1
|
Liu F, He L, Dong S, Xuan J, Cui Q, Feng Y. Artificial Small Molecules as Cofactors and Biomacromolecular Building Blocks in Synthetic Biology: Design, Synthesis, Applications, and Challenges. Molecules 2023; 28:5850. [PMID: 37570818 PMCID: PMC10421094 DOI: 10.3390/molecules28155850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Enzymes are essential catalysts for various chemical reactions in biological systems and often rely on metal ions or cofactors to stabilize their structure or perform functions. Improving enzyme performance has always been an important direction of protein engineering. In recent years, various artificial small molecules have been successfully used in enzyme engineering. The types of enzymatic reactions and metabolic pathways in cells can be expanded by the incorporation of these artificial small molecules either as cofactors or as building blocks of proteins and nucleic acids, which greatly promotes the development and application of biotechnology. In this review, we summarized research on artificial small molecules including biological metal cluster mimics, coenzyme analogs (mNADs), designer cofactors, non-natural nucleotides (XNAs), and non-natural amino acids (nnAAs), focusing on their design, synthesis, and applications as well as the current challenges in synthetic biology.
Collapse
Affiliation(s)
- Fenghua Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling He
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Xuan J, He L, Wen W, Feng Y. Hydrogenase and Nitrogenase: Key Catalysts in Biohydrogen Production. Molecules 2023; 28:molecules28031392. [PMID: 36771068 PMCID: PMC9919214 DOI: 10.3390/molecules28031392] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Hydrogen with high energy content is considered to be a promising alternative clean energy source. Biohydrogen production through microbes provides a renewable and immense hydrogen supply by utilizing raw materials such as inexhaustible natural sunlight, water, and even organic waste, which is supposed to solve the two problems of "energy supply and environment protection" at the same time. Hydrogenases and nitrogenases are two classes of key enzymes involved in biohydrogen production and can be applied under different biological conditions. Both the research on enzymatic catalytic mechanisms and the innovations of enzymatic techniques are important and necessary for the application of biohydrogen production. In this review, we introduce the enzymatic structures related to biohydrogen production, summarize recent enzymatic and genetic engineering works to enhance hydrogen production, and describe the chemical efforts of novel synthetic artificial enzymes inspired by the two biocatalysts. Continual studies on the two types of enzymes in the future will further improve the efficiency of biohydrogen production and contribute to the economic feasibility of biohydrogen as an energy source.
Collapse
Affiliation(s)
- Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Correspondence: (J.X.); (Y.F.)
| | - Lingling He
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wen Wen
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.X.); (Y.F.)
| |
Collapse
|
3
|
Wang C, Lai Z, Huang G, Pan H. Current State of [Fe]‐Hydrogenase and Its Biomimetic Models. Chemistry 2022; 28:e202201499. [DOI: 10.1002/chem.202201499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC) State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing P. R. China
| | - Zhenli Lai
- Key Laboratory of Development and Application of Rural Renewable Energy Biogas Institute of Ministry of Agriculture and Rural Affairs Section 4–13, Renmin South Road 610041 Chengdu P. R. China
| | - Gangfeng Huang
- Key Laboratory of Development and Application of Rural Renewable Energy Biogas Institute of Ministry of Agriculture and Rural Affairs Section 4–13, Renmin South Road 610041 Chengdu P. R. China
| | - Hui‐Jie Pan
- Chemistry and Biomedicine Innovation Center (ChemBIC) State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing P. R. China
| |
Collapse
|
4
|
Xie ZL, Durgaprasad G, Ali AK, Rose MJ. Substitution reactions of iron(ii) carbamoyl-thioether complexes related to mono-iron hydrogenase. Dalton Trans 2017; 46:10814-10829. [DOI: 10.1039/c7dt01696d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C,N,S pincer complex has been synthesized for structural modeling of the organometallic active site of mono-[Fe] hydrogenase (HMD).
