1
|
Khan FF, Bera SK, Dey S, Lahiri GK. Redox activity as a tool for bond activations and functionalizations. INORGANIC CHEMISTRY IN INDIA 2023. [DOI: 10.1016/bs.adioch.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
2
|
Sharma A, Mejia K, Ueno H, Zhou W, Chiang L. Copper complexes of strongly electron rich and deficient salen ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Singh A, Dey S, Panda S, Lahiri GK. Radical versus Nonradical States of Azobis(benzothiazole) as a Function of Ancillary Ligands on Selective Ruthenium Platforms. Inorg Chem 2021; 60:18260-18269. [PMID: 34762800 DOI: 10.1021/acs.inorgchem.1c02883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The paper deals with the electronic impact of ancillary ligands on the varying redox features of azobis(benzothiazole) (abbt) in the newly introduced mononuclear ruthenium complexes [Ru(pap)2(abbt)]n (1n) and [Ru(bpy)2(abbt)]n (2n), where pap = 2-phenylazopyridine and bpy = 2,2'-bipyridine. In this regard, the complexes [RuII(pap)2(abbt•-)]ClO4 ([1]ClO4), [RuII(pap)2(abbt0)](ClO4)2 ([1](ClO4)2), [RuII(bpy)2(abbt0)](ClO4)2 ([2](ClO4)2), and [RuII(bpy)2(abbt•-)]ClO4 ([2]ClO4) were structurally and spectroscopically characterized. Unambiguous assignments of the aforestated radical and nonradical forms of abbt in 1+/2+ and 12+/22+, respectively, were made primarily based on their redox-sensitive azo (N═N) bond distances as well as by their characteristic electron paramagnetic resonance (EPR)/NMR signatures. Although the radical form of abbt•- was isolated as an exclusive product in the case of strongly π-acidic pap-derived 1+, the corresponding moderately π-acidic bpy ancillary ligand primarily delivered an oxidized form of abbt0 in 22+, along with the radical form in 2+ as a minor (<10%) component. The oxidized abbt0-derived [1](ClO4)2 was, however, obtained via the chemical oxidation of [1]ClO4. Both 1+ and 22+ displayed multiple closed by reversible redox processes (one oxidation O1 and four successive reductions R1-R4) within the potential window of ±2.0 V versus saturated calomel electrode. The involvement of metal-, ligand-, or metal/ligand-based frontier molecular orbitals along the redox chain was assigned based on the combined experimental (structure, EPR, and spectroelectrochemisry) and theoretical [density functional theory (DFT): molecular orbitals, Mulliken spin densities/time-dependent DFT] investigations. It revealed primarily ligand (abbt/pap or bpy)-based redox activities, keeping the metal ion as a simple spectator. Moreover, frontier molecular orbital analysis corroborated the initial isolation of the radical and nonradical species for the pap-derived 1+ and bpy-derived 22+ as well as facile reduction of pap and abbt in 1+ and 2+, respectively.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Erickson AN, Gianino J, Markovitz SJ, Brown SN. Amphiphilicity in Oxygen Atom Transfer Reactions of Oxobis(iminoxolene)osmium Complexes. Inorg Chem 2021; 60:4004-4014. [PMID: 33657323 DOI: 10.1021/acs.inorgchem.1c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxobis(iminoxolene)osmium(VI) compounds (Rap)2OsO (Rap = 2-(4-RC6H4N)-4,6-tBu2C6H2O) are readily deoxygenated by phosphines and phosphites to give five-coordinate (Rap)2Os(PR'3) or six-coordinate (Rap)2Os(PR'3)2. Structural data indicate that this net two-electron reduction is accompanied by apparent oxidation of the iminoxolene ligands due to their greater ability to engage in π donation to the reduced deoxy form of the osmium complex. In (Rap)2Os(PR'3)2, the HOMO is a ligand-based combination of the iminoxolene redox-active orbitals, while the LUMO is a highly covalent metal-iminoxolene π* orbital. In the trans isomer, the HOMO is required to be ligand-localized by symmetry, while in the cis isomer, the ligands adopt a conformation that minimizes metal-ligand π* interactions in the HOMO. Kinetic studies indicate that the deoxygenations involve the rate-determining attack of the phosphorus(III) reagent on the five-coordinate oxo complexes. Varying the substituents of the aryl groups on the iminoxolene ligands or on the triarylphosphines has little effect on the rate of oxygen atom transfer, with the best correlation shown between oxygen atom transfer rates and the HOMO-LUMO gap of the oxo complexes. This suggests that the osmium oxo group shows a balance between electrophilic and nucleophilic character in its oxygen atom transfer reactions with phosphorus(III) reagents.
