1
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
2
|
Haque M, Flack T, Singh R, Wall A, de Castro GV, Jiang L, White AJP, Barnard A. Aromatic oligoesters as novel helix mimetic scaffolds. Bioorg Med Chem 2023; 87:117311. [PMID: 37182518 DOI: 10.1016/j.bmc.2023.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
The design, synthesis, and conformational analysis of a novel aromatic oligoester helix mimetic scaffold is reported. A range of amino acid-type side-chain functionality can be readily incorporated into monomer building blocks over three facile synthetic steps. Analysis of representative dimers revealed a stable conformer capable of effective mimicry of a canonical α-helix and the scaffold was found to be surprisingly stable to degradation in aqueous solutions at acidic and neutral pH.
Collapse
Affiliation(s)
- Muhammed Haque
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Theo Flack
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Ravi Singh
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Archie Wall
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | | | - Lishen Jiang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
3
|
Reddy PS, Langlois d'Estaintot B, Granier T, Mackereth CD, Fischer L, Huc I. Structure Elucidation of Helical Aromatic Foldamer-Protein Complexes with Large Contact Surface Areas. Chemistry 2019; 25:11042-11047. [PMID: 31257622 DOI: 10.1002/chem.201902942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 01/12/2023]
Abstract
The development of large synthetic ligands could be useful to target the sizeable surface areas involved in protein-protein interactions. Herein, we present long helical aromatic oligoamide foldamers bearing proteinogenic side chains that cover up to 450 Å2 of the human carbonic anhydrase II (HCA) surface. The foldamers are composed of aminoquinolinecarboxylic acids bearing proteinogenic side chains and of more flexible aminomethyl-pyridinecarboxylic acids that enhance helix handedness dynamics. Crystal structures of HCA-foldamer complexes were obtained with a 9- and a 14-mer both showing extensive protein-foldamer hydrophobic contacts. In addition, foldamer-foldamer interactions seem to be prevalent in the crystal packing, leading to the peculiar formation of an HCA superhelix wound around a rod of stacked foldamers. Solution studies confirm the positioning of the foldamer at the protein surface as well as a dimerization of the complexes.
Collapse
Affiliation(s)
- Post Sai Reddy
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Béatrice Langlois d'Estaintot
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Thierry Granier
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Cameron D Mackereth
- ARNA (U1212), Univ. Bordeaux-INSERM-CNRS, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Lucile Fischer
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Ivan Huc
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,Department Pharmazie and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
4
|
Flack T, Romain C, White AJP, Haycock PR, Barnard A. Design, Synthesis, and Conformational Analysis of Oligobenzanilides as Multifacial α-Helix Mimetics. Org Lett 2019; 21:4433-4438. [PMID: 31188616 PMCID: PMC6593395 DOI: 10.1021/acs.orglett.9b01115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 01/19/2023]
Abstract
The design, synthesis, and conformational analysis of an oligobenzanilide helix mimetic scaffold capable of simultaneous mimicry of two faces of an α-helix is reported. The synthetic methodology provides access to diverse monomer building blocks amenable to solid-phase assembly in just four synthetic steps. The conformational flexibility of model dimers was investigated using a combination of solid and solution state methodologies supplemented with DFT calculations. The lack of noncovalent constraints allows for significant conformational plasticity in the scaffold, thus permitting it to successfully mimic residues i, i+2, i+4, i+6, i+7, and i+9 of a canonical α-helix.
Collapse
Affiliation(s)
- Theo Flack
- Department of Chemistry,
Molecular Sciences Research Hub, Imperial
College London, London W12 0BZ, U.K.
| | - Charles Romain
- Department of Chemistry,
Molecular Sciences Research Hub, Imperial
College London, London W12 0BZ, U.K.
| | - Andrew J. P. White
- Department of Chemistry,
Molecular Sciences Research Hub, Imperial
College London, London W12 0BZ, U.K.
| | - Peter R. Haycock
- Department of Chemistry,
Molecular Sciences Research Hub, Imperial
College London, London W12 0BZ, U.K.
| | - Anna Barnard
- Department of Chemistry,
Molecular Sciences Research Hub, Imperial
College London, London W12 0BZ, U.K.
