
| | - Barbara Richichi
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Veronica Baldoneschi
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Monica Berry
- School
of Chemistry, University of Bristol, Cantock’s Close, BS8 1TS Bristol, U.K.
| | - Marco Fragai
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
- CeRM, University
of Florence, via L. Sacconi,
6, Sesto Fiorentino, Florence 50019, Italy
| | - Gianluca Salerno
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, BS8 1TS Bristol, U.K.
- E-mail: . Phone: +44(0)1179287654 (M.C.G.)
| | - Cristina Nativi
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
- CeRM, University
of Florence, via L. Sacconi,
6, Sesto Fiorentino, Florence 50019, Italy
- E-mail: . Phone: +39-0554573540 (C.N.)
| |
Collapse
|
9
|
Synthesis and binding monitoring of a new nanomolar PAMAM-based matrix metalloproteinases inhibitor (MMPIs). Bioorg Med Chem 2017; 25:523-527. [DOI: 10.1016/j.bmc.2016.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022]
|
10
|
Galectin-3 Induces a Pro-degradative/inflammatory Gene Signature in Human Chondrocytes, Teaming Up with Galectin-1 in Osteoarthritis Pathogenesis. Sci Rep 2016; 6:39112. [PMID: 27982117 PMCID: PMC5159921 DOI: 10.1038/srep39112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023] Open
Abstract
Inflammatory chemo- and cytokines and matrix-degrading proteases underlie the progression of osteoarthritis (OA). Aiming to define upstream regulators for these disease markers, we pursued initial evidence for an upregulation of members of the adhesion/growth-regulatory galectin family. Immunohistochemical localization of galectin-3 (Gal-3) in sections of human cartilage with increasing levels of degeneration revealed a linear correlation reaching a chondrocyte positivity of 60%. Presence in situ was cytoplasmic, the lectin was secreted from OA chondrocytes in culture and binding of Gal-3 yielded lactose-inhibitable surface staining. Exposure of cells to the lectin led to enhanced gene expression and secretion of functional disease markers. Genome-wide transcriptomic analysis broadened this result to reveal a pro-degradative/inflammatory gene signature under the control of NF-κB. Fittingly, targeting this route of activation by inhibitors impaired the unfavourable response to Gal-3 binding, as also seen by shortening the lectin’s collagen-like repeat region. Gal-3’s activation profile overlaps with that of homodimeric galectin-1 (Gal-1) and also has distinctive (supplementing) features. Tested at subsaturating concentrations in a mixture, we found cooperation between the two galectins, apparently able to team up to promote OA pathogenesis. In summary, our results suggest that a network of endogenous lectins is relevant for initiating this process cascade.
Collapse
|
11
|
Baldoneschi V, Cerofolini L, Dragoni E, Storai A, Luchinat C, Fragai M, Richichi B, Nativi C. Active-Site Targeting Paramagnetic Probe for Matrix Metalloproteinases. Chempluschem 2016; 81:1333-1338. [DOI: 10.1002/cplu.201600375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Veronica Baldoneschi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Linda Cerofolini
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| | - Elisa Dragoni
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Andrea Storai
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| |
Collapse
|
12
|
Nuti E, Cuffaro D, D'Andrea F, Rosalia L, Tepshi L, Fabbi M, Carbotti G, Ferrini S, Santamaria S, Camodeca C, Ciccone L, Orlandini E, Nencetti S, Stura EA, Dive V, Rossello A. Sugar-Based Arylsulfonamide Carboxylates as Selective and Water-Soluble Matrix Metalloproteinase-12 Inhibitors. ChemMedChem 2016; 11:1626-37. [DOI: 10.1002/cmdc.201600235] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/13/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Elisa Nuti
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Doretta Cuffaro
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Felicia D'Andrea
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Lea Rosalia
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Livia Tepshi
- CEA-Saclay; Service d'Ingenierie Moleculaire des Proteines; CEA, iBiTec-S; 91191 Gif sur Yvette France
| | - Marina Fabbi
- Biotherapy Unit; IRCCS AOU San Martino-IST; Largo R. Benzi 10 16132 Genoa Italy
| | - Grazia Carbotti
- Biotherapy Unit; IRCCS AOU San Martino-IST; Largo R. Benzi 10 16132 Genoa Italy
| | - Silvano Ferrini
- Biotherapy Unit; IRCCS AOU San Martino-IST; Largo R. Benzi 10 16132 Genoa Italy
| | - Salvatore Santamaria
- Kennedy Institute of Rheumatology; University of Oxford; Roosevelt Drive OX3 7FY Oxford UK
| | - Caterina Camodeca
- Division of Immunology, Transplants and Infectious Diseases; San Raffaele Scientific Institute; Via Olgettina 20132 Milan Italy
| | - Lidia Ciccone
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | | | - Susanna Nencetti
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Enrico A. Stura
- CEA-Saclay; Service d'Ingenierie Moleculaire des Proteines; CEA, iBiTec-S; 91191 Gif sur Yvette France
| | - Vincent Dive
- CEA-Saclay; Service d'Ingenierie Moleculaire des Proteines; CEA, iBiTec-S; 91191 Gif sur Yvette France
| | - Armando Rossello
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| |
Collapse
|
13
|
Tang Y, Wu Z, Zhang CH, Zhang XL, Jiang JH. Enzymatic activatable self-assembled peptide nanowire for targeted therapy and fluorescence imaging of tumors. Chem Commun (Camb) 2016; 52:3631-4. [DOI: 10.1039/c5cc10591a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An activatable theranostic approach based on self-assembled peptide nanostructures with surface-displayed activatable cytotoxic agents for targeted cancer therapy was developed.
