1
|
Molla M, Saha A, Barman SK, Mandal S. Monomeric Fe(III)-Hydroxo and Fe(III)-Aqua Complexes Display Oxidative Asynchronous Hydrogen Atom Abstraction Reactivity. Chemistry 2024; 30:e202401163. [PMID: 38953593 DOI: 10.1002/chem.202401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
This paper presents the synthesis and characterization of a series of novel monomeric aqua-ligated iron(III) complexes, [FeIII(L5R)(OH2)]2+ (R=OMe, H, Cl, NO2), supported by an amide-containing pentadentate N5 donor ligand, L5R [HL5R=2-(((1-methyl-1H-imidazol-2-yl)methyl)(pyridin-2-yl-methyl)amino)-N-(5-R-quinolin-8-yl)acetamide]. The complexes were characterized by various spectroscopic and analytical techniques, including electrochemistry and magnetic measurements. The Fe(III)-hydroxo complexes, [FeIII(L5R)(OH)]1+, were generated in situ by deprotonating the corresponding aqua complexes in a pH ~7 aqueous medium. In another way, adding one equivalent of a base to a methanolic solution of the Fe(III)-aqua complexes also produced the Fe(III)-hydroxo complexes. The study uses linoleic fatty acid as a substrate to explore the hydrogen atom abstraction (HAA) reactivity of both hydroxo and aqua complexes. The investigation highlights the substitution effect of the L5R ligand on reactivity, revealing a higher rate when an electron-withdrawing group is present. Hammett analyses and(or) determination of the asynchronicity factor (η) suggest an oxidative asynchronous concerted proton-electron transfer (CPET) pathway for the HAA reactions. Aqua complexes exhibited a higher asynchronicity in CPET, resulting in higher reaction rates than their hydroxo analogs. Overall, the work provides insights into the beneficial role of a higher imbalance in electron-transfer-proton-transfer (ET-PT) contributions in HAA reactivity.
Collapse
Affiliation(s)
- Mofijul Molla
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, 140306, India
| | - Suman K Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, 140306, India
| | - Sukanta Mandal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
2
|
Kejriwal A. Non-heme iron coordination complexes for alkane oxidation using hydrogen peroxide (H 2O 2) as powerful oxidant. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2085567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ambica Kejriwal
- Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
3
|
Zhang J, Lee YM, Seo MS, Fukuzumi S, Nam W. Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)-Aqua Complexes. Inorg Chem 2022; 61:6594-6603. [PMID: 35442673 DOI: 10.1021/acs.inorgchem.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acids are known to enhance the reactivities of metal-oxygen intermediates, such as metal-oxo, -hydroperoxo, -peroxo, and -superoxo complexes, in biomimetic oxidation reactions. Although metal-aqua (and metal-hydroxo) complexes have been shown to be potent oxidants in oxidation reactions, acid effects on the reactivities of metal-aqua complexes have never been investigated previously. In this study, a mononuclear manganese(III)-aqua complex, [(dpaq5NO2)MnIII(OH2)]2+ (1; dpaq5NO2 = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-ylacetamidate with an NO2 substituent at the 5 position), which is relatively stable in the presence of triflic acid (HOTf), is used in the investigation of acid-catalyzed oxidation reactions by metal-aqua complexes. As a result, we report a remarkable acid catalysis in the six-electron oxidation of anthracene by 1 in the presence of HOTf; anthraquinone is formed as the product. In the HOTf-catalyzed six-electron oxidation of anthracene by 1, the rate constant increases linearly with an increase of the HOTf concentration. Combined with the observed one-electron oxidation product, anthracene (derivative) radical cation, and the substitution effect at the 5 position of the dpaq ligand in 1 on the rate constants of the oxidation of anthracene, it is concluded that the oxidation of anthracene occurs via an acid-promoted electron transfer (APET) from anthracene to 1. The dependence of the rate constants of the APET from electron donors, including anthracene derivatives, to 1 on the driving force of electron transfer is also shown to be well fitted by the Marcus equation of outer-sphere electron transfer. To the best of our knowledge, this is the first example showing acid catalysis in the oxidation of substrates by metal(III)-aqua complexes.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Abstract
The oxidation of hydrocarbons of different structures under the same conditions is an important stage in the study of the chemical properties of both the hydrocarbons themselves and the oxidation catalysts. In a 50% H2O2/Cu2Cl4·2DMG/CH3CN system, where DMG is dimethylglyoxime (Butane-2,3-dione dioxime), at 50 °C under the same or similar conditions, we oxidized eleven RH hydrocarbons of different structures: mono-, bi- and tri-cyclic, framework and aromatic. To compare the composition of the oxidation products of these hydrocarbons, we introduced a new quantitative characteristic, “distributive oxidation depth D(O), %” and showed the effectiveness of its application. The adiabatic ionization potentials (AIP) and the vertical ionization potentials (VIP) of the molecules of eleven oxidized and related hydrocarbons were calculated using the DFT method in the B3LYP/TZVPP level of theory for comparison with experimental values and correlation with D(O). The same calculations of AIP were made for the molecules of the oxidant, solvent, DMG, related compounds and products. It is shown that component X, which determines the mechanism of oxidation of hydrocarbons RH with AIP(Exp) ≥ AIP(X) = 8.55 ± 0.03 eV, is a trans-DMG molecule. Firstly theoretically estimated experimental values of AIP(trans-DMG) = 8.53 eV and AIP(cis-DMG) = 8.27 eV.