| |
Collapse
|
5
|
Arrata I, Grison CM, Coubrough HM, Prabhakaran P, Little MA, Tomlinson DC, Webb ME, Wilson AJ. Control of conformation in α-helix mimicking aromatic oligoamide foldamers through interactions between adjacent side-chains. Org Biomol Chem 2019; 17:3861-3867. [PMID: 30938392 DOI: 10.1039/c9ob00123a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design, synthesis and structural characterization of non-natural oligomers that adopt well-defined conformations, so called foldamers, is a key objective in developing biomimetic 3D functional architectures. For the aromatic oligoamide foldamer family, use of interactions between side-chains to control conformation is underexplored. The current manuscript addresses this objective through the design, synthesis and conformational analyses of model dimers derived from 3-O-alkylated para-aminobenzoic acid monomers. The O-alkyl groups on these foldamers are capable of adopting syn- or anti-conformers through rotation around the Ar-CO/NH axes. In the syn-conformation this allows the foldamer to act as a topographical mimic of the α-helix whereby the O-alkyl groups mimic the spatial orientation of the i and i + 4 side-chains from the α-helix. Using molecular modelling and 2D NMR analyses, this work illustrates that covalent links and hydrogen-bonding interactions between side-chains can bias the conformation in favour of the α-helix mimicking syn-conformer, offering insight that may be more widely applied to control secondary structure in foldamers.
Collapse
Affiliation(s)
- Irene Arrata
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hegedus Z, Grison CM, Miles JA, Rodriguez-Marin S, Warriner SL, Webb ME, Wilson AJ. A catalytic protein-proteomimetic complex: using aromatic oligoamide foldamers as activators of RNase S. Chem Sci 2019; 10:3956-3962. [PMID: 31015935 PMCID: PMC6461108 DOI: 10.1039/c9sc00374f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
Foldamers are abiotic molecules that mimic the ability of bio-macromolecules to adopt well-defined and organised secondary, tertiary or quaternary structure. Such templates have enabled the generation of defined architectures which present structurally defined surfaces that can achieve molecular recognition of diverse and complex targets. Far less explored is whether this mimicry of nature can extend to more advanced functions of biological macromolecules such as the generation and activation of catalytic function. In this work, we adopt a novel replacement strategy whereby a segment of protein structure (the S-peptide from RNase S) is replaced by a foldamer that mimics an α-helix. The resultant prosthetic replacement forms a non-covalent complex with the S-protein leading to restoration of catalytic function, despite the absence of a key catalytic residue. Thus this functional protein-proteomimetic complex provides proof that significant segments of protein can be replaced with non-natural building blocks that may, in turn, confer advantageous properties.
Collapse
Affiliation(s)
- Zsofia Hegedus
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Claire M Grison
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Jennifer A Miles
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Silvia Rodriguez-Marin
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Stuart L Warriner
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Michael E Webb
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| |
Collapse
|
7
|
Vallade M, Jewginski M, Fischer L, Buratto J, Bathany K, Schmitter JM, Stupfel M, Godde F, Mackereth CD, Huc I. Assessing Interactions between Helical Aromatic Oligoamide Foldamers and Protein Surfaces: A Tethering Approach. Bioconjug Chem 2019; 30:54-62. [PMID: 30395443 DOI: 10.1021/acs.bioconjchem.8b00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Helically folded aromatic foldamers may constitute suitable candidates for the ab initio design of ligands for protein surfaces. As preliminary steps toward the exploration of this hypothesis, a tethering approach was developed to detect interactions between a protein and a foldamer by confining the former at the surface of the latter. Cysteine mutants of two therapeutically relevant enzymes, CypA and IL4, were produced. Two series of ten foldamers were synthesized bearing different proteinogenic side chains and either a long or a short linker functionalized with an activated disulfide. Disulfide exchange between the mutated cysteines and the activated disulfides yielded 20 foldamer-IL4 and 20 foldamer-CypA adducts. Effectiveness of the reaction was demonstrated by LC-MS, by MS analysis after proteolytic digestion, and by 2D NMR. Circular dichroism then revealed diastereoselective interactions between the proteins and the foldamers confined at their surface which resulted in a preferred handedness of the foldamer helix. Helix sense bias occurred sometimes with both the short and the long linkers and sometimes with only one of them. In a few cases, helix handedness preference is found to be close to quantitative. These cases constitute valid candidates for structural elucidation of the interactions involved.
