1
|
Gambrill Y, Commins P, Schramm S, Lui NM, AlNeyadi SS, Naumov P. Natural Product Isolation of the Extract of Cleome rupicola Fruits Exhibiting Antioxidant Activity. Chem Biodivers 2024; 21:e202301382. [PMID: 38366916 DOI: 10.1002/cbdv.202301382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/19/2024]
Abstract
Cataracts are the leading cause of blindness worldwide, however, there is currently no drug-based treatment. Plants that exhibit antioxidant properties have shown promising anticataract effects, likely because they supplement the activity of glutathione, the major antioxidant in lens cells. An extract of Cleome rupicola, a desert plant found in the United Arab Emirates, has traditionally been used to treat cataracts. Phytochemical screening of the aqueous extract established the presence of flavonoids, tannins, steroid derivatives, and reducing sugars. Fractioning of extracts from the fruits using high-performance liquid chromatography (HPLC) yielded the isolation of the anthelmintic compound cleomin, and its structure was confirmed using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Yumi Gambrill
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates E-ail
| | - Patrick Commins
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates E-ail
| | - Stefan Schramm
- Chair of Applied Organic Chemistry, University of Applied Sciences Dresden, Friedrich-List-Platz 1, 01069, Dresden, Germany
| | - Nathan M Lui
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates E-ail
| | - Shaikha S AlNeyadi
- Department of Chemisty, College of Science, United Arab Emirates University, PO Box, 15551, Al-Ain, United Arab Emirates
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates E-ail
| |
Collapse
|
2
|
Wang Y, Zhang X, Liu H, Zhou X. Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chem Soc Rev 2021; 50:13481-13497. [PMID: 34792050 DOI: 10.1039/d1cs00920f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RNA modification, like other epigenetic modifications such as DNA modification and histone modification, is an emerging player in the field of the posttranscriptional regulation of gene expression. More than 160 kinds of RNA modifications have been identified, and they are widely distributed in different types of RNA. Recently, researchers have increasingly used advanced technologies to study modified nucleic acids in order to elucidate their biological functions and expand the understanding of the central laws of epigenetics. In this tutorial review, we comprehensively outline current advanced techniques for decoding RNA modifications, highlighting some of the bottlenecks in existing approaches as well as new opportunities that may lead to innovations. With this review, we expect to provide chemistry and biology students and researchers with ideas for solving some challenging problems, such as how to simultaneously detect multiple types of modifications within the same system. Moreover, some low-coverage modifications that may act as 'candidates' in important transcriptional processes need to be further explored. These novel approaches have the potential to lay a foundation for understanding the nuanced complexities of the biological functions of RNA modification.
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Hui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Dannfald A, Favory JJ, Deragon JM. Variations in transfer and ribosomal RNA epitranscriptomic status can adapt eukaryote translation to changing physiological and environmental conditions. RNA Biol 2021; 18:4-18. [PMID: 34159889 PMCID: PMC8677040 DOI: 10.1080/15476286.2021.1931756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023] Open
Abstract
The timely reprogramming of gene expression in response to internal and external cues is essential to eukaryote development and acclimation to changing environments. Chemically modifying molecular receptors and transducers of these signals is one way to efficiently induce proper physiological responses. Post-translation modifications, regulating protein biological activities, are central to many well-known signal-responding pathways. Recently, messenger RNA (mRNA) chemical (i.e. epitranscriptomic) modifications were also shown to play a key role in these processes. In contrast, transfer RNA (tRNA) and ribosomal RNA (rRNA) chemical modifications, although critical for optimal function of the translation apparatus, and much more diverse and quantitatively important compared to mRNA modifications, were until recently considered as mainly static chemical decorations. We present here recent observations that are challenging this view and supporting the hypothesis that tRNA and rRNA modifications dynamically respond to various cell and environmental conditions and contribute to adapt translation to these conditions.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
5
|
Urbonavičius J, Tauraitė D. Biochemical Pathways Leading to the Formation of Wyosine Derivatives in tRNA of Archaea. Biomolecules 2020; 10:E1627. [PMID: 33276555 PMCID: PMC7761594 DOI: 10.3390/biom10121627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
Tricyclic wyosine derivatives are present at position 37 in tRNAPhe of both eukaryotes and archaea. In eukaryotes, five different enzymes are needed to form a final product, wybutosine (yW). In archaea, 4-demethylwyosine (imG-14) is an intermediate for the formation of three different wyosine derivatives, yW-72, imG, and mimG. In this review, current knowledge regarding the archaeal enzymes involved in this process and their reaction mechanisms are summarized. The experiments aimed to elucidate missing steps in biosynthesis pathways leading to the formation of wyosine derivatives are suggested. In addition, the chemical synthesis pathways of archaeal wyosine nucleosides are discussed, and the scheme for the formation of yW-86 and yW-72 is proposed. Recent data demonstrating that wyosine derivatives are present in the other tRNA species than those specific for phenylalanine are discussed.