Collapse
|
5
|
Zhang J, Lee YM, Seo MS, Kim Y, Lee E, Fukuzumi S, Nam W. Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(III)-hydroxo and Mn(III)-aqua complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen atom transfer (HAT) of metal-oxygen intermediates such as metal-oxo, -hydroxo and -superoxo species have so far been studied extensively. However, HAT reactions of metal-aqua complexes have yet to be...
Collapse
|
6
|
Abstract
Tertiary tetraols of adamantane (C10H16, Tricyclo[3.3.1.1(3,7)]decan) have been widely used for the synthesis of highly symmetric compounds with unique physical and chemical properties. The methods for one-stage simultaneously selective, deep, and cheap oxidation of adamantane to tetraols of different structures have not yet been developed. In this research, chemically simple, cheap, and environmentally friendly reagents are used and that is the first step in this direction. The conditions, under which the impact of a hydrogen peroxide water solution on adamantane dissolved in acetonitrile results in full conversion of adamantane and formation of a total 72% mixture of its tri-, tetra-, and penta-oxygenated products, predominantly poliols, have been found. Conversion and adamantane oxidation depth are shown to depend on the ratio of components of the water-acetonitrile solution and the method of oxidizer solution introduction when using the dimer form of 1:1 dimethylglyoxime and copper dichloride complex as a catalyst. Under the conditions of mass-spectrometry ionization by electrons (70 eV), fragmentation across three C–C bonds of the molecular ions framework of adamantane tertiary alcohols Ad(OH)n in the range n = 0–4 increases linearly with the rise of n.
Collapse
|
7
|
Ivleva EA, Kazakova AI, Klimochkin YN. Synthesis of 3,5-Bis(hydroxymethyl)adamantan-1-ols and 3,5-Bis(nitrooxymethyl)adamantan-1-yl Nitrates. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020090109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
9
|
Park H, Lee D. Ligand Taxonomy for Bioinorganic Modeling of Dioxygen-Activating Non-Heme Iron Enzymes. Chemistry 2020; 26:5916-5926. [PMID: 31909506 DOI: 10.1002/chem.201904975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/04/2020] [Indexed: 12/15/2022]
Abstract
Novel functions emerge from novel structures. To develop efficient catalytic systems for challenging chemical transformations, chemists often seek inspirations from enzymatic catalysis. A large number of iron complexes supported by nitrogen-rich multidentate ligands have thus been developed to mimic oxo-transfer reactivity of dioxygen-activating metalloenzymes. Such efforts have significantly advanced our understanding of the reaction mechanisms by trapping key intermediates and elucidating their geometric and electronic properties. Critical to the success of this biomimetic approach is the design and synthesis of elaborate ligand systems to balance the thermodynamic stability, structural adaptability, and chemical reactivity. In this Concept article, representative design strategies for biomimetic atom-transfer chemistry are discussed from the perspectives of "ligand builders". Emphasis is placed on how the primary coordination sphere is constructed, and how it can be elaborated further by rational design for desired functions.