Collapse
Affiliation(s)
- Maëlle Vallade
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Michal Jewginski
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department of Bioorganic Chemistry, Faculty of Chemistry , Wrocław University of Technology , 50-370 Wrocław , Poland
| | - Lucile Fischer
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jérémie Buratto
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Katell Bathany
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jean-Marie Schmitter
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Marine Stupfel
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Frédéric Godde
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Cameron D Mackereth
- Université Bordeaux, INSERM, CNRS, ARNA (U 1212 and UMR 5320), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Ivan Huc
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department Pharmazie , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 München , Germany
| |
Collapse
|
8
|
Van Mileghem S, Egle B, Gilles P, Veryser C, Van Meervelt L, De Borggraeve WM. Carbonylation as a novel method for the assembly of pyrazine based oligoamide alpha-helix mimetics. Org Biomol Chem 2018; 15:373-378. [PMID: 27910980 DOI: 10.1039/c6ob02358d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The design and synthesis of oligoamide α-helix peptidomimetics is reported. The oligoamide type systems are prepared in a modular fashion by coupling the monomers using palladium-catalyzed carbonylation chemistry. This enabled us to use substrates with a low nucleophilicity, leading to previously unreported pyrazine based oligoamide α-helix mimetics. The proof of principle is given by synthesizing a small set of compounds. Various end-capping groups were introduced and also a mixed multimer was successfully prepared.
Collapse
Affiliation(s)
- Seger Van Mileghem
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, box 2404, B-3001 Leuven, Belgium
| | - Brecht Egle
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, box 2404, B-3001 Leuven, Belgium
| | - Philippe Gilles
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, box 2404, B-3001 Leuven, Belgium
| | - Cedrick Veryser
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, box 2404, B-3001 Leuven, Belgium
| | - Luc Van Meervelt
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, box 2404, B-3001 Leuven, Belgium.
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, box 2404, B-3001 Leuven, Belgium
| |
Collapse
|
9
|
Burslem GM, Kyle HF, Nelson A, Edwards TA, Wilson AJ. Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions. Chem Sci 2017; 8:4188-4202. [PMID: 28878873 PMCID: PMC5576430 DOI: 10.1039/c7sc00388a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022] Open
Abstract
The state of the art in identifying protein–protein interaction inhibitors of hypoxia inducible factor – a promising target for anticancer drug design – is described.
The modulation of protein–protein interactions (PPIs) represents a major challenge in modern chemical biology. Current approaches (e.g. high-throughput screening, computer aided ligand design) are recognised as having limitations in terms of identification of hit matter. Considerable success has been achieved in terms of developing new approaches to PPI modulator discovery using the p53/hDM2 and Bcl-2 family of PPIs. However these important targets in oncology might be considered as “low-hanging-fruit”. Hypoxia inducible factor (HIF) is an emerging, but not yet fully validated target for cancer chemotherapy. Its role is to regulate the hypoxic response and it does so through a plethora of protein–protein interactions of varying topology, topography and complexity: its modulation represents an attractive approach to prevent development of new vasculature by hypoxic tumours.
Collapse
Affiliation(s)
- George M Burslem
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Hannah F Kyle
- Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Adam Nelson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK.,School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| |
Collapse
|
10
|
Abstract
Aromatic amide foldamers constitute a growing class of oligomers that adopt remarkably stable folded conformations. The folded structures possess largely predictable shapes and open the way toward the design of synthetic mimics of proteins. Important examples of aromatic amide foldamers include oligomers of 7- or 8-amino-2-quinoline carboxylic acid that have been shown to exist predominantly as well-defined helices, including when they are combined with α-amino acids to which they may impose their folding behavior. To rapidly iterate their synthesis, solid phase synthesis (SPS) protocols have been developed and optimized for overcoming synthetic difficulties inherent to these backbones such as low nucleophilicity of amine groups on electron poor aromatic rings and a strong propensity of even short sequences to fold on the solid phase during synthesis. For example, acid chloride activation and the use of microwaves are required to bring coupling at aromatic amines to completion. Here, we report detailed SPS protocols for the rapid production of: (1) oligomers of 8-amino-2-quinolinecarboxylic acid; (2) oligomers containing 7-amino-8-fluoro-2-quinolinecarboxylic acid; and (3) heteromeric oligomers of 8-amino-2-quinolinecarboxylic acid and α-amino acids. SPS brings the advantage to quickly produce sequences having varied main chain or side chain components without having to purify multiple intermediates as in solution phase synthesis. With these protocols, an octamer could easily be synthesized and purified within one to two weeks from Fmoc protected amino acid monomer precursors.