Collapse
Affiliation(s)
- Alexander N Erickson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Jacqueline Gianino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Sean J Markovitz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Seth N Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
5
|
Saha A, Rajput A, Gupta P, Mukherjee R. Probing the electronic structure of [Ru(L 1) 2] Z ( z = 0, 1+ and 2+) (H 2L 1: a tridentate 2-aminophenol derivative) complexes in three ligand redox levels. Dalton Trans 2020; 49:15355-15375. [PMID: 33135029 DOI: 10.1039/d0dt03074k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic reaction between [RuII(DMSO)4Cl2], a redox-active 2-aminophenol-based ligand (H2L1: 2-[2-(benzylthio)phenylamino]-4,6-di-tert-butylphenol) and Et3N in MeOH under refluxing conditions afforded a purple complex [Ru(L1)2] (S = 0). Structural analysis reveals that the tridentate ligand coordinates in a mer conformation providing a distorted octahedral RuN2O2S2 coordination. Cyclic voltammetry on 1 in CH2Cl2 reveals the accessability of the monocation, dication and monoanion forms. Reddish purple monocation [Ru(L1)2](PF6)·CH2Cl2 ([1OX1](PF6)·CH2Cl2; S = 1/2) and green dication [Ru(L1)2](BF4)2·H2O ([1OX2](BF4)2·H2O; S = 0) have been isolated through the chemical oxidation of 1 in CH2Cl2 by [FeIII(η5-C5H5)2](PF6) and AgBF4, respectively. A structural analysis of the single crystals of the monocation and the dication with the compositions [1OX1](PF6)·CH2Cl2·H2O (2) and [1OX2](BF4)2·1.7H2O (3), respectively, has been done. Metrical (metal-ligand and ligand backbone) parameters, values of metrical oxidation states of coordinated ligands, 1H NMR spectra of 1 and [1OX2](BF4)2·H2O, EPR spectra of [1OX1](PF6)·CH2Cl2, X-ray photoelectron and UV-VIS-NIR spectra of 1-3, spin population analysis from broken-symmetry (BS) density functional theory (DFT) calculations and quasi-restricted orbital (QRO) analysis have allowed us to assign the electronic structure of the complexes. The complexes exhibit highly covalent metal-ligand interactions. The electronic states of 1, [1OX1]1+ and [1OX2]2+ are best described as [RuII{(LISQ)˙-}2] ↔ [RuIII{(LAP)2-}{(LISQ)˙-}] (S = 0), [RuIII{(LISQ)˙-}2]1+ (S = 1/2) and [RuII{(LIBQ)0}2]2+ ↔ [RuIII{(LISQ)˙-}{(LIBQ)0}]2+ (S = 0), respectively. Notably, all redox processes are ligand-centred. Absorption spectral properties have been rationalized based on time-dependent (TD)-DFT calculations. For 1, the appearance of an IVCT band at 1100 nm supports its Class II-III (borderline) ligand-based mixed-valence character.
Collapse
Affiliation(s)
- Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Chemistry, School of Basic and Applied Sciences, G. D. Goenka University, Sohna Road, Gurugram 122 103, Haryana, India
| | - Puneet Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | | |
Collapse
|
6
|
Panda S, Ansari MA, Mandal A, Lahiri GK. Near‐IR Absorbing Ruthenium Complexes of Non‐Innocent 6,12‐Di(pyridin‐2‐yl)indolo[3,2‐
b
]carbazole: Variation as a Function of Co‐Ligands. Chem Asian J 2019; 14:4631-4640. [DOI: 10.1002/asia.201900719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/24/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Sanjib Panda
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Md Asif Ansari
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Abhishek Mandal
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Goutam Kumar Lahiri
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| |
Collapse
|
7
|
Sobottka S, van der Meer MB, Glais E, Albold U, Suhr S, Su CY, Sarkar B. A coordinatively unsaturated iridium complex with an unsymmetrical redox-active ligand: (spectro)electrochemical and reactivity studies. Dalton Trans 2019; 48:13931-13942. [DOI: 10.1039/c9dt01597c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal–ligand cooperativity can be used in iridium complexes with an unsymmetrically substituted redox-active diamidobenzene ligand for bond activation reactions.