Collapse
Affiliation(s)
- Hyunchang Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
10
|
Doiuchi D, Nakamura T, Hayashi H, Uchida T. Non‐Heme‐Type Ruthenium Catalyzed Chemo‐ and Site‐Selective C−H Oxidation. Chem Asian J 2020; 15:762-765. [DOI: 10.1002/asia.202000134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Daiki Doiuchi
- Department of Chemistry Graduate School of ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Nakamura
- Department of Chemistry Graduate School of ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroki Hayashi
- Faculty of Arts and ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Uchida
- Faculty of Arts and ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI−I2CNER)Kyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
11
|
Khusnutdinov RI, Shchadneva NA. Metal complex catalysis in the chemistry of lower diamondoids. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review presents the first survey of published data on the use of compounds, complexes and nanoparticles of transition metals (Fe, Co, Ni, Mn, V, Mo, Cu, Pd, Pt, Rh, Ru, Os, Au, Re and Th) in the catalytic transformations of lower diamondoids — adamantane, diamantane and their derivatives. Catalytic halogenation, oxidation, alkylation and cross-coupling reactions are considered, and the formation pathways of C–N, C–S and C–Se bonds in the series of adamantanoids are discussed. Reaction conditions, appropriate catalytic systems and the structures of products are presented.
The bibliography includes 242 references.
Collapse
|
12
|
Lyakin OY, Bryliakov KP, Talsi EP. Non-heme oxoiron(V) intermediates in chemo-, regio- and stereoselective oxidation of organic substrates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Rice DB, Munasinghe A, Grotemeyer EN, Burr AD, Day VW, Jackson TA. Structure and Reactivity of (μ-Oxo)dimanganese(III,III) and Mononuclear Hydroxomanganese(III) Adducts Supported by Derivatives of an Amide-Containing Pentadentate Ligand. Inorg Chem 2019; 58:622-636. [PMID: 30525518 DOI: 10.1021/acs.inorgchem.8b02794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mononuclear MnIII-hydroxo and dinuclear (μ-oxo)dimanganese(III,III) complexes were prepared using derivatives of the pentadentate, amide-containing dpaq ligand (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate). Each of these ligand derivatives (referred to as dpaq5R) contained a substituent R (where R = OMe, Cl, and NO2) at the 5-position of the quinolinyl group. Generation of the MnIII complexes was achieved by either O2 oxidation of MnII precursors (for [MnII(dpaq5OMe)]+ and [MnII(dpaq5Cl)]+ or PhIO oxidation (for [MnII(dpaq5NO2)]+). For each oxidized complex, 1H NMR experiments provided evidence of a water-dependent equilibrium between paramagnetic [MnIII(OH)(dpaq5R)]+ and an antiferromagnetically coupled [MnIIIMnIII(μ-O)(dpaq5R)2]2+ species in acetonitrile, with the addition of water favoring the MnIII-hydroxo species. This conversion could also be monitored by electronic absorption spectroscopy. Solid-state X-ray crystal structures for each [MnIIIMnIII(μ-O)(dpaq5R)2](OTf)2 complex revealed a nearly linear Mn-O-Mn core (angle of ca. 177°), with short Mn-O distances near 1.79 Å, and a Mn···Mn separation of 3.58 Å. X-ray crystallographic information was also obtained for the mononuclear [MnIII(OH)(dpaq5Cl)](OTf) complex, which has a short Mn-O(H) distance of 1.810(2) Å. The influence of the 5-substituted quinolinyl moiety on the electronic properties of the [MnIII(OH)(dpaq5R)]+ complexes was demonstrated through shifts in a number of 1H NMR resonances, as well as a steady increase in the MnIII/II cyclic voltammetry peak potential in the order [MnIII(OH)(dpaq5OMe)]+ < [MnIII(OH)(dpaq)]+ < [MnIII(OH)(dpaq5Cl)]+ < [MnIII(OH)(dpaq5NO2)]+. These changes in oxidizing power of the MnIII-hydroxo adducts translated to only modest rate enhancements for TEMPOH oxidation by the [MnIII(OH)(dpaq5R)]+ complexes, with the most reactive [MnIII(OH)(dpaq5NO2)]+ complex showing a second-order rate constant only 9-fold larger than that of the least reactive [MnIII(OH)(dpaq5OMe)]+ complex. These modest rate changes were understood on the basis of density functional theory (DFT)-computed p Ka values for the corresponding [MnII(OH2)(dpaq5R)]+ complexes. Collectively, the experimental and DFT results reveal that the 5-substituted quinolinyl groups have an inverse influence on electron and proton affinity for the MnIII-hydroxo unit.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Aruna Munasinghe
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Andrew D Burr
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Victor W Day
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Timothy A Jackson
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
14
|
Rohner SS, Kinzel NW, Werlé C, Leitner W. Systematic ligand variation to modulate the electrochemical properties of iron and manganese complexes. Dalton Trans 2019; 48:13205-13211. [DOI: 10.1039/c9dt01343a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic series of iron(+iii) and manganese(+ii) complexes are investigated by cyclic voltammetry to elucidate how the electronic properties of the ligands influence overpotential and catalytic current in the context of water oxidation catalysis.