Collapse
|
11
|
Azzarito V, Rowell P, Barnard A, Edwards TA, Macdonald A, Warriner SL, Wilson AJ. Probing Protein Surfaces: QSAR Analysis with Helix Mimetics. Chembiochem 2016; 17:768-73. [PMID: 26690307 PMCID: PMC6591138 DOI: 10.1002/cbic.201500504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 12/17/2022]
Abstract
α-Helix-mediated protein-protein interactions (PPIs) are important targets for small-molecule inhibition; however, generic approaches to inhibitor design are in their infancy and would benefit from QSAR analyses to rationalise the noncovalent basis of molecular recognition by designed ligands. Using a helix mimetic based on an oligoamide scaffold, we have exploited the power of a modular synthesis to access compounds that can readily be used to understand the noncovalent determinants of hDM2 recognition by this series of cell-active p53/hDM2 inhibitors.
Collapse
Affiliation(s)
- Valeria Azzarito
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Philip Rowell
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Anna Barnard
- Department of Chemistry, Imperial College London, London, London, SW7 2AZ, UK
- Institue of Chemical Biology, Imperial College London, London, SW7 2AZ, UK
| | - Thomas A Edwards
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew Macdonald
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Stuart L Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
12
|
Burslem GM, Kyle HF, Prabhakaran P, Breeze AL, Edwards TA, Warriner SL, Nelson A, Wilson AJ. Synthesis of highly functionalized oligobenzamide proteomimetic foldamers by late stage introduction of sensitive groups. Org Biomol Chem 2016; 14:3782-6. [PMID: 27005701 PMCID: PMC4839272 DOI: 10.1039/c6ob00078a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/26/2022]
Abstract
α-Helix proteomimetics represent an emerging class of ligands that can be used to inhibit an array of helix mediated protein-protein interactions. Within this class of inhibitor, aromatic oligobenzamide foldamers have been widely and successfully used. This manuscript describes alternative syntheses of these compounds that can be used to access mimetics that are challenging to synthesize using previously described methodologies, permitting access to compounds functionalized with multiple sensitive side chains and accelerated library assembly through late stage derivatisation.
Collapse
Affiliation(s)
- George M Burslem
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| | - Hannah F Kyle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Panchami Prabhakaran
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK and Discovery Sciences, AstraZeneca R&D, Alderley Park, Cheshire, SK10 4TG, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Stuart L Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| | - Adam Nelson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK
| |
Collapse
|
13
|
Burslem GM, Kyle HF, Breeze AL, Edwards TA, Nelson A, Warriner SL, Wilson AJ. Towards "bionic" proteins: replacement of continuous sequences from HIF-1α with proteomimetics to create functional p300 binding HIF-1α mimics. Chem Commun (Camb) 2016; 52:5421-4. [PMID: 27009828 PMCID: PMC4843846 DOI: 10.1039/c6cc01812b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
Using the HIF-1α transcription factor as a model, this manuscript illustrates how an extended sequence of α-amino acids in a polypeptide can be replaced with a non-natural topographical mimic of an α-helix comprised from an aromatic oligoamide. The resultant hybrid is capable of reproducing the molecular recognition profile of the p300 binding sequence of HIF-1α from which it is derived.
Collapse
Affiliation(s)
- George M Burslem
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK.
| | - Hannah F Kyle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK and Discovery Sciences, AstraZeneca R&D, Alderley Park, Cheshire, SK10 4TG, UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK. and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Adam Nelson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK.
| | - Stuart L Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK.