Collapse
Affiliation(s)
- Sebastian Sobottka
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | | | - Estelle Glais
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Uta Albold
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Simon Suhr
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| | - Cheng-Yong Su
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou,510275
- China
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- Berlin
- Germany
| |
Collapse
|
8
|
Safaei E, Balaghi SE, Chiang L, Clarke RM, Martelino D, Webb MI, Wong EWY, Savard D, Walsby CJ, Storr T. Stabilization of different redox levels of a tridentate benzoxazole amidophenoxide ligand when bound to Co(iii) or V(v). Dalton Trans 2019; 48:13326-13336. [DOI: 10.1039/c9dt02865j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The electronic structure of Co and V complexes of a tridentate benzoxazole-containing aminophenol ligand NNOH2 were characterized by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Elham Safaei
- Department of Chemistry
- College of Science
- Shiraz University
- Shiraz
- Iran
| | | | - Linus Chiang
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Ryan M. Clarke
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Diego Martelino
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Michael I. Webb
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Edwin W. Y. Wong
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Didier Savard
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Charles J. Walsby
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada
| |
Collapse
|
9
|
Klein J, Beerhues J, Schweinfurth D, van der Meer M, Gazvoda M, Lahiri GK, Košmrlj J, Sarkar B. Versatile Coordination of Azocarboxamides: Redox-Triggered Change of the Chelating Binding Pocket in Ruthenium Complexes. Chemistry 2018; 24:18020-18031. [PMID: 30136748 DOI: 10.1002/chem.201803606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/22/2018] [Indexed: 11/09/2022]
Abstract
Azocarboxamides occupy a special place among azo ligands owing to their versatility for metal coordination. Herein ruthenium complexes with two different azocarboxamide ligands that differ in the presence (or not) of a coordinating pyridyl heterocycle are presented. By making full use of the O,N(amide), N(azo), and N(pyridyl) coordinating sites, the first diruthenium complex that is bridged by an azo ligand containing two different binding pockets was obtained. Moreover, it was conclusively proven that, in the mononuclear complexes, oxidation at the ruthenium center leads to a complete change of coordination at the chelating binding pocket. The complexes were characterized by NMR spectroscopy, mass spectrometry, and single-crystal X-ray diffraction. Additionally, the mechanism of the aforementioned redox-triggered change in the chelating binding pocket and the electronic structures of all the complexes were investigated by a combination of electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, and DFT calculations. This is first instance in which a redox-driven change in the complete chelating binding pocket has been observed in a ruthenium complex as well as with azo-based ligands. These results thus show the potential of these versatile azocarboxamide ligands to act as redox-driven switches with possible relevance to electrocatalysis.