Collapse
Affiliation(s)
- Stefan S. Rohner
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Niklas W. Kinzel
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Max-Planck-Institute for Chemical Energy Conversion
| | - Christophe Werlé
- Max-Planck-Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Max-Planck-Institute for Chemical Energy Conversion
| |
Collapse
|
15
|
Kotani H, Kaida S, Ishizuka T, Mieda K, Sakaguchi M, Ogura T, Shiota Y, Yoshizawa K, Kojima T. Importance of the Reactant-State Potentials of Chromium(V)–Oxo Complexes to Determine the Reactivity in Hydrogen-Atom Transfer Reactions. Inorg Chem 2018; 57:13929-13936. [DOI: 10.1021/acs.inorgchem.8b02453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Suzue Kaida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kaoru Mieda
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Miyuki Sakaguchi
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
- Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishi-ku, Kyoto 615-8520, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
16
|
Rice DB, Massie AA, Jackson TA. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions. Acc Chem Res 2017; 50:2706-2717. [PMID: 29064667 DOI: 10.1021/acs.accounts.7b00343] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of MnIII-peroxo adducts and hydrogen-atom transfer reactivity of MnIV-oxo and MnIII-hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of MnIII-peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one MnIII-peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many MnIII-peroxo model complexes that decay to oxo-bridged-MnIIIMnIV dimers, decay of this MnIII-peroxo adduct yielded mononuclear MnIII-hydroxo and MnIV-oxo products, potentially resulting from O-O bond activation of the MnIII-peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important step in designing MnIII-peroxo complexes that convert cleanly to high-valent Mn-oxo species. Although some synthetic MnIV-oxo complexes show great potential for oxidizing substrates with strong C-H bonds, most MnIV-oxo species are sluggish oxidants. Both two-state reactivity and thermodynamic arguments have been put forth to explain these observations. To address these issues, we generated a series of MnIV-oxo complexes supported by neutral, pentadentate ligands with systematically perturbed equatorial donation. Kinetic investigations of these complexes revealed a correlation between equatorial ligand-field strength and hydrogen-atom and oxygen-atom transfer reactivity. While this trend can be understood on the basis of the two-state reactivity model, the reactivity trend also correlates with variations in MnIII/IV reduction potential caused by changes in the ligand field. This work demonstrates the dramatic influence simple ligand perturbations can have on reactivity but also illustrates the difficulties in understanding the precise basis for a change in reactivity. In the enzyme manganese lipoxygenase, an active-site MnIII-hydroxo adduct initiates substrate oxidation by abstracting a hydrogen atom from a C-H bond. Precedent for this chemistry from synthetic MnIII-hydroxo centers is rare. To better understand hydrogen-atom transfer by MnIII centers, we developed a pair of MnIII-hydroxo complexes, formed in high yield from dioxygen oxidation of MnII precursors, capable of attacking weak O-H and C-H bonds. Kinetic and computational studies show a delicate interplay between thermodynamic and steric influences in hydrogen-atom transfer reactivity, underscoring the potential of MnIII-hydroxo units as mild oxidants.
