1
|
Yadav S, Haas R, Boydas EB, Roemelt M, Happe T, Apfel UP, Stripp ST. Oxygen sensitivity of [FeFe]-hydrogenase: a comparative study of active site mimics inside vs. outside the enzyme. Phys Chem Chem Phys 2024; 26:19105-19116. [PMID: 38957092 DOI: 10.1039/d3cp06048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
[FeFe]-hydrogenase is nature's most efficient proton reducing and H2-oxidizing enzyme. However, biotechnological applications are hampered by the O2 sensitivity of this metalloenzyme, and the mechanism of aerobic deactivation is not well understood. Here, we explore the oxygen sensitivity of four mimics of the organometallic active site cofactor of [FeFe]-hydrogenase, [Fe2(adt)(CO)6-x(CN)x]x- and [Fe2(pdt)(CO)6-x(CN)x]x- (x = 1, 2) as well as the corresponding cofactor variants of the enzyme by means of infrared, Mössbauer, and NMR spectroscopy. Additionally, we describe a straightforward synthetic recipe for the active site precursor complex Fe2(adt)(CO)6. Our data indicate that the aminodithiolate (adt) complex, which is the synthetic precursor of the natural active site cofactor, is most oxygen sensitive. This observation highlights the significance of proton transfer in aerobic deactivation, and supported by DFT calculations facilitates an identification of the responsible reactive oxygen species (ROS). Moreover, we show that the ligand environment of the iron ions critically influences the reactivity with O2 and ROS like superoxide and H2O2 as the oxygen sensitivity increases with the exchange of ligands from CO to CN-. The trends in aerobic deactivation observed for the model complexes are in line with the respective enzyme variants. Based on experimental and computational data, a model for the initial reaction of [FeFe]-hydrogenase with O2 is developed. Our study underscores the relevance of model systems in understanding biocatalysis and validates their potential as important tools for elucidating the chemistry of oxygen-induced deactivation of [FeFe]-hydrogenase.
Collapse
Affiliation(s)
- Shanika Yadav
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Rieke Haas
- Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Esma Birsen Boydas
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str.2, 12489, Berlin, Germany
| | - Michael Roemelt
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str.2, 12489, Berlin, Germany
| | - Thomas Happe
- Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
- Department of Electrosynthesi, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Sven T Stripp
- Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Nayek A, Dey S, Patra S, Rana A, Serrano PN, George SJ, Cramer SP, Ghosh Dey S, Dey A. Facile electrocatalytic proton reduction by a [Fe-Fe]-hydrogenase bio-inspired synthetic model bearing a terminal CN - ligand. Chem Sci 2024; 15:2167-2180. [PMID: 38332837 PMCID: PMC10848691 DOI: 10.1039/d3sc05397k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024] Open
Abstract
An azadithiolate bridged CN- bound pentacarbonyl bis-iron complex, mimicking the active site of [Fe-Fe] H2ase is synthesized. The geometric and electronic structure of this complex is elucidated using a combination of EXAFS analysis, infrared and Mössbauer spectroscopy and DFT calculations. The electrochemical investigations show that complex 1 effectively reduces H+ to H2 between pH 0-3 at diffusion-controlled rates (1011 M-1 s-1) i.e. 108 s-1 at pH 3 with an overpotential of 140 mV. Electrochemical analysis and DFT calculations suggests that a CN- ligand increases the pKa of the cluster enabling hydrogen production from its Fe(i)-Fe(0) state at pHs much higher and overpotential much lower than its precursor bis-iron hexacarbonyl model which is active in its Fe(0)-Fe(0) state. The formation of a terminal Fe-H species, evidenced by spectroelectrochemistry in organic solvent, via a rate determining proton coupled electron transfer step and protonation of the adjacent azadithiolate, lowers the kinetic barrier leading to diffusion controlled rates of H2 evolution. The stereo-electronic factors enhance its catalytic rate by 3 order of magnitude relative to a bis-iron hexacarbonyl precursor at the same pH and potential.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Subal Dey
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Suman Patra
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Atanu Rana
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Pauline N Serrano
- Department of Chemistry, University of California Davis CA 94616 USA
| | - Simon J George
- Department of Chemistry, University of California Davis CA 94616 USA
- SETI Institute 339 Bernardo Ave, Suite, 200 Mountain View CA 94043 USA
| | - Stephen P Cramer