Collapse
Affiliation(s)
- Zhu-Lin Xie
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | | - Azim K. Ali
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Michael J. Rose
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
5
|
Bai L, Fujishiro T, Huang G, Koch J, Takabayashi A, Yokono M, Tanaka A, Xu T, Hu X, Ermler U, Shima S. Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semi-synthetic hydrogenase. Faraday Discuss 2017; 198:37-58. [DOI: 10.1039/c6fd00209a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The greenhouse gas and energy carrier methane is produced on Earth mainly by methanogenic archaea. In the hydrogenotrophic methanogenic pathway the reduction of one CO2 to one methane molecule requires four molecules of H2 containing eight electrons. Four of the electrons from two H2 are supplied for reduction of an electron carrier F420, which is catalyzed by F420-reducing [NiFe]-hydrogenase under nickel-sufficient conditions. The same reaction is catalysed under nickel-limiting conditions by [Fe]-hydrogenase coupled with a reaction catalyzed by F420-dependent methylene tetrahydromethanopterin dehydrogenase. [Fe]-hydrogenase contains an iron-guanylylpyridinol (FeGP) cofactor for H2 activation at the active site. FeII of FeGP is coordinated to a pyridinol-nitrogen, an acyl-carbon, two CO and a cysteine-thiolate. We report here on comparative genomic analyses of biosynthetic genes of the FeGP cofactor, which are primarily located in a hmd-co-occurring (hcg) gene cluster. One of the gene products is HcgB which transfers the guanosine monophosphate (GMP) moiety from guanosine triphosphate (GTP) to a pyridinol precursor. Crystal structure analysis of HcgB from Methanococcus maripaludis and its complex with 6-carboxymethyl-3,5-dimethyl-4-hydroxy-2-pyridinol confirmed the physiological guanylyltransferase reaction. Furthermore, we tested the properties of semi-synthetic [Fe]-hydrogenases using the [Fe]-hydrogenase apoenzyme from several methanogenic archaea and a mimic of the FeGP cofactor. On the basis of the enzymatic reactions involved in the methanogenic pathway, we came up with an idea how the methanogenic pathway could be simplified to develop an artificial methanogenesis system.
Collapse
Affiliation(s)
- Liping Bai
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
| | - Takashi Fujishiro
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
| | - Gangfeng Huang
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
| | - Jürgen Koch
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
| | - Atsushi Takabayashi
- The Institute of Low Temperature Science
- Hokkaido University
- Sapporo 060-0819
- Japan
| | - Makio Yokono
- The Institute of Low Temperature Science
- Hokkaido University
- Sapporo 060-0819
- Japan
| | - Ayumi Tanaka
- The Institute of Low Temperature Science
- Hokkaido University
- Sapporo 060-0819
- Japan
| | - Tao Xu
- Institute of Chemical Science and Engineering
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Xile Hu
- Institute of Chemical Science and Engineering
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik
- 60438 Frankfurt/Main
- Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
- PRESTO
- Japan, Science and Technology Agency (JST)
| |
Collapse
|
6
|
Hu B, Chen X, Gong D, Cui W, Yang X, Chen D. Reversible CO Dissociation of Tricarbonyl Iodide [Fe]-Hydrogenase Models Ligating Acylmethylpyridyl Ligands. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bowen Hu
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Xiangyang Chen
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Dawei Gong
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Wen Cui
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| | - Xinzheng Yang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Dafa Chen
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
| |
Collapse
|
7
|
Xu T, Yin CJM, Wodrich MD, Mazza S, Schultz KM, Scopelliti R, Hu X. A Functional Model of [Fe]-Hydrogenase. J Am Chem Soc 2016; 138:3270-3. [PMID: 26926708 DOI: 10.1021/jacs.5b12095] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[Fe]-Hydrogenase catalyzes the hydrogenation of a biological substrate via the heterolytic splitting of molecular hydrogen. While many synthetic models of [Fe]-hydrogenase have been prepared, none yet are capable of activating H2 on their own. Here, we report the first Fe-based functional mimic of the active site of [Fe]-hydrogenase, which was developed based on a mechanistic understanding. The activity of this iron model complex is enabled by its unique ligand environment, consisting of biomimetic pyridinylacyl and carbonyl ligands, as well as a bioinspired diphosphine ligand with a pendant amine moiety. The model complex activates H2 and mediates hydrogenation of an aldehyde.