Collapse
Affiliation(s)
- Derek B. Rice
- Department of Chemistry and
Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Allyssa A. Massie
- Department of Chemistry and
Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Timothy A. Jackson
- Department of Chemistry and
Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
17
|
Ghosh M, Pattanayak S, Dhar BB, Singh KK, Panda C, Sen Gupta S. Selective C-H Bond Oxidation Catalyzed by the Fe-bTAML Complex: Mechanistic Implications. Inorg Chem 2017; 56:10852-10860. [PMID: 28841016 DOI: 10.1021/acs.inorgchem.7b00453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonheme iron complexes bearing tetradentate N-atom-donor ligands with cis labile sites show great promise for chemoselective aliphatic C-H hydroxylation. However, several challenges still limit their widespread application. We report a mechanism-guided development of a peroxidase mimicking iron complex based on the bTAML macrocyclic ligand framework (Fe-bTAML: biuret-modified tetraamido macrocyclic ligand) as a catalyst to perform selective oxidation of unactivated 3° bonds with unprecedented regioselectivity (3°:2° of 110:1 for adamantane oxidation), high stereoretention (99%), and turnover numbers (TONs) up to 300 using mCPBA as the oxidant. Ligand decomposition pathways involving acid-induced demetalation were identified, and this led to the development of more robust and efficient Fe-bTAML complexes that catalyzed chemoselective C-H oxidation. Mechanistic studies, which include correlation of the product formed with the FeV(O) reactive intermediates generated during the reaction, indicate that the major pathway involves the cleavage of C-H bonds by FeV(O). When these oxidations were performed in the presence of air, the yield of the oxidized product doubled, but the stereoretention remained unchanged. On the basis of 18O labeling and other mechanistic studies, we propose a mechanism that involves the dual activation of mCPBA and O2 by Fe-bTAML, leading to formation of the FeV(O) intermediate. This high-valent iron oxo remains the active intermediate for most of the reaction, resulting in high regio- and stereoselectivity during product formation.
Collapse
Affiliation(s)
- Munmun Ghosh
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Santanu Pattanayak
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Basab B Dhar
- Department of Chemistry, Shiv Nadar University , Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kundan K Singh
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Chakadola Panda
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246, India
| |
Collapse
|
18
|
Nomura A, Iwamoto Y, Arakawa K, Kashida A, Kodera M, Hitomi Y. DNA Cleavage through Reductive Dioxygen Activation by Iron-Bleomycin Mimics with Carboxamido Ligation: Correlation between DNA Cleavage Efficacy and Redox Potential. CHEM LETT 2017. [DOI: 10.1246/cl.170354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akiko Nomura
- Center for Nanoscience Research, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| | - Yuji Iwamoto
- Center for Nanoscience Research, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| | - Kengo Arakawa
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| | - Akihiro Kashida
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| | - Masahito Kodera
- Center for Nanoscience Research, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| | - Yutaka Hitomi
- Center for Nanoscience Research, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321
| |
Collapse
|
19
|
Klimochkin YN, Yudashkin AV, Zhilkina EO, Ivleva EA, Moiseev IK, Oshis YF. One-pot synthesis of cage alcohols. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017070028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Bohn A, Sénéchal‐David K, Vanoutryve J, Guillot R, Rivière E, Banse F. Synthesis and Characterization of Iron(II) Complexes with a BPMEN‐Type Ligand Bearing π‐Accepting Nitro Groups. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antoine Bohn
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Katell Sénéchal‐David
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Jonathan Vanoutryve
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris Sud, Université Paris Saclay, CNRS 91405 Orsay CEDEX France
| |
Collapse
|
21
|
|
22
|
Olivo G, Cussó O, Costas M. Biologically Inspired C−H and C=C Oxidations with Hydrogen Peroxide Catalyzed by Iron Coordination Complexes. Chem Asian J 2016; 11:3148-3158. [DOI: 10.1002/asia.201601170] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/26/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Giorgio Olivo
- Departament de Química I Institut de Química Computacional i Catàlisi (IQCC); Universitat de Girona; Facultat de Ciències, Campus de Montilivi; Girona 17071 Spain
| | - Olaf Cussó
- Departament de Química I Institut de Química Computacional i Catàlisi (IQCC); Universitat de Girona; Facultat de Ciències, Campus de Montilivi; Girona 17071 Spain