Collapse
Affiliation(s)
- Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | | |
Collapse
|
6
|
Tang J, Jia P, Xin P, Chu J, Shi DQ, Yang WC. The Arabidopsis TRM61/TRM6 complex is a bona fide tRNA N1-methyladenosine methyltransferase. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3024-3036. [PMID: 32095811 PMCID: PMC7475180 DOI: 10.1093/jxb/eraa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/24/2020] [Indexed: 05/04/2023]
Abstract
tRNA molecules, which contain the most abundant post-transcriptional modifications, are crucial for proper gene expression and protein biosynthesis. Methylation at N1 of adenosine 58 (A58) is critical for maintaining the stability of initiator methionyl-tRNA (tRNAiMet) in bacterial, archaeal, and eukaryotic tRNAs. However, although research has been conducted in yeast and mammals, it remains unclear how A58 in plant tRNAs is modified and involved in development. In this study, we identify the nucleus-localized complex AtTRM61/AtTRM6 in Arabidopsis as tRNA m1A58 methyltransferase. Deficiency or a lack of either AtTRM61 or AtTRM6 leads to embryo arrest and seed abortion. The tRNA m1A level decreases in conditionally complemented Attrm61/LEC1pro::AtTRM61 plants and this is accompanied by reduced levels of tRNAiMet, indicating the importance of the tRNA m1A modification for tRNAiMet stability. Taken together, our results demonstrate that tRNA m1A58 modification is necessary for tRNAiMet stability and is required for embryo development in Arabidopsis.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- The University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Kopcial M, Wojtczak BA, Kasprzyk R, Kowalska J, Jemielity J. N1-Propargylguanosine Modified mRNA Cap Analogs: Synthesis, Reactivity, and Applications to the Study of Cap-Binding Proteins. Molecules 2019; 24:molecules24101899. [PMID: 31108861 PMCID: PMC6572376 DOI: 10.3390/molecules24101899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023] Open
Abstract
The mRNA 5′ cap consists of N7-methylguanosine bound by a 5′,5′-triphosphate bridge to the first nucleotide of the transcript. The cap interacts with various specific proteins and participates in all key mRNA-related processes, which may be of therapeutic relevance. There is a growing demand for new biophysical and biochemical methods to study cap–protein interactions and identify the factors which inhibit them. The development of such methods can be aided by the use of properly designed fluorescent molecular probes. Herein, we synthesized a new class of m7Gp3G cap derivatives modified with an alkyne handle at the N1-position of guanosine and, using alkyne-azide cycloaddition, we functionalized them with fluorescent tags to obtain potential probes. The cap derivatives and probes were evaluated in the context of two cap-binding proteins, eukaryotic translation initiation factor (eIF4E) and decapping scavenger (DcpS). Biochemical and biophysical studies revealed that N1-propargyl moiety did not significantly disturb cap–protein interaction. The fluorescent properties of the probes turned out to be in line with microscale thermophoresis (MST)-based binding assays.
Collapse
Affiliation(s)
- Michal Kopcial
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland.
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093 Warsaw, Poland.
| | - Blazej A Wojtczak
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland.
| | - Renata Kasprzyk
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland.
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland.