Collapse
Affiliation(s)
- Tao Xu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering and ‡Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015, Switzerland
| | - Chih-Juo Madeline Yin
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering and ‡Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015, Switzerland
| | - Matthew D Wodrich
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering and ‡Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015, Switzerland
| | - Simona Mazza
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering and ‡Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015, Switzerland
| | - Katherine M Schultz
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering and ‡Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015, Switzerland
| | - Rosario Scopelliti
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering and ‡Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering and ‡Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015, Switzerland
| |
Collapse
|
8
|
Song LC, Xu KK, Han XF, Zhang JW. Synthetic and Structural Studies of 2-Acylmethyl-6-R-Difunctionalized Pyridine Ligand-Containing Iron Complexes Related to [Fe]-Hydrogenase. Inorg Chem 2016; 55:1258-69. [PMID: 26756374 DOI: 10.1021/acs.inorgchem.5b02490] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As active site models of [Fe]-hydrogenase, tridentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing complexes η(3)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(L1) (4, L1 = I; 5, SCN; 6, PhCS2) were prepared via the following multistep reactions: (i) etherification of 2-MeO2C-6-HOC5H3N with ClCH2OMe to give 2-MeO2C-6-MeOCH2OC5H3N (1), (ii) reduction of 1 with NaBH4 to give 2-HOCH2-6-MeOCH2OC5H3N (2), (iii) esterification of 2 with 4-toluenesulfonyl chloride to give 2-TsOCH2-6-MeOCH2OC5H3N (3), (iv) nucleophilic substitution of 3 with Na2Fe(CO)4 followed by treatment of the resulting Fe(0) intermediate Na[(2-CH2-6-MeOCH2OC5H3N)Fe(CO)4] (M1) with I2 to give complex 4, and (v) condensation of 4 with KSCN and PhCS2K to give complexes 5 and 6, respectively. In contrast to the preparation of complexes 4-6, bidentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing model complexes η(2)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(I)(L2) (7, L2 = PPh3; 8, Cy-C6H11NC) and η(2)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(L3) (9, L3 = 2-SC5H4N; 10, 8-SC9H6N) were prepared by ligand exchange reactions of 4 with PPh3, Cy-C6H11NC, 2-KSC5H4N, and 8-KSC9H6N, respectively. Particularly interesting is that the tridentate 2,6-bis(acylmethyl)pyridine- and 2-acylmethyl-6-arylthiomethylpyridine-containing model complexes η(3)-[2,6-(COCH2)2C5H3N]Fe(CO)2(L4) (11, L4 = PPh3; 12, CO) and η(3)-2-(COCH2-6-ArSCH2C5H3N)Fe(CO)2(ArS) (13, ArS = PhS; 14, 2-S-5-MeC4H2O) were obtained, unexpectedly, when 2,6-(TsOCH2)2C5H3N reacted with Na2Fe(CO)4 followed by treatment of the resulting mixture with ligands PPh3 and CO or disulfides (PhS)2 and (2-S-5-MeC4H2O)2. Reactions of ligand precursors 3 and 2,6-(TsOCH2)2C5H3N with Na2Fe(CO)4 were monitored by in situ IR spectroscopy, and the possible pathways for producing complexes 4 and 11-14 via intermediates Na[(2-CH2-6-MeOCH2OC5H3N)Fe(CO)4] (M1), Na[(2-CH2-6-TsOCH2C5H3N)Fe(CO)4] (M2), and (2-COCH2-6-CH2C5H3N)Fe(CO)3 (M3) are suggested. New compounds 1-14 were characterized by elemental analysis, spectroscopy, and, for some of them, X-ray crystallography.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Kai-Kai Xu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Xiao-Feng Han
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| | - Ji-Wei Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, ‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, China
| |
Collapse
|
9
|
Shi J, Hu B, Gong D, Shang S, Hou G, Chen D. Ruthenium complexes bearing an unsymmetrical pincer ligand with a 2-hydroxypyridylmethylene fragment: active catalysts for transfer hydrogenation of ketones. Dalton Trans 2016; 45:4828-34. [DOI: 10.1039/c6dt00034g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis, reactivity and catalytic transfer hydrogenation activity of three metal–ligand cooperative ruthenium(ii) complexes (3–5) with a 2-hydroxypyridylmethylene fragment are reported.