| | - Miquel Costas
- Departament de Química I Institut de Química Computacional i Catàlisi (IQCC); Universitat de Girona; Facultat de Ciències, Campus de Montilivi; Girona 17071 Spain
| |
Collapse
|
23
|
Rice DB, Wijeratne GB, Burr AD, Parham JD, Day VW, Jackson TA. Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex. Inorg Chem 2016; 55:8110-20. [PMID: 27490691 DOI: 10.1021/acs.inorgchem.6b01217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mononuclear hydroxomanganese(III) complex was synthesized utilizing the N5 amide-containing ligand 2-[bis(pyridin-2-ylmethyl)]amino-N-2-methyl-quinolin-8-yl-acetamidate (dpaq(2Me) ). This complex is similar to previously reported [Mn(III)(OH)(dpaq(H))](+) [Inorg. Chem. 2014, 53, 7622-7634] but contains a methyl group adjacent to the hydroxo moiety. This α-methylquinoline group in [Mn(III)(OH)(dpaq(2Me))](+) gives rise to a 0.1 Å elongation in the Mn-N(quinoline) distance relative to [Mn(III)(OH)(dpaq(H))](+). Similar bond elongation is observed in the corresponding Mn(II) complex. In MeCN, [Mn(III)(OH)(dpaq(2Me))](+) reacts rapidly with 2,2',6,6'-tetramethylpiperidine-1-ol (TEMPOH) at -35 °C by a concerted proton-electron transfer (CPET) mechanism (second-order rate constant k2 of 3.9(3) M(-1) s(-1)). Using enthalpies and entropies of activation from variable-temperature studies of TEMPOH oxidation by [Mn(III)(OH)(dpaq(2Me))](+) (ΔH(‡) = 5.7(3) kcal(-1) M(-1); ΔS(‡) = -41(1) cal M(-1) K(-1)), it was determined that [Mn(III)(OH)(dpaq(2Me))](+) oxidizes TEMPOH ∼240 times faster than [Mn(III)(OH)(dpaq(H))](+). The [Mn(III)(OH)(dpaq(2Me))](+) complex is also capable of oxidizing the stronger O-H and C-H bonds of 2,4,6-tri-tert-butylphenol and xanthene, respectively. However, for these reactions [Mn(III)(OH)(dpaq(2Me))](+) displays, at best, modest rate enhancement relative to [Mn(III)(OH)(dpaq(H))](+). A combination of density function theory (DFT) and cyclic voltammetry studies establish an increase in the Mn(III)/Mn(II) reduction potential of [Mn(III)(OH)(dpaq(2Me))](+) relative to [Mn(III)(OH)(dpaq(H))](+), which gives rise to a larger driving force for CPET for the former complex. Thus, more favorable thermodynamics for [Mn(III)(OH)(dpaq(2Me))](+) can account for the dramatic increase in rate with TEMPOH. For the more sterically encumbered substrates, DFT computations suggest that this effect is mitigated by unfavorable steric interactions between the substrate and the α-methylquinoline group of the dpaq(2Me) ligand. The DFT calculations, which reproduce the experimental activation free energies quite well, provide the first examination of the transition-state structure of mononuclear Mn(III)(OH) species during a CPET reaction.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Gayan B Wijeratne
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Andrew D Burr
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Joshua D Parham
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Victor W Day
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
24
|
Zhang N, Geronimo I, Paneth P, Schindelka J, Schaefer T, Herrmann H, Vogt C, Richnow HH. Analyzing sites of OH radical attack (ring vs. side chain) in oxidation of substituted benzenes via dual stable isotope analysis (δ(13)C and δ(2)H). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:484-494. [PMID: 26520272 DOI: 10.1016/j.scitotenv.2015.10.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
OH radicals generated by the photolysis of H2O2 can degrade aromatic contaminants by either attacking the aromatic ring to form phenolic products or oxidizing the substituent. We characterized these competing pathways by analyzing the carbon and hydrogen isotope fractionation (εC and εH) of various substituted benzenes. For benzene and halobenzenes that only undergo ring addition, low values of εC (-0.7‰ to -1.0‰) were observed compared with theoretical values (-7.2‰ to -8‰), possibly owing to masking effect caused by pre-equilibrium between the substrate and OH radical preceding the rate-limiting step. In contrast, the addition of OH radicals to nitrobenzene ring showed a higher εC (-3.9‰), probably due to the lower reactivity. Xylene isomers, anisole, aniline, N,N-dimethylaniline, and benzonitrile yielded normal εH values (-2.8‰ to -29‰) indicating the occurrence of side-chain reactions, in contrast to the inverse εH (11.7‰ to 30‰) observed for ring addition due to an sp(2) to sp(3) hybridization change at the reacting carbon. Inverse εH values for toluene (14‰) and ethylbenzene (30‰) were observed despite the formation of side-chain oxidation products, suggesting that ring addition has a larger contribution to isotope fractionation. Dual element isotope slopes (∆δ(2)H/∆δ(13)C) therefore allow identification of significant degradation pathways of aromatic compounds by photochemically induced OH radicals. Issues that should be addressed in future studies include quantitative determination of the contribution of each competing pathway to the observed isotope fractionation and characterization of physical processes preceding the reaction that could affect isotope fractionation.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Inacrist Geronimo