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS29JT, UK.
| |
Collapse
|
14
|
Jewginski M, Fischer L, Colombo C, Huc I, Mackereth CD. Solution Observation of Dimerization and Helix Handedness Induction in a Human Carbonic Anhydrase-Helical Aromatic Amide Foldamer Complex. Chembiochem 2016; 17:727-36. [PMID: 26807531 DOI: 10.1002/cbic.201500619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/18/2022]
Abstract
The design of synthetic foldamers to selectively bind proteins is currently hindered by the limited availability of molecular data to establish key features of recognition. Previous work has described dimerization of human carbonic anhydrase II (HCA) through self-association of a quinoline oligoamide helical foldamer attached to a tightly binding HCA ligand. A crystal structure of the complex provided atomic details to explain the observed induction of single foldamer helix handedness and revealed an unexpected foldamer-mediated dimerization. Here, we investigated the detailed behavior of the HCA-foldamer complex in solution by using NMR spectroscopy. We found that the ability to dimerize is buffer-dependent and uses partially distinct intermolecular contacts. The use of a foldamer variant incapable of self-association confirmed the ability to induce helix handedness separately from dimer formation and provided insight into the dynamics of enantiomeric selection.
Collapse
Affiliation(s)
- Michal Jewginski
- University of Bordeaux, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,CNRS, CBMN (UMR 5248).,Bordeaux Institut National Polytechnique, CBMN (UMR 5248).,Wrocław University of Technology, Faculty of Chemistry, Wrocław, Poland
| | - Lucile Fischer
- University of Bordeaux, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,CNRS, CBMN (UMR 5248).,Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
| | - Cinzia Colombo
- University of Bordeaux, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,CNRS, CBMN (UMR 5248).,Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
| | - Ivan Huc
- University of Bordeaux, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France. .,CNRS, CBMN (UMR 5248). .,Bordeaux Institut National Polytechnique, CBMN (UMR 5248).
| | - Cameron D Mackereth
- University of Bordeaux, ARNA (U1212), Institut Européen de Chimie et Biologie. .,INSERM, ARNA (U1212). .,CNRS, ARNA (UMR 5320), 2 rue Escarpit, 33600, Pessac, France.
| |
Collapse
|
15
|
Bakail M, Ochsenbein F. Targeting protein–protein interactions, a wide open field for drug design. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Tsiamantas C, Dawson SJ, Huc I. Solid phase synthesis of oligoethylene glycol-functionalized quinolinecarboxamide foldamers with enhanced solubility properties. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Wilson AJ. Helix mimetics: Recent developments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:33-40. [DOI: 10.1016/j.pbiomolbio.2015.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
|
18
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew Chem Int Ed Engl 2015; 54:8896-927. [PMID: 26119925 PMCID: PMC4557054 DOI: 10.1002/anie.201412070] [Citation(s) in RCA: 506] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A-D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.
Collapse
Affiliation(s)
- Marta Pelay-Gimeno
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Oliver Koch
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| |
Collapse
|
19
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Strukturbasierte Entwicklung von Protein-Protein-Interaktionsinhibitoren: Stabilisierung und Nachahmung von Peptidliganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412070] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Laraia L, McKenzie G, Spring DR, Venkitaraman AR, Huggins DJ. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions. CHEMISTRY & BIOLOGY 2015; 22:689-703. [PMID: 26091166 PMCID: PMC4518475 DOI: 10.1016/j.chembiol.2015.04.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/19/2023]
Abstract
Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.
Collapse
Affiliation(s)
- Luca Laraia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Grahame McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - David J Huggins
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
21
|
Jung KY, Wang H, Teriete P, Yap JL, Chen L, Lanning ME, Hu A, Lambert LJ, Holien T, Sundan A, Cosford N, Prochownik EV, Fletcher S. Perturbation of the c-Myc-Max protein-protein interaction via synthetic α-helix mimetics. J Med Chem 2015; 58:3002-24. [PMID: 25734936 PMCID: PMC4955407 DOI: 10.1021/jm501440q] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rational design of inhibitors of the bHLH-ZIP oncoprotein c-Myc is hampered by a lack of structure in its monomeric state. We describe herein the design of novel, low-molecular-weight, synthetic α-helix mimetics that recognize helical c-Myc in its transcriptionally active coiled-coil structure in association with its obligate bHLH-ZIP partner Max. These compounds perturb the heterodimer's binding to its canonical E-box DNA sequence without causing protein-protein dissociation, heralding a new mechanistic class of "direct" c-Myc inhibitors. In addition to electrophoretic mobility shift assays, this model was corroborated by further biophysical methods, including NMR spectroscopy and surface plasmon resonance. Several compounds demonstrated a 2-fold or greater selectivity for c-Myc-Max heterodimers over Max-Max homodimers with IC50 values as low as 5.6 μM. Finally, these compounds inhibited the proliferation of c-Myc-expressing cell lines in a concentration-dependent manner that correlated with the loss of expression of a c-Myc-dependent reporter plasmid despite the fact that c-Myc-Max heterodimers remained intact.