Collapse
Affiliation(s)
- Ying Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Zhan Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Chong-Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiao-Li Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
14
|
Ardá A, Canales A, Cañada FJ, Jiménez-Barbero J. Carbohydrate–Protein Interactions: A 3D View by NMR. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
NMR spectroscopy is a key tool for carbohydrate research. In studies with complex oligosaccharides there are limits to the amount of relevant structural information provided by these observables due to problems of signal overlapping, strong coupling and/or the scarcity of the key NOE information. Thus, there is an increasing need for additional parameters with structural information, such as residual dipolar couplings (RDCs), paramagnetic relaxation enhancements (PREs) or pseudo contact shifts (PCSs). Carbohydrates are rather flexible molecules. Therefore, NMR observables do not always correlate with a single conformer but with an ensemble of low free-energy conformers that can be accessed by thermal fluctuations. Depending on the system under study, different NMR approaches can be followed to characterize protein–carbohydrate interactions: the standard methodologies can usually be classified as “ligand-based” or “receptor-based”. The selection of the proper methodology is usually determined by the size of the receptor, the dissociation constant of the complex (KD), the availability of the labelled protein (15N, 13C) and the access to soluble receptors at enough concentration for NMR measurements.
Collapse
Affiliation(s)
- Ana Ardá
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Angeles Canales
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - F. Javier Cañada
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, CIB-CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edif. 801A-1 48160 Derio-Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
15
|
Unione L, Galante S, Díaz D, Cañada FJ, Jiménez-Barbero J. NMR and molecular recognition. The application of ligand-based NMR methods to monitor molecular interactions. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00138a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
NMR allows the monitoring of molecular recognition processes in solution. Nowadays, a plethora of NMR methods are available to deduce the key features of the interaction from both the ligand or the receptor points of view.
Collapse
Affiliation(s)
- Luca Unione
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - Silvia Galante
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - Dolores Díaz
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - F. Javier Cañada
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology
- Centro de Investigaciones Biológicas
- CSIC
- 28040 Madrid, Spain
| |
Collapse
|
16
|
Fragai M, Luchinat C, Martelli T, Ravera E, Sagi I, Solomonov I, Udi Y. SSNMR of biosilica-entrapped enzymes permits an easy assessment of preservation of native conformation in atomic detail. Chem Commun (Camb) 2014; 50:421-3. [DOI: 10.1039/c3cc46896h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Berbís MÁ, André S, Cañada FJ, Pipkorn R, Ippel H, Mayo KH, Kübler D, Gabius HJ, Jiménez-Barbero J. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner. Biochem Biophys Res Commun 2013; 443:126-31. [PMID: 24269589 DOI: 10.1016/j.bbrc.2013.11.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence unique in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with (15)N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.
Collapse
Affiliation(s)
- M Álvaro Berbís
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich, Germany
| | - F Javier Cañada
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Rüdiger Pipkorn
- Central Peptide Synthesis Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans Ippel
- Department of Biochemistry, CARIM, University of Maastricht, Maastricht, The Netherlands; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dieter Kübler
- Biomolecular Interactions, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain.
| |
Collapse
|
18
|
The third dimension of reading the sugar code by lectins: design of glycoclusters with cyclic scaffolds as tools with the aim to define correlations between spatial presentation and activity. Molecules 2013; 18:4026-53. [PMID: 23558543 PMCID: PMC6269965 DOI: 10.3390/molecules18044026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/22/2013] [Accepted: 04/01/2013] [Indexed: 01/21/2023] Open
Abstract
Coding of biological information is not confined to nucleic acids and proteins. Endowed with the highest level of structural versatility among biomolecules, the glycan chains of cellular glycoconjugates are well-suited to generate molecular messages/signals in a minimum of space. The sequence and shape of oligosaccharides as well as spatial aspects of multivalent presentation are assumed to underlie the natural specificity/selectivity that cellular glycans have for endogenous lectins. In order to eventually unravel structure-activity profiles cyclic scaffolds have been used as platforms to produce glycoclusters and afford valuable tools. Using adhesion/growth-regulatory galectins and the pan-galectin ligand lactose as a model, emerging insights into the potential of cyclodextrins, cyclic peptides, calixarenes and glycophanes for this purpose are presented herein. The systematic testing of lectin panels with spatially defined ligand presentations can be considered as a biomimetic means to help clarify the mechanisms, which lead to the exquisite accuracy at which endogenous lectins select their physiological counterreceptors from the complexity of the cellular glycome.
Collapse
|