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Janine Schindelka
- Department of Chemistry, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Department of Chemistry, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Department of Chemistry, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
25
|
Olivo G, Nardi M, Vìdal D, Barbieri A, Lapi A, Gómez L, Lanzalunga O, Costas M, Di Stefano S. C-H Bond Oxidation Catalyzed by an Imine-Based Iron Complex: A Mechanistic Insight. Inorg Chem 2015; 54:10141-52. [PMID: 26457760 DOI: 10.1021/acs.inorgchem.5b01500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A family of imine-based nonheme iron(II) complexes (LX)2Fe(OTf)2 has been prepared, characterized, and employed as C-H oxidation catalysts. Ligands LX (X = 1, 2, 3, and 4) stand for tridentate imine ligands resulting from spontaneous condensation of 2-pycolyl-amine and 4-substituted-2-picolyl aldehydes. Fast and quantitative formation of the complex occurs just upon mixing aldehyde, amine, and Fe(OTf)2 in a 2:2:1 ratio in acetonitrile solution. The solid-state structures of (L1)2Fe(OTf)(ClO4) and (L3)2Fe(OTf)2 are reported, showing a low-spin octahedral iron center, with the ligands arranged in a meridional fashion. (1)H NMR analyses indicate that the solid-state structure and spin state is retained in solution. These analyses also show the presence of an amine-imine tautomeric equilibrium. (LX)2Fe(OTf)2 efficiently catalyze the oxidation of alkyl C-H bonds employing H2O2 as a terminal oxidant. Manipulation of the electronic properties of the imine ligand has only a minor impact on efficiency and selectivity of the oxidative process. A mechanistic study is presented, providing evidence that C-H oxidations are metal-based. Reactions occur with stereoretention at the hydroxylated carbon and selectively at tertiary over secondary C-H bonds. Isotopic labeling analyses show that H2O2 is the dominant origin of the oxygen atoms inserted in the oxygenated product. Experimental evidence is provided that reactions involve initial oxidation of the complexes to the ferric state, and it is proposed that a ligand arm dissociates to enable hydrogen peroxide binding and activation. Selectivity patterns and isotopic labeling studies strongly suggest that activation of hydrogen peroxide occurs by heterolytic O-O cleavage, without the assistance of a cis-binding water or alkyl carboxylic acid. The sum of these observations provides sound evidence that controlled activation of H2O2 at (LX)2Fe(OTf)2 differs from that occurring in biomimetic iron catalysts described to date.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy.,Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona , Campus de Montilivi, 17071 Girona, Spain
| | - Martina Nardi
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy
| | - Diego Vìdal
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona , Campus de Montilivi, 17071 Girona, Spain
| | - Alessia Barbieri
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy
| | - Andrea Lapi
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy.,Consortium of Chemical Catalysis and Reactivity, CIRCC Interuniversity , Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Laura Gómez
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona , Campus de Montilivi, 17071 Girona, Spain.,Serveis Tècnics de Recerca (STR), Universitat de Girona , Parc Cientı́fic i Tecnològic, E-17003 Girona, Spain
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy.,Consortium of Chemical Catalysis and Reactivity, CIRCC Interuniversity , Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona , Campus de Montilivi, 17071 Girona, Spain
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza" and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy.,Consortium of Chemical Catalysis and Reactivity, CIRCC Interuniversity , Via Celso Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
26
|
Ivleva EA, Platonov IA, Klimochkin YN. Improved approach towards synthesis of adamantane-1,3,5-triol. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215080071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Ren Q, Guo Y, Mills MR, Ryabov AD, Collins TJ. On the Iron(V) Reactivity of an Aggressive Tail-Fluorinated Tetraamido Macrocyclic Ligand (TAML) Activator. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Lindhorst AC, Haslinger S, Kühn FE. Molecular iron complexes as catalysts for selective C–H bond oxygenation reactions. Chem Commun (Camb) 2015; 51:17193-212. [DOI: 10.1039/c5cc07146a] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This feature article summarises recent developments in homogeneous C–H bond oxygenation catalysed by molecular iron complexes.