Collapse
Affiliation(s)
- Johannes Klein
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Julia Beerhues
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - David Schweinfurth
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Margarethe van der Meer
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| | - Martin Gazvoda
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195, Berlin, Germany
| |
Collapse
|
10
|
Rajput A, Sharma AK, Barman SK, Lloret F, Mukherjee R. Six-coordinate [Co III(L) 2] z (z = 1-, 0, 1+) complexes of an azo-appended o-aminophenolate in amidate(2-) and iminosemiquinonate π-radical (1-) redox-levels: the existence of valence-tautomerism. Dalton Trans 2018; 47:17086-17101. [PMID: 30465680 DOI: 10.1039/c8dt03257b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aerobic reaction of the ligand H2L1, 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol, CoCl2·6H2O and Et3N in MeOH under refluxing conditions produces, after work-up and recrystallization, black crystals of [Co(L1)2] (1). When examined by cyclic voltammetry, 1 displays in CH2Cl2 three one-electron redox responses: two oxidative, E11/2 = 0.30 V (peak-to-peak separation, ΔEp = 100 mV) and E21/2 = 1.04 V (ΔEp = 120 mV), and one reductive E1/2 = -0.27 V (ΔEp = 120 mV) vs. SCE. Consequently, 1 is chemically oxidized by 1 equiv. of [FeIII(η5-C5H5)2][PF6], affording the isolation of deep purple crystals of [Co(L1)2][PF6]·2CH2Cl2 (2), and one-electron reduction with [CoII(η5-C5H5)2] yielded bluish-black crystals of [CoIII(η5-C5H5)2][Co(L1)2]·MeCN (3). A solid sample of 1 exhibits temperature-independent (50-300 K) magnetism, revealing the presence of a free radical (S = 1/2), which exhibits an isotropic EPR signal (g = 2.003) at 298 K and at 77 K an eight-line feature characteristic of hyperfine-interaction of the radical with the Co (I = 7/2) nucleus. Based on X-ray structural parameters of 1-3 at 100 K, magnetic and EPR spectral behaviour of 1, and variable-temperature (233-313 K) 1H NMR spectral features of 1-3 and 13C NMR spectra at 298 K of 2 and 3 in CDCl3 point to the electronic structure of the complexes as either [CoIII{(LAP)2-}{(LISQ)}˙-] or [CoIII{(L1)2}˙3-] (delocalized nature favours the latter description) (1), [CoIII{(LISQ)˙-}2][PF6]·2CH2Cl2 (2) and [CoIII(η5-C5H5)2][CoIII{(LAP)2-}2]·MeCN (3) [(LAP)2- and (LISQ)˙- represent the redox-level of coordinated ligands o-amidophenolate(2-) ion and o-iminobenzosemiquinonate(1-) π-radical ion, respectively]. Notably, all the observed redox processes are ligand-centred. To the best of our knowledge, this is the first time that six-coordinate complexes of a common tridentate o-aminophenolate-based ligand have been structurally characterized for the parent 1, its monocation 2 and the monoanion 3 counterparts. Temperature-dependent 1H NMR spectra reveal the existence of valence-tautomeric equilibria in 1-3. Density Functional Theory (DFT) calculations at the B3LYP-level of theory corroborate the electronic structural assignment of 1-3 from experimental data. The origins of the observed UV-VIS-NIR absorptions for 1-3 have been assigned, based on time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India.
| | | | | | | | | |
Collapse
|
11
|
Chatterjee M, Ghosh P, Hazari AS, Lahiri GK. Probing electronic structures of redox-active ruthenium-quinonoids appended with polycyclic aromatic hydrocarbon (PAH) backbone. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Pramanick R, Bhattacharjee R, Sengupta D, Datta A, Goswami S. An Azoaromatic Ligand as Four Electron Four Proton Reservoir: Catalytic Dehydrogenation of Alcohols by Its Zinc(II) Complex. Inorg Chem 2018; 57:6816-6824. [PMID: 29863859 DOI: 10.1021/acs.inorgchem.8b00034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electroprotic storage materials, though invaluable in energy-related research, are scanty among non-natural compounds. Herein, we report a zinc(II) complex of the ligand 2,6-bis(phenylazo)pyridine (L), which acts as a multiple electron and proton reservoir during catalytic dehydrogenation of alcohols to aldehydes/ketones. The redox-inactive metal ion Zn(II) serves as an oxophilic Lewis acid, while the ligand behaves as efficient storage of electron and proton. Synthesis, X-ray structure, and spectral characterizations of the catalyst, ZnLCl2 (1a) along with the two hydrogenated complexes of 1a, ZnH2LCl2 (1b), and ZnH4LCl2 (1c) are reported. It has been argued that the reversible azo-hydrazo redox couple of 1a controls aerobic dehydrogenation of alcohols. Hydrogenated complexes are hyper-reactive and quantitatively reduce O2 and para-benzoquinone to H2O2 and para-hydroquinone, respectively. Plausible mechanistic pathways for alcohol oxidation are discussed based on controlled experiments, isotope labeling, and spectral analysis of intermediates.