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093 Warsaw, Poland.
| | - Joanna Kowalska
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093 Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
8
|
Burgess A, David R, Searle IR. Deciphering the epitranscriptome: A green perspective. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:822-835. [PMID: 27172004 PMCID: PMC5094531 DOI: 10.1111/jipb.12483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/10/2016] [Indexed: 05/13/2023]
Abstract
The advent of high-throughput sequencing technologies coupled with new detection methods of RNA modifications has enabled investigation of a new layer of gene regulation - the epitranscriptome. With over 100 known RNA modifications, understanding the repertoire of RNA modifications is a huge undertaking. This review summarizes what is known about RNA modifications with an emphasis on discoveries in plants. RNA ribose modifications, base methylations and pseudouridylation are required for normal development in Arabidopsis, as mutations in the enzymes modifying them have diverse effects on plant development and stress responses. These modifications can regulate RNA structure, turnover and translation. Transfer RNA and ribosomal RNA modifications have been mapped extensively and their functions investigated in many organisms, including plants. Recent work exploring the locations, functions and targeting of N6 -methyladenosine (m6 A), 5-methylcytosine (m5 C), pseudouridine (Ψ), and additional modifications in mRNAs and ncRNAs are highlighted, as well as those previously known on tRNAs and rRNAs. Many questions remain as to the exact mechanisms of targeting and functions of specific modified sites and whether these modifications have distinct functions in the different classes of RNAs.
Collapse
Affiliation(s)
- Alice Burgess
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia
| | - Rakesh David
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia.
- The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, Adelaide, Australia.
| |
Collapse
|
9
|
Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, Zheng G, Pan T, Solomon O, Eyal E, Hershkovitz V, Han D, Doré LC, Amariglio N, Rechavi G, He C. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 2016; 530:441-6. [PMID: 26863196 DOI: 10.1038/nature16998] [Citation(s) in RCA: 700] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/15/2016] [Indexed: 12/26/2022]
Abstract
Gene expression can be regulated post-transcriptionally through dynamic and reversible RNA modifications. A recent noteworthy example is N(6)-methyladenosine (m(6)A), which affects messenger RNA (mRNA) localization, stability, translation and splicing. Here we report on a new mRNA modification, N(1)-methyladenosine (m(1)A), that occurs on thousands of different gene transcripts in eukaryotic cells, from yeast to mammals, at an estimated average transcript stoichiometry of 20% in humans. Employing newly developed sequencing approaches, we show that m(1)A is enriched around the start codon upstream of the first splice site: it preferentially decorates more structured regions around canonical and alternative translation initiation sites, is dynamic in response to physiological conditions, and correlates positively with protein production. These unique features are highly conserved in mouse and human cells, strongly indicating a functional role for m(1)A in promoting translation of methylated mRNA.
Collapse
Affiliation(s)
- Dan Dominissini
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Sigrid Nachtergaele
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | | - Eyal Peer
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitzan Kol
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Moshe Shay Ben-Haim
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Qing Dai
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Ayelet Di Segni
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Mali Salmon-Divon
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Wesley C Clark
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Guanqun Zheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Oz Solomon
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eran Eyal
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Vera Hershkovitz
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Dali Han
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Louis C Doré
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Ninette Amariglio
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Guo JX, Zhou T, Xu B, Zhu SF, Zhou QL. Enantioselective synthesis of α-alkenyl α-amino acids via N-H insertion reactions. Chem Sci 2015; 7:1104-1108. [PMID: 29910866 PMCID: PMC5975786 DOI: 10.1039/c5sc03558a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/27/2015] [Indexed: 01/16/2023] Open
Abstract
A new highly enantioselective route to α-alkenyl α-amino acid derivatives, which are important naturally occurring compounds with attractive bioactivity and synthetic utility, was developed using a N-H insertion reaction of vinyldiazoacetates and tert-butyl carbamate cooperatively catalyzed by achiral dirhodium(ii) carboxylates and chiral spiro phosphoric acids under mild, neutral conditions. This reaction has a broad substrate scope, a fast reaction rate (turnover frequency > 6000 h-1), a high yield (61-99%), and excellent enantioselectivity (83-98% ee). The chiral spiro phosphoric acid, which is proposed to realize the enantioselectivity of the insertion reaction by promoting the proton transfer of a ylide intermediate by acting as a chiral proton shuttle catalyst, can suppress several usual side reactions of vinyldiazoacetates and broaden the applications of these versatile carbene precursors in organic synthesis. To our knowledge, it is the first highly enantioselective carbene insertion reaction of vinyldiazoacetates with heteroatom-hydrogen bonds in which the heteroatom has lone-pair electrons.