- Department of Chemistry, University of California Davis CA 94616 USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- SETI Institute 339 Bernardo Ave, Suite, 200 Mountain View CA 94043 USA
| | - Somdatta Ghosh Dey
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
3
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
4
|
Martini MA, Bikbaev K, Pang Y, Lorent C, Wiemann C, Breuer N, Zebger I, DeBeer S, Span I, Bjornsson R, Birrell JA, Rodríguez-Maciá P. Binding of exogenous cyanide reveals new active-site states in [FeFe] hydrogenases. Chem Sci 2023; 14:2826-2838. [PMID: 36937599 PMCID: PMC10016341 DOI: 10.1039/d2sc06098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
[FeFe] hydrogenases are highly efficient metalloenyzmes for hydrogen conversion. Their active site cofactor (the H-cluster) is composed of a canonical [4Fe-4S] cluster ([4Fe-4S]H) linked to a unique organometallic di-iron subcluster ([2Fe]H). In [2Fe]H the two Fe ions are coordinated by a bridging 2-azapropane-1,3-dithiolate (ADT) ligand, three CO and two CN- ligands, leaving an open coordination site on one Fe where substrates (H2 and H+) as well as inhibitors (e.g. O2, CO, H2S) may bind. Here, we investigate two new active site states that accumulate in [FeFe] hydrogenase variants where the cysteine (Cys) in the proton transfer pathway is mutated to alanine (Ala). Our experimental data, including atomic resolution crystal structures and supported by calculations, suggest that in these two states a third CN- ligand is bound to the apical position of [2Fe]H. These states can be generated both by "cannibalization" of CN- from damaged [2Fe]H subclusters as well as by addition of exogenous CN-. This is the first detailed spectroscopic and computational characterisation of the interaction of exogenous CN- with [FeFe] hydrogenases. Similar CN--bound states can also be generated in wild-type hydrogenases, but do not form as readily as with the Cys to Ala variants. These results highlight how the interaction between the first amino acid in the proton transfer pathway and the active site tunes ligand binding to the open coordination site and affects the electronic structure of the H-cluster.
Collapse
Affiliation(s)
- Maria Alessandra Martini
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Konstantin Bikbaev
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg Bioinorganic Chemistry Erlangen Germany
| | - Yunjie Pang
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- College of Chemistry, Beijing Normal University 100875 Beijing China
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Charlotte Wiemann
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
- Ruanda-Zentrum und Büro für Afrika-Kooperationen, Universität Koblenz-Landau, Universitätsstraße 1 56070 Koblenz Germany
| | - Nina Breuer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Ingrid Span
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg Bioinorganic Chemistry Erlangen Germany
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 Rue des Martyrs F-38054 Grenoble Cedex France
| | - James A Birrell
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
- School of Life Sciences, University of Essex Colchester CO4 3SQ UK
| | - Patricia Rodríguez-Maciá
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
5
|
Natarajan M, Kumar N, Joshi M, Stein M, Kaur‐Ghumaan S. Mechanism of Diiron Hydrogenase Complexes Controlled by Nature of Bridging Dithiolate Ligand. ChemistryOpen 2022; 11:e202100238. [PMID: 34981908 PMCID: PMC8734113 DOI: 10.1002/open.202100238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Bio-inorganic complexes inspired by hydrogenase enzymes are designed to catalyze the hydrogen evolution reaction (HER). A series of new diiron hydrogenase mimic complexes with one or two terminal tris(4-methoxyphenyl)phosphine and different μ-bridging dithiolate ligands and show catalytic activity towards electrochemical proton reduction in the presence of weak and strong acids. A series of propane- and benzene-dithiolato-bridged complexes was synthesized, crystallized, and characterized by various spectroscopic techniques and quantum chemical calculations. Their electrochemical properties as well as the detailed reaction mechanisms of the HER are elucidated by density functional theory (DFT) methods. The nature of the μ-bridging dithiolate is critically controlling the reaction and performance of the HER of the complexes. In contrast, terminal phosphine ligands have no significant effects on redox activities and mechanism. Mono- or di-substituted propane-dithiolate complexes afford a sequential reduction (electrochemical; E) and protonation (chemical; C) mechanism (ECEC), while the μ-benzene dithiolate complexes follow a different reaction mechanism and are more efficient HER catalysts.