Collapse
|
13
|
Ghosh P, Dey S, Panda S, Lahiri GK. Solvent-Mediated Functionalization of Benzofuroxan on Electron-Rich Ruthenium Complex Platform. Chem Asian J 2018; 13:1582-1593. [DOI: 10.1002/asia.201800308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/29/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Prabir Ghosh
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Sanchaita Dey
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Sanjib Panda
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Goutam Kumar Lahiri
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| |
Collapse
|
14
|
Singha Hazari A, Mandal A, Beyer K, Paretzki A, Kaim W, Lahiri GK. Metal–Metal Bridging Using the DPPP Dye System: Electronic Configurations within Multiple Redox Series. Inorg Chem 2017; 56:2992-3004. [DOI: 10.1021/acs.inorgchem.6b03112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Arijit Singha Hazari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Abhishek Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Katharina Beyer
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Alexa Paretzki
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Ghosh P, Banerjee S, Lahiri GK. Ruthenium Derivatives of in Situ Generated Redox-Active 1,2-Dinitrosobenzene and 2-Nitrosoanilido. Diverse Structural and Electronic Forms. Inorg Chem 2016; 55:12832-12843. [DOI: 10.1021/acs.inorgchem.6b02197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prabir Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumyodip Banerjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Ali A, Dhar D, Barman SK, Lloret F, Mukherjee R. Nickel(II) Complex of a Hexadentate Ligand with Two o-Iminosemiquinonato(1-) π-Radical Units and Its Monocation and Dication. Inorg Chem 2016; 55:5759-71. [PMID: 27232547 DOI: 10.1021/acs.inorgchem.5b02688] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aerobic reaction of a hexadentate redox-active o-aminophenol-based ligand, H4L(3) = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)-ethane, in CH3OH with Ni(II)(O2CCH3)2·4H2O and Et3N afforded isolation of a reddish-brown crystalline solid [Ni(L(3))] 1. Cyclic voltammetry (CV) experiment exhibits two oxidative responses at E1/2 = 0.09 and 0.53 V vs SCE (saturated calomel electrode). Chemical oxidation of 1 in air by [Fe(III)(η(5)-C5H5)2][PF6] and AgBF4 in CH2Cl2 led to the isolation of one-electron oxidized species [1](1+) as purple [1][PF6]·CH2Cl2 and two-electron oxidized species [1](2+) as dark purple [1][BF4]2·CH2Cl2, respectively. X-ray crystallographic analysis at 100(2) K unambiguously established that the ligand is present in [Ni(II){(L(ISQ)O,N)(•-)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}] 1, [Ni(II){(L(IBQ)O,N)(0)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}][PF6]·CH2Cl2, and [Ni(II){(L(IBQ)O,N)(0)}{(L(IBQ)O,N)(0)}{(LS,S)(0)}][BF4]2·CH2Cl2, as monoanionic o-iminosemiquinonate(1-) π-radical (Srad = 1/2) (L(ISQ))(•-) and neutral o-iminoquinone (L(IBQ))(0) redox-levels. Complexes 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 possess an S = 2, 3/2, and 1 ground-state, respectively, established by temperature-dependent (2-300 K) magnetic behavior of 1 and [1][PF6]·CH2Cl2, and a μeff value of [1][BF4]2·CH2Cl2 at 300 K. Both 1 and [1][PF6]·CH2Cl2 exhibit ferromagnetic exchange-coupling between the two electrons of Ni(II) and two/one ligand π-radicals, respectively. The redox processes are shown to be ligand-based. Spectroscopic and redox properties, and density functional theory (DFT) calculations at the CAM-B3LYP-level of theory adequately describe the electronic structure of 1, [1](1+), and [1](2+). The observed UV-vis-NIR absorptions for 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 have been assigned, based on time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Debanjan Dhar
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246, India
| | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia , Polígono de la Coma, s/n, 46980-Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246, India
| |
Collapse
|
17
|
|
18
|
