1
|
Cao J, Vincent SP. Synthesis of Spirocyclic Cyclopropyl Glycosyl-1-phosphate Analogues. Org Lett 2022; 24:4165-4169. [PMID: 35666228 DOI: 10.1021/acs.orglett.2c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general methodology allowing the preparation of phosphonylated 1-spirocyclopropyl analogues of glycosyl-1-phosphates is reported. The scope of this reaction has been assessed using various exo-glycals easily obtained from the corresponding pyranoses and furanoses. The cyclopropanation was found to be stereospecific, and the cis/trans selectivity only depends on the E/Z configuration of the starting exo-glycal. The four possible isomers of spirocyclopropyl ribose-1-phosphonate could thus be prepared in a controlled manner, protected and deprotected.
Collapse
Affiliation(s)
- Jun Cao
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-Organic Chemistry - NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
2
|
Oka N, Suzuki K, Mori A, Ando K. Stereoselective Synthesis of 1,2‐
cis
‐Glycosyl Sulfones and Their Application in One‐Pot Julia Olefination for the Synthesis of
exo
‐Glycals. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natsuhisa Oka
- Department of Chemistry and Biomolecular Science Faculty of Engineering Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Center for Highly Advanced Integration of Nano and Life Sciences Gifu University (G-CHAIN) 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Kanna Suzuki
- Department of Chemistry and Biomolecular Science Faculty of Engineering Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Ayumi Mori
- Department of Chemistry and Biomolecular Science Faculty of Engineering Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Kaori Ando
- Department of Chemistry and Biomolecular Science Faculty of Engineering Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
3
|
Oka N, Mori A, Suzuki K, Ando K. Stereoselective Synthesis of Ribofuranoid exo-Glycals by One-Pot Julia Olefination Using Ribofuranosyl Sulfones. J Org Chem 2021; 86:657-673. [PMID: 33225690 DOI: 10.1021/acs.joc.0c02297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One-pot Julia olefination using ribofuranosyl sulfones is described. The α-anomers of the ribofuranosyl sulfones were synthesized with complete α-selectivity via the glycosylation of heteroarylthiols using ribofuranosyl iodides as glycosyl donors and the subsequent oxidation of the resulting heteroaryl 1-thioribofuranosides with magnesium monoperphthalate (MMPP). The Julia olefination of the α-ribofuranosyl sulfones with aldehydes proceeded smoothly in one pot to afford the thermodynamically less stable (E)-exo-glycals with modest-to-excellent stereoselectivity (up to E/Z = 94:6) under the optimized conditions. The E selectivity was especially high for aromatic aldehydes. In contrast, the (Z)-exo-glycal was obtained as the main product with low stereoselectivity when the corresponding β-ribofuranosyl sulfone was used (E/Z = 41:59). The remarkable impact of the anomeric configuration of the ribofuranosyl sulfones on the stereoselectivity of the Julia olefination has been rationalized using density functional theory (DFT) calculations. The protected ribose moiety of the resulting exo-glycals induced completely α-selective cyclopropanation on the exocyclic carbon-carbon double bond via the Simmons-Smith-Furukawa reaction. The 2-cyanoethyl group was found to be useful for the protection of the exo-glycals, as it could be removed without affecting the exocyclic C═C bond.
Collapse
Affiliation(s)
- Natsuhisa Oka
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System Furo-cho, Gifu University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
4
|
Liang L, Wade Wei T, Wu P, Herrebout W, Tsai M, Vincent SP. Nonhydrolyzable Heptose Bis‐ and Monophosphate Analogues Modulate Pro‐inflammatory TIFA‐NF‐κB Signaling. Chembiochem 2020; 21:2982-2990. [DOI: 10.1002/cbic.202000319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Lina Liang
- University of Namur (UNamur), NARILIS Department of Chemistry rue de Bruxelles 61 5000 Namur Belgium
| | - Tong‐You Wade Wei
- Academia Sinica Institute of Biological Chemistry 128, Academia Road Section 2, Nankang 11529 Taipei Taiwan
| | - Pei‐Yu Wu
- Academia Sinica Institute of Biological Chemistry 128, Academia Road Section 2, Nankang 11529 Taipei Taiwan
| | - Wouter Herrebout
- University of Antwerp Department of Chemistry MolSpec Research group Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Ming‐Daw Tsai
- Academia Sinica Institute of Biological Chemistry 128, Academia Road Section 2, Nankang 11529 Taipei Taiwan
| | - Stéphane P. Vincent
- University of Namur (UNamur), NARILIS Department of Chemistry rue de Bruxelles 61 5000 Namur Belgium
| |
Collapse
|
5
|
Kerner L, Kosma P. Synthesis of C-glycosyl phosphonate derivatives of 4-amino-4-deoxy-α-ʟ-arabinose. Beilstein J Org Chem 2020; 16:9-14. [PMID: 31976011 PMCID: PMC6964659 DOI: 10.3762/bjoc.16.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
The incorporation of basic substituents into the structurally conserved domains of cell wall lipopolysaccharides has been identified as a major mechanism contributing to antimicrobial resistance of Gram-negative pathogenic bacteria. Inhibition of the corresponding enzymatic steps, specifically the transfer of 4-amino-4-deoxy-ʟ-arabinose, would thus restore the activity of cationic antimicrobial peptides and several antimicrobial drugs. C-glycosidically-linked phospholipid derivatives of 4-amino-4-deoxy-ʟ-arabinose have been prepared as hydrolytically stable and chain-shortened analogues of the native undecaprenyl donor. The C-phosphonate unit was installed via a Wittig reaction of benzyl-protected 1,5-arabinonic acid lactone with the lithium salt of dimethyl methylphosphonate followed by an elimination step of the resulting hemiketal, leading to the corresponding exo- and endo-glycal derivatives. The ensuing selective monodemethylation and hydrogenolysis of the benzyl groups and reduction of the 4-azido group gave the α-ʟ-anomeric arabino- and ribo-configured methyl phosphonate esters. In addition, the monomethyl phosphonate glycal intermediates were converted into n-octyl derivatives followed by subsequent selective removal of the methyl phosphonate ester group and hydrogenation to give the octylphosphono derivatives. These intermediates will be of value for their future conversion into transition state analogues as well as for the introduction of various lipid extensions at the anomeric phosphonate moiety.