Collapse
Affiliation(s)
- Kwan-Young Jung
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Huabo Wang
- Section of Hematology/Oncology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC Pittsburgh, PA 15224
| | - Peter Teriete
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeremy L. Yap
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Lijia Chen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Maryanna E. Lanning
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Angela Hu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Lester J. Lambert
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Toril Holien
- KG Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Sundan
- KG Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicholas Cosford
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Edward V. Prochownik
- Section of Hematology/Oncology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC Pittsburgh, PA 15224
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
- University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201
| |
Collapse
|
22
|
Moon H, Lim HS. Synthesis and screening of small-molecule α-helix mimetic libraries targeting protein–protein interactions. Curr Opin Chem Biol 2015; 24:38-47. [DOI: 10.1016/j.cbpa.2014.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/11/2022]
|
23
|
Azzarito V, Miles JA, Fisher J, Edwards TA, Warriner SL, Wilson AJ. Stereocontrolled protein surface recognition using chiral oligoamide proteomimetic foldamers. Chem Sci 2015; 6:2434-2443. [PMID: 29308155 PMCID: PMC5646261 DOI: 10.1039/c4sc03559c] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/29/2015] [Indexed: 12/26/2022] Open
Abstract
An oligoamide helix mimicking foldamer with well-defined conformation is shown to recognize its target protein hDM2 in a manner that depends upon the composition, spatial projection and stereochemistry of functional groups appended to the scaffold.
The development of foldamers capable of selective molecular recognition of solvent exposed protein surfaces represents an outstanding challenge in supramolecular chemical biology. Here we introduce an oligoamide foldamer with well-defined conformation that bears all the hallmarks of an information rich oligomer. Specifically, the foldamer recognizes its target protein hDM2 leading to inhibition of its protein–protein interaction with p53 in a manner that depends upon the composition, spatial projection and stereochemistry of functional groups appended to the scaffold. Most significantly, selective inhibition of p53/hDM2 can be achieved against four other targets and the selectivity for p53/hDM2 inhibition versus Mcl-1/NOXA-B inhibition is critically dependent upon the stereochemistry of the helix mimetic.
Collapse
Affiliation(s)
- Valeria Azzarito
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK . .,Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Jennifer A Miles
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK . .,Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Julie Fisher
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Thomas A Edwards
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK.,School of Molecular and Cellular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Stuart L Warriner
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK . .,Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK . .,Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| |
Collapse
|
24
|
Rodriguez-Marin S, Murphy NS, Shepherd HJ, Wilson AJ. Design, synthesis and conformational analyses of bifacial benzamide based foldamers. RSC Adv 2015. [DOI: 10.1039/c5ra20451h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two bifacial oligobenzamide based scaffolds that mimic the side chains at i, i + 3 and i + 4 positions of an alpha helix are presented.
Collapse
Affiliation(s)
- Silvia Rodriguez-Marin
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| | - Natasha S. Murphy
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| | | | - Andrew J. Wilson
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| |
Collapse
|
25
|
Barnard A, Miles JA, Burslem GM, Barker AM, Wilson AJ. Multivalent helix mimetics for PPI-inhibition. Org Biomol Chem 2015; 13:258-64. [DOI: 10.1039/c4ob02066a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A multivalent helix mimetic is developed that inhibits the p53/hDM2 and induces dimerization/aggregation of its target – hDM2.