Collapse
Affiliation(s)
| | - Naveen Kumar
- Department of ChemistryUniversity of DelhiDelhi110007India
| | - Meenakshi Joshi
- Max-Planck-Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | - Matthias Stein
- Max-Planck-Institute for Dynamics of Complex Technical SystemsMolecular Simulations and Design GroupSandtorstrasse 139106MagdeburgGermany
| | | |
Collapse
|
6
|
Pandey I, Agarwal T, Mobin SM, Stein M, Kaur-Ghumaan S. Switching Site Reactivity in Hydrogenase Model Systems by Introducing a Pendant Amine Ligand. ACS OMEGA 2021; 6:4192-4203. [PMID: 33644543 PMCID: PMC7906588 DOI: 10.1021/acsomega.0c04901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogenases are versatile enzymatic catalysts with an unmet hydrogen evolution reactivity (HER) from synthetic bio-inspired systems. The binuclear active site only has one-site reactivity of the distal Fed atom. Here, binuclear complexes [Fe2(CO)5(μ-Mebdt)(P(4-C6H4OCH3)3)] 1 and [Fe2(CO)5(μ-Mebdt)(PPh2Py)] 2 are presented, which show electrocatalytic activity in the presence of weak acids as a proton source for the HER. Despite almost identical structural and spectroscopic properties (bond distances and angles from single-crystal X-ray; IR, UV/vis, and NMR), introduction of a nitrogen base atom in the phosphine ligand in 2 markedly changes site reactivity. The bridging benzenedithiolate ligand Mebdt interacts with the terminal ligand's phenyl aromatic rings and stabilizes the reduced states of the catalysts. Although 1 with monodentate phosphine terminal ligands only shows a distal iron atom HER activity by a sequence of electrochemical and protonation steps, the lone pair of pyridine nitrogen in 2 acts as the primary site of protonation. This swaps the iron atom catalytic activity toward the proximal iron for complex 2. Density-functional theory (DFT) calculations reveal the role of terminal phosphines ligands without/with pendant amines by directing the proton transfer steps. The reactivity of 1 is a thiol-based protonation of a dangling bond in 1- and distal iron hydride mechanism, which may follow either an ECEC or EECC sequence, depending on the choice of acid. The pendant amine in 2 enables a terminal ligand protonation and an ECEC reactivity. The introduction of a terminal nitrogen atom enables the control of site reactivity in a binuclear system.
Collapse
Affiliation(s)
| | - Tashika Agarwal
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Shaikh M. Mobin
- Discipline
of Chemistry, Indian Institute of Technology
Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Matthias Stein
- Max
Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Sandeep Kaur-Ghumaan
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Max
Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
7
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
8
|
Möller F, Piontek S, Miller RG, Apfel UP. From Enzymes to Functional Materials-Towards Activation of Small Molecules. Chemistry 2017; 24:1471-1493. [PMID: 28816379 DOI: 10.1002/chem.201703451] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Indexed: 12/12/2022]
Abstract
The design of non-noble metal-containing heterogeneous catalysts for the activation of small molecules is of utmost importance for our society. While nature possesses very sophisticated machineries to perform such conversions, rationally designed catalytic materials are rare. Herein, we aim to raise the awareness of the overall common design and working principles of catalysts incorporating aspects of biology, chemistry, and material sciences.