Collapse
Affiliation(s)
- Lukáš Kerner
- University of Natural Resources and Life Sciences, Vienna Department of Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Vienna Department of Chemistry, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
7
|
1-C-phosphonomethyl- and 1-C-difluorophosphonomethyl-1,4-imino-l-arabinitols as Galf transferase inhibitors: A comparison. Carbohydr Res 2018; 461:45-50. [DOI: 10.1016/j.carres.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
|
8
|
Frédéric CJM, Tikad A, Fu J, Pan W, Zheng RB, Koizumi A, Xue X, Lowary TL, Vincent SP. Synthesis of Unprecedented Sulfonylated Phosphono-exo-Glycals Designed as Inhibitors of the Three Mycobacterial Galactofuranose Processing Enzymes. Chemistry 2016; 22:15913-15920. [PMID: 27628709 DOI: 10.1002/chem.201603161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/06/2022]
Abstract
This study reports a new methodology to synthesize exo-glycals bearing both a sulfone and a phosphonate. This synthetic strategy provides a way to generate exo-glycals displaying two electron-withdrawing groups and was applied to eight different carbohydrates from the furanose and pyranose series. The Z/E configurations of these tetrasubstituted enol ethers could be ascertained using NMR spectroscopic techniques. Deprotection of an exo-glycal followed by an UMP (uridine monophosphate) coupling generated two new UDP (uridine diphosphate)-galactofuranose analogues. These two Z/E isomers were evaluated as inhibitors of UGM, GlfT1, and GlfT2, the three mycobacterial galactofuranose processing enzymes. Molecule 46-(E) is the first characterized inhibitor of GlfT1 reported to date and was also found to efficiently inhibit UGM in a reversible manner. Interestingly, GlfT2 showed a better affinity for the (Z) isomer. The three enzymes studied in the present work are not only interesting because, mechanistically, they are still the topic of intense investigations, but also because they constitute very important targets for the development of novel antimycobacterial agents.
Collapse
Affiliation(s)
- Christophe J-M Frédéric
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Abdellatif Tikad
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jian Fu
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Weidong Pan
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, 202, Sha-chong South Road, Guiyang, 550002, P. R. China
| | - Ruixiang B Zheng
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Akihiko Koizumi
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Xiaochao Xue
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Todd L Lowary
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Gunning-Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Stéphane P Vincent
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
9
|
Dumitrescu L, Eppe G, Tikad A, Pan W, El Bkassiny S, Gurcha SS, Ardá A, Jiménez-Barbero J, Besra GS, Vincent SP. Selectfluor and NFSI exo-glycal fluorination strategies applied to the enhancement of the binding affinity of galactofuranosyltransferase GlfT2 inhibitors. Chemistry 2014; 20:15208-15. [PMID: 25251918 DOI: 10.1002/chem.201404180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/31/2022]
Abstract
Two complementary methods for the synthesis of fluorinated exo-glycals have been developed, for which previously no general reaction had been available. First, a Selectfluor-mediated fluorination was optimized after detailed analysis of all the reaction parameters. A dramatic effect of molecular sieves on the course of the reaction was observed. The reaction was generalized with a set of biologically relevant furanosides and pyranosides. A second direct approach involving carbanionic chemistry and the use of N-fluorobenzenesulfonimide (NFSI) was performed and this method gave better diastereoselectivities. Assignment of the Z/E configuration of all the fluorinated exo-glycals was achieved based on the results of HOESY experiments. Furthermore, fluorinated exo-glycal analogues of UDP-galactofuranose were prepared and assayed against GlfT2, which is a key enzyme involved in the cell-wall biosynthesis of major pathogens. The fluorinated exo-glycals proved to be potent inhibitors as compared with a series of C-glycosidic analogues of UDP-Galf, thus demonstrating the double beneficial effect of the exocyclic enol ether functionality and the fluorine atom.
Collapse
Affiliation(s)
- Lidia Dumitrescu
- University of Namur (UNamur), Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61, B-5000 Namur (Belgium), Fax: (+32) 81-72-45-17
| | | | | | | | | | | | | | | | | | | |
Collapse
|