Collapse
Affiliation(s)
- A. C. Lindhorst
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - S. Haslinger
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - Fritz E. Kühn
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| |
Collapse
|
29
|
Haslinger S, Lindhorst AC, Kück JW, Cokoja M, Pöthig A, Kühn FE. Isocyanide substitution reactions at the trans labile sites of an iron(ii) N-heterocyclic carbene complex. RSC Adv 2015. [DOI: 10.1039/c5ra18270k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A variety of isocyanide-substituted Fe(ii) N-heterocyclic carbene (NHC) complexes has been synthesized, starting from an Fe(ii) NHC complex with an equatorial, tetradentate bis(pyridyl-NHC) ligand (NCCN).
Collapse
Affiliation(s)
- S. Haslinger
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - A. C. Lindhorst
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - J. W. Kück
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - M. Cokoja
- Chair of Inorganic and Organometallic Chemistry
- Technische Universität München (TUM)
- D-85747 Garching bei München
- Germany
| | - A. Pöthig
- Catalysis Research Center
- Technische Universität München (TUM)
- D-85747 Garching bei München
- Germany
| | - F. E. Kühn
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| |
Collapse
|
30
|
Hitomi Y, Iwamoto Y, Kashida A, Kodera M. Mononuclear nonheme iron(iii) complexes that show superoxide dismutase-like activity and antioxidant effects against menadione-mediated oxidative stress. Chem Commun (Camb) 2015; 51:8702-4. [DOI: 10.1039/c5cc02019k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron(iii) complexes with pentadentate monocarboxylamido ligands display excellent SOD-like antioxidant activity to reduce superoxide radicals in cultured cells.
Collapse
Affiliation(s)
- Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- 610-0321 Kyotanabe
- Japan
| | - Yuji Iwamoto
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- 610-0321 Kyotanabe
- Japan
| | - Akihiro Kashida
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- 610-0321 Kyotanabe
- Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- 610-0321 Kyotanabe
- Japan
| |
Collapse
|
31
|
Bryliakov KP, Talsi EP. Active sites and mechanisms of bioinspired oxidation with H2O2, catalyzed by non-heme Fe and related Mn complexes. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.06.009] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Milan M, Salamone M, Bietti M. Hydrogen Atom Transfer from 1,n-Alkanediamines to the Cumyloxyl Radical. Modulating C–H Deactivation Through Acid–Base Interactions and Solvent Effects. J Org Chem 2014; 79:5710-6. [DOI: 10.1021/jo5008493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michela Milan
- Dipartimento
di Scienze e
Tecnologie Chimiche, Università “Tor Vergata″, Via
della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Michela Salamone
- Dipartimento
di Scienze e
Tecnologie Chimiche, Università “Tor Vergata″, Via
della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Massimo Bietti
- Dipartimento
di Scienze e
Tecnologie Chimiche, Università “Tor Vergata″, Via
della Ricerca Scientifica, 1 I-00133 Rome, Italy
| |
Collapse
|
33
|
Hitomi Y, Iwamoto Y, Kodera M. Electronic tuning of nitric oxide release from manganese nitrosyl complexes by visible light irradiation: enhancement of nitric oxide release efficiency by the nitro-substituted quinoline ligand. Dalton Trans 2014; 43:2161-7. [DOI: 10.1039/c3dt51719e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|