Collapse
Affiliation(s)
- Jing Shi
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
| | - Bowen Hu
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
| | - Dawei Gong
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
| | - Shu Shang
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
| | - Guangfeng Hou
- Key Laboratory of Functional Inorganic Material Chemistry (MOE); School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
| | - Dafa Chen
- School of Chemical Engineering & Technology
- Harbin Institute of Technology
- Harbin 150001
- P.R. China
- State Key Laboratory of Elemento-organic Chemistry
| |
Collapse
|
10
|
Li C, Fu Z, Zhang X, Liu Y, Wang Y. Theoretical study of iron acyl complexes modeling the active site of [Fe]-hydrogenase: Solvation effects play a significant role. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Murray KA, Wodrich MD, Hu X, Corminboeuf C. Toward functional type III [Fe]-hydrogenase biomimics for H2 activation: insights from computation. Chemistry 2015; 21:3987-96. [PMID: 25649221 DOI: 10.1002/chem.201405619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 11/06/2022]
Abstract
The chemistry of [Fe]-hydrogenase has attracted significant interest due to its ability to activate molecular hydrogen. The intriguing properties of this enzyme have prompted the synthesis of numerous small molecule mimics aimed at activating H2. Despite considerable effort, a majority of these compounds remain nonfunctional for hydrogenation reactions. By using a recently synthesized model as an entry point, seven biomimetic complexes have been examined through DFT computations to probe the influence of ligand environment on the ability of a mimic to bind and split H2. One mimic, featuring a bidentate diphosphine group incorporating an internal nitrogen base, was found to have particularly attractive energetics, prompting a study of the role played by the proton/hydride acceptor necessary to complete the catalytic cycle. Computations revealed an experimentally accessible energetic pathway involving a benzaldehyde proton/hydride acceptor and the most promising catalyst.
Collapse
Affiliation(s)
- Kevin A Murray
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | | | | | | |
Collapse
|
12
|
|
13
|
Hu B, Chen D, Hu X. Synthesis and Reactivity of Mononuclear Iron Models of [Fe]-Hydrogenase that Contain an Acylmethylpyridinol Ligand. Chemistry 2014; 20:1677-82. [DOI: 10.1002/chem.201304290] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Indexed: 11/06/2022]
|
14
|
Song LC, Hu FQ, Wang MM, Xie ZJ, Xu KK, Song HB. Synthesis, structural characterization, and some properties of 2-acylmethyl-6-ester group-difunctionalized pyridine-containing iron complexes related to the active site of [Fe]-hydrogenase. Dalton Trans 2014; 43:8062-71. [DOI: 10.1039/c4dt00335g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first four acylmethyl/ester group-disubstituted pyridine-containing models for [Fe]-hydrogenase have been synthesized and crystallographically characterized.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Fu-Qiang Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Miao-Miao Wang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Zhao-Jun Xie
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Kai-Kai Xu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| | - Hai-Bin Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071, China
| |
Collapse
|