Collapse
Affiliation(s)
- Anna Barnard
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural and Molecular Biology
| | - Jennifer A. Miles
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural and Molecular Biology
| | - George M. Burslem
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural and Molecular Biology
| | - Amy M. Barker
- Astbury Centre for Structural and Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Molecular and Cellular Biology
| | - Andrew J. Wilson
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural and Molecular Biology
| |
Collapse
|
26
|
Moon H, Lee WS, Oh M, Lee H, Lee JH, Im W, Lim HS. Design, solid-phase synthesis, and evaluation of a phenyl-piperazine-triazine scaffold as α-helix mimetics. ACS COMBINATORIAL SCIENCE 2014; 16:695-701. [PMID: 25336412 DOI: 10.1021/co500114f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α-Helices play a critical role in mediating many protein-protein interactions (PPIs) as recognition motifs. Therefore, there is a considerable interest in developing small molecules that can mimic helical peptide segments to modulate α-helix-mediated PPIs. Due to the relatively low aqueous solubility and synthetic difficulty of most current α-helix mimetic small molecules, one important goal in this area is to develop small molecules with favorable physicochemical properties and ease of synthesis. Here we designed phenyl-piperazine-triazine-based α-helix mimetics that possess improved water solubility and excellent synthetic accessibility. We developed a facile solid-phase synthetic route that allows for rapid creation of a large, diverse combinatorial library of α-helix mimetics. Further, we identified a selective inhibitor of the Mcl-1/BH3 interaction by screening a focused library of phenyl-piperazine-triazines, demonstrating that the scaffold is able to serve as functional mimetics of α-helical peptides. We believe that our phenyl-piperazine-triazine-based α-helix mimetics, along with the facile and divergent solid-phase synthetic method, have great potential as powerful tools for discovering potent inhibitors of given α-helix-mediated PPIs.
Collapse
Affiliation(s)
- Heejo Moon
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Woo Sirl Lee
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Misook Oh
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
- Department
of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46032, United States
| | - Huisun Lee
- Department
of Molecular Biosciences and Centre for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Ji Hoon Lee
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Wonpil Im
- Department
of Molecular Biosciences and Centre for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Hyun-Suk Lim
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
- Department
of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46032, United States
| |
Collapse
|
27
|
Rasmussen JE, Boccia MM, Nielsen J, Taillefumier C, Faure S, Hjelmgaard T. Rapid and convenient semi-automated microwave-assisted solid-phase synthesis of arylopeptoids. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.08.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Barnard A, Long K, Yeo DJ, Miles JA, Azzarito V, Burslem GM, Prabhakaran P, A. Edwards T, Wilson AJ. Orthogonal functionalisation of α-helix mimetics. Org Biomol Chem 2014; 12:6794-9. [PMID: 25065821 PMCID: PMC4157654 DOI: 10.1039/c4ob00915k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/07/2014] [Indexed: 12/26/2022]
Abstract
α-Helix mediated protein-protein interactions are of major therapeutic importance. As such, the design of inhibitors of this class of interaction is of significant interest. We present methodology to modify N-alkylated aromatic oligoamide α-helix mimetics using 'click' chemistry. The effect is shown to modulate the binding properties of a series of selective p53/hDM2 inhibitors.
Collapse
Affiliation(s)
- Anna Barnard
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Kérya Long
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - David J. Yeo
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Jennifer A. Miles
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Valeria Azzarito
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - George M. Burslem
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Panchami Prabhakaran
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Thomas A. Edwards
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
- School of Molecular and Cellular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Andrew J. Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| |
Collapse
|
29
|
Shang J, Gan Q, Dawson SJ, Rosu F, Jiang H, Ferrand Y, Huc I. Self-Association of Aromatic Oligoamide Foldamers into Double Helices in Water. Org Lett 2014; 16:4992-5. [DOI: 10.1021/ol502259y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jie Shang
- Université Bordeaux, CBMN, UMR 5248, Institut Européen de
Chimie Biologie, 2 rue Robert Escarpit 33607 Pessac, France
- CNRS, CBMN, UMR 5248, 33607 Pessac, France
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China
| | - Quan Gan
- Université Bordeaux, CBMN, UMR 5248, Institut Européen de
Chimie Biologie, 2 rue Robert Escarpit 33607 Pessac, France
- CNRS, CBMN, UMR 5248, 33607 Pessac, France