Collapse
Affiliation(s)
- Frauke Möller
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Stefan Piontek
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Reece G Miller
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I/ Bioinorganic Chemistry, Ruhr-University Bochum, Universitätsstaße 150, 44801, Bochum, Germany
| |
Collapse
|
9
|
Li CG, Wang SL, Shang JY. Bis(diphenylphosphino)ferrocene as an intramolecular bridging ligand in N-functionally substituted 1,3-azapropanedithiolate diiron complexes: synthesis and catalysis of proton reduction. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1225296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chang-Gong Li
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Song-Lin Wang
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Jing-Yan Shang
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| |
Collapse
|
10
|
Lunsford AM, Beto CC, Ding S, Erdem ÖF, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Cyanide-bridged iron complexes as biomimetics of tri-iron arrangements in maturases of the H cluster of the di-iron hydrogenase. Chem Sci 2016; 7:3710-3719. [PMID: 30009000 PMCID: PMC6008931 DOI: 10.1039/c6sc00213g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/18/2016] [Indexed: 01/13/2023] Open
Abstract
Concepts from organometallic chemistry are used to define possibilities of cyanide as a docking unit for bioassembly processes.
Developing from certain catalytic processes required for ancient life forms, the H2 processing enzymes [NiFe]- and [FeFe]-hydrogenase (H2ase) have active sites that are organometallic in composition, possessing carbon monoxide and cyanide as ligands. Simple synthetic analogues of the 2Fe portion of the active site of [FeFe]-H2ase have been shown to dock into the empty carrier (maturation) protein, apo-Hyd-F, via the bridging ability of a terminal cyanide ligand from a low valent FeIFeI unit to the iron of a 4Fe4S cluster of Hyd-F, with spectral evidence indicating CN isomerization during the coupling process (Berggren, et al., Nature, 2013, 499, 66–70). To probe the requirements for such cyanide couplings, we have prepared and characterized four cyanide-bridged analogues of 3-Fe systems with features related to the organoiron moiety within the loaded HydF protein. As in classical organometallic chemistry, the orientation of the CN bridge in the biomimetics is determined by the precursor reagents; no cyanide flipping or linkage isomerization was observed. Density functional theory computations evaluated the energetics of cyanide isomerization in such [FeFe]–CN–Fe ⇌ [FeFe]–NC–Fe units, and found excessively high barriers account for the failure to observe the alternative isomers. These results highlight roles for cyanide as an unusual ligand in biology that may stabilize low spin iron in [FeFe]-hydrogenase, and can act as a bridge connecting multi-iron units during bioassembly of the active site.
Collapse
Affiliation(s)
- Allen M Lunsford
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Christopher C Beto
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Özlen F Erdem
- Department of Physics , Middle East Technical University , 06800 Ankara , Turkey
| | - Ning Wang
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Nattamai Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|
11
|
Adamska-Venkatesh A, Simmons TR, Siebel JF, Artero V, Fontecave M, Reijerse E, Lubitz W. Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Phys Chem Chem Phys 2015; 17:5421-30. [PMID: 25613229 DOI: 10.1039/c4cp05426a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenases are enzymes that catalyze the oxidation of H2 as well as the reduction of protons to form H2. The active site of [FeFe] hydrogenase is referred to as the "H-cluster" and consists of a "classical" [4Fe-4S] cluster connected via a bridging cysteine thiol group to a unique [2Fe]H sub-cluster, containing CN(-) and CO ligands as well as a bidentate azadithiolate ligand. It has been recently shown that the biomimetic [Fe2(adt)(CO)4(CN)2](2-) (adt(2-) = azadithiolate) complex resembling the diiron sub-cluster can be inserted in vitro into the apo-protein of [FeFe] hydrogenase, which contains only the [4Fe-4S] part of the H-cluster, resulting in a fully active enzyme. This synthetic tool allows