Ghosh P, Lahiri GK. Impact of {Os(pap)2} in fine-tuning the binding modes and non-innocent potential of deprotonated 2,2'-bipyridine-3,3'-diol. Dalton Trans 2016; 45:5240-52. [PMID: 26893242 DOI: 10.1039/c6dt00013d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of ctc-Os(II)(pap)2Cl2 (pap = 2-phenylazopyridine, ctc = cis-trans-cis with respect to chlorides and pyridine/azo nitrogens of pap, respectively) and ambidentate 2,2'-bipyridine-3,3'-diol (H2L) leads to the simultaneous formation of isomeric [Os(II)(pap)2(HL(-))](+) ((2+)/(3+)), seven-membered chelate containing Os(II)(pap)2(L(2-)) (4) and diastereomeric [{Os(II)(pap)2}2(μ-L(2-))](2+) (5a(2+) (meso, ΔΛ)/5b(2+) (rac, ΔΔ/ΛΛ)). The reaction of 2,2'-biphenol (H2L') and ctc-Os(II)(pap)2Cl2 yields Os(II)(pap)2(L'(2-)) (6), an analogue of 4. The identities of the newly designed complexes have been established by different analytical, spectroscopic and X-ray diffraction techniques. (1)H-NMR spectra of the complexes and single crystal X-ray structures of selective derivatives [2]ClO4, [3]ClO4, [5a](ClO4)2, and 6 establish the retention of the tc-configuration of the precursor {Os(pap)2}. In isomeric 2(+) and 3(+), monodeprotonated HL(-) is linked to the {Os(II)(pap)2} fragment through N,N and N,O(-) donors, resulting in nearly planar five- and six-membered chelates with O-HO(-) and O-HN hydrogen bonds at its back face, respectively. The O(-),O(-) donating L'(2-) extends a severely twisted seven-membered chelate with the {Os(pap)2} unit in 6. The N,O(-)/O(-),N donors of deprotonated L(2-) bridge the two {Os(II)(pap)2} units in a symmetric fashion in 5a(2+), forming two moderately twisted six-membered chelates. Though the deprotonation of the O-HN hydrogen bond in (+) by another unit of {Os(II)(pap)2} generates a diastereomeric mixture of 5a(2+) and 5b(2+), attempts to deprotonate the relatively stronger O-H···O(-) hydrogen bond in 2(+) have failed. The isomeric 2(+)/3(+), seven-membered chelate containing 4/6 and diastereomeric 5a(2+)/5b(2+) exhibit distinctive (1)H-NMR and absorption spectra as well as electrochemical responses. The pap (N[double bond, length as m-dash]N) based two successive reductions and the participation of HL(-), L(2-), L'(2-) in the oxidation processes of the respective complexes have been revealed using EPR and DFT calculated MOs and Mulliken spin density plots at the intermediate paramagnetic states.
Collapse
Affiliation(s)
- Prabir Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
19
|
Mandal A, Hoque MA, Grupp A, Paretzki A, Kaim W, Lahiri GK. Analysis of Redox Series of Unsymmetrical 1,4-Diamido-9,10-anthraquinone-Bridged Diruthenium Compounds. Inorg Chem 2016; 55:2146-56. [DOI: 10.1021/acs.inorgchem.5b02541] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abhishek Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai−400076, India
| | - Md Asmaul Hoque
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai−400076, India
| | - Anita Grupp
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Alexa Paretzki
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai−400076, India
| |
Collapse
|
20
|
van der Meer M, Manck S, Sobottka S, Plebst S, Sarkar B. Redox Activity and Bond Activation in Iridium–Diamidobenzene Complexes: A Combined Structural, (Spectro)electrochemical, and DFT Investigation. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Margarethe van der Meer
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße
34-36, D-14195, Berlin, Germany
| | - Sinja Manck
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße
34-36, D-14195, Berlin, Germany
| | - Sebastian Sobottka
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße
34-36, D-14195, Berlin, Germany
| | - Sebastian Plebst
- Institut
für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, D-70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße
34-36, D-14195, Berlin, Germany
| |
Collapse
|
21
|
Mandal A, Schwederski B, Fiedler J, Kaim W, Lahiri GK. Evidence for Bidirectional Noninnocent Behavior of a Formazanate Ligand in Ruthenium Complexes. Inorg Chem 2015; 54:8126-35. [DOI: 10.1021/acs.inorgchem.5b01408] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abhishek Mandal
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Brigitte Schwederski
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Jan Fiedler
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova
3, CZ-18223 Prague, Czech Republic