| | - Simon J. Dawson
- Université Bordeaux, CBMN, UMR 5248, Institut Européen de
Chimie Biologie, 2 rue Robert Escarpit 33607 Pessac, France
- CNRS, CBMN, UMR 5248, 33607 Pessac, France
| | - Frédéric Rosu
- Université Bordeaux, UMS 3033/US 001, IECB, 2 rue Robert Escarpit 33607 Pessac, France
- CNRS, IECB, UMS 3033, 33607 Pessac, France
| | - Hua Jiang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China
| | - Yann Ferrand
- Université Bordeaux, CBMN, UMR 5248, Institut Européen de
Chimie Biologie, 2 rue Robert Escarpit 33607 Pessac, France
- CNRS, CBMN, UMR 5248, 33607 Pessac, France
| | - Ivan Huc
- Université Bordeaux, CBMN, UMR 5248, Institut Européen de
Chimie Biologie, 2 rue Robert Escarpit 33607 Pessac, France
- CNRS, CBMN, UMR 5248, 33607 Pessac, France
| |
Collapse
|
30
|
Hjelmgaard T, Plesner M, Dissing MM, Andersen JM, Frydenvang K, Nielsen J. Advances towards Aromatic Oligoamide Foldamers: Synthesis and X-ray Structures of Dimeric Arylopeptoids with Conformation-Directing Side Chains. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Burslem GM, Kyle HF, Breeze AL, Edwards TA, Nelson A, Warriner SL, Wilson AJ. Small-molecule proteomimetic inhibitors of the HIF-1α-p300 protein-protein interaction. Chembiochem 2014; 15:1083-7. [PMID: 24782431 PMCID: PMC4159589 DOI: 10.1002/cbic.201400009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Indexed: 11/29/2022]
Abstract
The therapeutically relevant hypoxia inducible factor HIF-1α–p300 protein–protein interaction can be orthosterically inhibited with α-helix mimetics based on an oligoamide scaffold that recapitulates essential features of the C-terminal helix of the HIF-1α C-TAD (C-terminal transactivation domain). Preliminary SAR studies demonstrated the important role of side-chain size and hydrophobicity/hydrophilicity in determining potency. These small molecules represent the first biophysically characterised HIF-1α–p300 PPI inhibitors and the first examples of small-molecule aromatic oligoamide helix mimetics to be shown to have a selective binding profile. Although the compounds were less potent than HIF-1α, the result is still remarkable in that the mimetic reproduces only three residues from the 42-residue HIF-1α C-TAD from which it is derived.
Collapse
Affiliation(s)
- George M Burslem
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (UK); Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT (UK)
| | | | | | | | | | | | | |
Collapse
|
32
|
Presolski SI, van der Weegen R, Wiesfeld JJ, Meijer EW. Efficient Routes to A3B-Type meso-(4-Carboxyphenyl) Porphyrin Derivatives. Org Lett 2014; 16:1864-7. [DOI: 10.1021/ol500182z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stanislav I. Presolski
- Institute
for Complex Molecular
Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Rob van der Weegen
- Institute
for Complex Molecular
Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Jan J. Wiesfeld
- Institute
for Complex Molecular
Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular
Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
33
|
α-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett 2013; 24:717-24. [PMID: 24433858 DOI: 10.1016/j.bmcl.2013.12.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/23/2013] [Accepted: 12/01/2013] [Indexed: 01/28/2023]
Abstract
α-Helices are common secondary structural elements forming key parts of the large, generally featureless interfacial regions of many therapeutically-relevant protein-protein interactions (PPIs). The rational design of helix mimetics is an appealing small-molecule strategy for the mediation of aberrant PPIs, however the first generation of scaffolds presented a relatively small number of residues on a single recognition surface. Increasingly, helices involved in PPIs are found to have more complex binding modes, utilizing two or three recognition surfaces, or binding with extended points of contact. To address these unmet needs the design and synthesis of new generations of multi-sided, extended, and supersecondary structures are underway.
Collapse
|
34
|
Pharmaceutical implications of helix length control in helix-mediated protein–protein interactions. Future Med Chem 2013; 5:2175-83. [DOI: 10.4155/fmc.13.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The most abundant protein secondary structure in nature – the α-helix – is frequently found at protein interfaces, making it an important lead structure for the design of small-molecule modulators of protein–protein interactions (PPIs). Nature’s ability to precisely control the length of α-helices, especially in the context of helix-mediated PPIs, is key to ensuring the optimal interaction of protein partners. By extension, precise control over the length of α-helix mimetics is necessary to ensure optimal disruption of α-helix-mediated PPIs. This article will highlight the emerging importance of helix length control in the context of helix-mediated PPIs through a discussion of the contemporary chemical approaches to identifying novel helix mimetic inhibitors, including all-hydrocarbon stapling, hydrogen bond surrogates and optimized peptides emerging from in vitro screening methods. A current update on the therapeutic status of the different approaches is provided, as well as indications as to their long-term potential.
Collapse
|