convenient incorporation of a variety of diiron mimics, thus generating hydrogenases with artificial active sites. [FeFe] hydrogenase from Chlamydomonas reinhardtii maturated with the biomimetic complex [Fe2(pdt)(CO)4(CN)2](2-) (pdt(2-) = propanedithiolate), in which the bridging adt(2-) ligand is replaced by pdt(2-), can be stabilized in a state strongly resembling the active oxidized (Hox) state of the native protein. This state is EPR active and the signal originates from the mixed valence Fe(I)Fe(II) state of the diiron sub-cluster. Taking advantage of the variant with (15)N and (13)C isotope labeled CN(-) ligands we performed HYSCORE and ENDOR studies on this hybrid protein. The (13)C hyperfine couplings originating from both CN(-) ligands were determined and assigned. Only the (15)N coupling from the CN(-) ligand bound to the terminal iron was observed. Detailed orientation selective ENDOR and HYSCORE experiments at multiple field positions enabled the extraction of accurate data for the relative orientations of the nitrogen and carbon hyperfine tensors. These data are consistent with the crystal structure assuming a g-tensor orientation following the local symmetry of the binuclear sub-cluster.
Collapse
Affiliation(s)
- Agnieszka Adamska-Venkatesh
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Weber K, Weyhermüller T, Bill E, Erdem ÖF, Lubitz W. Design and Characterization of Phosphine Iron Hydrides: Toward Hydrogen-Producing Catalysts. Inorg Chem 2015; 54:6928-37. [DOI: 10.1021/acs.inorgchem.5b00911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katharina Weber
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Özlen F. Erdem
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
13
|
Pandey IK, Natarajan M, Kaur-Ghumaan S. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J Inorg Biochem 2014; 143:88-110. [PMID: 25528677 DOI: 10.1016/j.jinorgbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The design, syntheses and characteristics of metal carbonyl complexes with aromatic dithiolate linkers reported as bioinspired hydrogenase catalytic site models are described and reviewed. Among these the complexes capable of hydrogen generation have been discussed in detail. Comparisons have been made with carbonyl complexes having alkyl dithiolates as linkers between metal centers.
Collapse
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
14
|
Mulder DW, Ratzloff MW, Bruschi M, Greco C, Koonce E, Peters JW, King PW. Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase. J Am Chem Soc 2014; 136:15394-402. [PMID: 25286239 DOI: 10.1021/ja508629m] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proton-coupled electron transfer (PCET) is a fundamental process at the core of oxidation-reduction reactions for energy conversion. The [FeFe]-hydrogenases catalyze the reversible activation of molecular H2 through a unique metallocofactor, the H-cluster, which is finely tuned by the surrounding protein environment to undergo fast PCET transitions. The correlation of electronic and structural transitions at the H-cluster with proton-transfer (PT) steps has not been well-resolved experimentally. Here, we explore how modification of the conserved PT network via a Cys → Ser substitution at position 169 proximal to the H-cluster of Chlamydomonas reinhardtii [FeFe]-hydrogenase (CrHydA1) affects the H-cluster using electron paramagnetic resonance (EPR) and Fourier transform infrared (FTIR) spectroscopy. Despite a substantial decrease in catalytic activity, the EPR and FTIR spectra reveal different H-cluster catalytic states under reducing and oxidizing conditions. Under H2 or sodium dithionite reductive treatments, the EPR spectra show signals that are consistent with a reduced [4Fe-4S]H(+) subcluster. The FTIR spectra showed upshifts of νCO modes to energies that are consistent with an increase in oxidation state of the [2Fe]H subcluster, which was corroborated by DFT analysis. In contrast to the case for wild-type CrHydA1, spectra associated with Hred and Hsred states are less populated in the Cys → Ser variant, demonstrating that the exchange of -SH with -OH alters how the H-cluster equilibrates among different reduced states of the catalytic cycle under steady-state conditions.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
|