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany
| | - Goutam Kumar Lahiri
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
22
|
|
23
|
Chiang L, Herasymchuk K, Thomas F, Storr T. Influence of Electron-Withdrawing Substituents on the Electronic Structure of Oxidized Ni and Cu Salen Complexes. Inorg Chem 2015; 54:5970-80. [DOI: 10.1021/acs.inorgchem.5b00783] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linus Chiang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Khrystyna Herasymchuk
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Fabrice Thomas
- Département de Chimie Moléculaire,
Chimie Inorganique Redox (CIRE), UMR-5250, Université Grenoble Alpes, BP 53, 38041 Grenoble
Cedex 9, France
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
24
|
Ali A, Barman SK, Mukherjee R. Palladium(II) Complex of a Redox-Active Amidophenolate-Based O,N,S,N Ligand: Its Monocation and Dication and Reactivity with PPh3. Inorg Chem 2015; 54:5182-94. [DOI: 10.1021/ic503103e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Suman K. Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| |
Collapse
|
25
|
Mondal P, Ray R, Das A, Lahiri GK. Revelation of Varying Bonding Motif of Alloxazine, a Flavin Analogue, in Selected Ruthenium(II/III) Frameworks. Inorg Chem 2015; 54:3012-21. [DOI: 10.1021/acs.inorgchem.5b00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prasenjit Mondal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India 400076
| | - Ritwika Ray
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India 400076
| | - Ankita Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India 400076
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India 400076
| |
Collapse
|
26
|
van der Meer M, Rechkemmer Y, Peremykin I, Hohloch S, van Slageren J, Sarkar B. (Electro)catalytic C–C bond formation reaction with a redox-active cobalt complex. Chem Commun (Camb) 2014; 50:11104-6. [DOI: 10.1039/c4cc03309d] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Ghisolfi A, Waldvogel A, Routaboul L, Braunstein P. Reversible Switching of the Coordination Modes of a Pyridine-Functionalized Quinonoid Zwitterion; Its Di- and Tetranuclear Palladium Complexes. Inorg Chem 2014; 53:5515-26. [DOI: 10.1021/ic500194y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alessio Ghisolfi
- Laboratoire de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg , 4 rue Blaise Pascal, F-67081 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
28
|
Piskunov AV, Meshcheryakova IN, Ershova IV, Bogomyakov AS, Cherkasov AV, Fukin GK. The reactivity of o-amidophenolate indium(iii) complexes towards different oxidants. RSC Adv 2014. [DOI: 10.1039/c4ra05408c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reactivity of o-amidophenolate indium(iii) complexes towards different oxidants was investigated. The mono- and biradical o-iminobenzosemiquinonato indium(III) complexes were synthesized and characterized as a result.
Collapse
Affiliation(s)
- Alexandr V. Piskunov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences
- 603950 Nizhniy Novgorod, Russian Federation
- N.I. Lobachevsky Nizhny Novgorod State University
- 603950 Nizhny Novgorod, Russian Federation
| | - Irina N. Meshcheryakova
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences
- 603950 Nizhniy Novgorod, Russian Federation
| | - Irina V. Ershova
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences
- 603950 Nizhniy Novgorod, Russian Federation
| | - Artyem S. Bogomyakov
- International Tomography Center
- Siberian Branch
- Russian Academy of Sciences
- 630090 Novosibirsk, Russian Federation
| | - Anton V. Cherkasov
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences
- 603950 Nizhniy Novgorod, Russian Federation
| | - Georgy K. Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry Russian Academy of Sciences
- 603950 Nizhniy Novgorod, Russian Federation
- N.I. Lobachevsky Nizhny Novgorod State University
- 603950 Nizhny Novgorod, Russian Federation
| |
Collapse
|
29
|
Mandal A, Kundu T, Ehret F, Bubrin M, Mobin SM, Kaim W, Lahiri GK. Varying electronic structural forms of ruthenium complexes of non-innocent 9,10-phenanthrenequinonoid ligands. Dalton Trans 2014; 43:2473-87. [DOI: 10.1039/c3dt53104j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|