Collapse
Affiliation(s)
- Jun-Xia Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Ting Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Bin Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China .
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China .
| |
Collapse
|
11
|
Cai WM, Chionh YH, Hia F, Gu C, Kellner S, McBee ME, Ng CS, Pang YLJ, Prestwich EG, Lim KS, Babu IR, Begley TJ, Dedon PC. A Platform for Discovery and Quantification of Modified Ribonucleosides in RNA: Application to Stress-Induced Reprogramming of tRNA Modifications. Methods Enzymol 2015; 560:29-71. [PMID: 26253965 DOI: 10.1016/bs.mie.2015.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Here we describe an analytical platform for systems-level quantitative analysis of modified ribonucleosides in any RNA species, with a focus on stress-induced reprogramming of tRNA as part of a system of translational control of cell stress response. This chapter emphasizes strategies and caveats for each of the seven steps of the platform workflow: (1) RNA isolation, (2) RNA purification, (3) RNA hydrolysis to individual ribonucleosides, (4) chromatographic resolution of ribonucleosides, (5) identification of the full set of modified ribonucleosides, (6) mass spectrometric quantification of ribonucleosides, (6) interrogation of ribonucleoside datasets, and (7) mapping the location of stress-sensitive modifications in individual tRNA molecules. We have focused on the critical determinants of analytical sensitivity, specificity, precision, and accuracy in an effort to ensure the most biologically meaningful data on mechanisms of translational control of cell stress response. The methods described here should find wide use in virtually any analysis involving RNA modifications.
Collapse
Affiliation(s)
- Weiling Maggie Cai
- Department of Microbiology, National University of Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore
| | - Yok Hian Chionh
- Department of Microbiology, National University of Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore
| | - Fabian Hia
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefanie Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Megan E McBee
- Singapore-MIT Alliance for Research and Technology, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chee Sheng Ng
- Singapore-MIT Alliance for Research and Technology, Singapore; School of Biological Sciences, Nanyang Technological Institute, Singapore
| | - Yan Ling Joy Pang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Erin G Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kok Seong Lim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - I Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Thomas J Begley
- College of Nanoscale Engineering and Science, State University of New York, Albany, New York, USA
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
12
|
Kellner S, Ochel A, Thüring K, Spenkuch F, Neumann J, Sharma S, Entian KD, Schneider D, Helm M. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Res 2014; 42:e142. [PMID: 25129236 PMCID: PMC4191383 DOI: 10.1093/nar/gku733] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the resurging field of RNA modifications, quantification is a bottleneck blocking many exciting avenues. With currently over 150 known nucleoside alterations, detection and quantification methods must encompass multiple modifications for a comprehensive profile. LC-MS/MS approaches offer a perspective for comprehensive parallel quantification of all the various modifications found in total RNA of a given organism. By feeding (13)C-glucose as sole carbon source, we have generated a stable isotope-labeled internal standard (SIL-IS) for bacterial RNA, which facilitates relative comparison of all modifications. While conventional SIL-IS approaches require the chemical synthesis of single modifications in weighable quantities, this SIL-IS consists of a nucleoside mixture covering all detectable RNA modifications of Escherichia coli, yet in small and initially unknown quantities. For absolute in addition to relative quantification, those quantities were determined by a combination of external calibration and sample spiking of the biosynthetic SIL-IS. For each nucleoside, we thus obtained a very robust relative response factor, which permits direct conversion of the MS signal to absolute amounts of substance. The application of the validated SIL-IS allowed highly precise quantification with standard deviations<2% during a 12-week period, and a linear dynamic range that was extended by two orders of magnitude.
Collapse
Affiliation(s)
- Stefanie Kellner
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Antonia Ochel
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Kathrin Thüring
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Felix Spenkuch
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Jennifer Neumann
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Sunny Sharma
- Institute for Molecular Biosciences, Johann-Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Johann-Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| |
Collapse
|