1
|
Westendorff KS, Hülsey MJ, Wesley TS, Román-Leshkov Y, Surendranath Y. Electrically driven proton transfer promotes Brønsted acid catalysis by orders of magnitude. Science 2024; 383:757-763. [PMID: 38359117 DOI: 10.1126/science.adk4902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Electric fields play a key role in enzymatic catalysis and can enhance reaction rates by 100,000-fold, but the same rate enhancements have yet to be achieved in thermochemical heterogeneous catalysis. In this work, we probe the influence of catalyst potential and interfacial electric fields on heterogeneous Brønsted acid catalysis. We observed that variations in applied potential of ~380 mV led to a 100,000-fold rate enhancement for 1-methylcyclopentanol dehydration, which was catalyzed by carbon-supported phosphotungstic acid. Mechanistic studies support a model in which the interfacial electrostatic potential drop drives quasi-equilibrated proton transfer to the adsorbed substrate prior to rate-limiting C-O bond cleavage. Large increases in rate with potential were also observed for the same reaction catalyzed by Ti/TiOyHx and for the Friedel Crafts acylation of anisole with acetic anhydride by carbon-supported phosphotungstic acid.
Collapse
Affiliation(s)
- Karl S Westendorff
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Max J Hülsey
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thejas S Wesley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yogesh Surendranath
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Spatola E, Frateloreto F, Del Giudice D, Olivo G, Di Stefano S. Cyclization Reactions in Confined Space. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
3
|
Norjmaa G, Himo F, Maréchal J, Ujaque G. Catalysis by [Ga 4 L 6 ] 12- Metallocage on the Nazarov Cyclization: The Basicity of Complexed Alcohol is Key. Chemistry 2022; 28:e202201792. [PMID: 35859038 PMCID: PMC9804567 DOI: 10.1002/chem.202201792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/05/2023]
Abstract
The Nazarov cyclization is investigated in solution and within K12 [Ga4 L6 ] supramolecular organometallic cage by means of computational methods. The reaction needs acidic condition in solution but works at neutral pH in the presence of the metallocage. The reaction steps for the process are analogous in both media: (a) protonation of the alcohol group, (b) water loss and (c) cyclization. The relative Gibbs energies of all the steps are affected by changing the environment from solvent to the metallocage. The first step in the mechanism, the alcohol protonation, turns out to be the most critical one for the acceleration of the reaction inside the metallocage. In order to calculate the relative stability of protonated alcohol inside the cavity, we propose a computational scheme for the calculation of basicity for species inside cavities and can be of general use. These results are in excellent agreement with the experiments, identifying key steps of catalysis and providing an in-depth understanding of the impact of the metallocage on all the reaction steps.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| |
Collapse
|
4
|
Nguyen QNN, Xia KT, Zhang Y, Chen N, Morimoto M, Pei X, Ha Y, Guo J, Yang W, Wang LP, Bergman RG, Raymond KN, Toste FD, Tantillo DJ. Source of Rate Acceleration for Carbocation Cyclization in Biomimetic Supramolecular Cages. J Am Chem Soc 2022; 144:11413-11424. [PMID: 35699585 DOI: 10.1021/jacs.2c04179] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The results of quantum chemical and molecular dynamics calculations reveal that polyanionic gallium-based cages accelerate cyclization reactions of pentadienyl alcohols as a result of substrate cage interactions, preferential binding of reactive conformations of substrate/H3O+ pairs, and increased substrate basicity. However, the increase in basicity dominates. Experimental structure-activity relationship studies in which the metal vertices and overall charge of the cage are varied confirm the model derived via calculations.
Collapse
Affiliation(s)
- Quynh Nhu N Nguyen
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Kay T Xia
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yue Zhang
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Mariko Morimoto
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaokun Pei
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
5
|
Piskorz TK, Martí-Centelles V, Young TA, Lusby PJ, Duarte F. Computational Modeling of Supramolecular Metallo-organic Cages-Challenges and Opportunities. ACS Catal 2022; 12:5806-5826. [PMID: 35633896 PMCID: PMC9127791 DOI: 10.1021/acscatal.2c00837] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Indexed: 01/18/2023]
Abstract
Self-assembled metallo-organic cages have emerged as promising biomimetic platforms that can encapsulate whole substrates akin to an enzyme active site. Extensive experimental work has enabled access to a variety of structures, with a few notable examples showing catalytic behavior. However, computational investigations of metallo-organic cages are scarce, not least due to the challenges associated with their modeling and the lack of accurate and efficient protocols to evaluate these systems. In this review, we discuss key molecular principles governing the design of functional metallo-organic cages, from the assembly of building blocks through binding and catalysis. For each of these processes, computational protocols will be reviewed, considering their inherent strengths and weaknesses. We will demonstrate that while each approach may have its own specific pitfalls, they can be a powerful tool for rationalizing experimental observables and to guide synthetic efforts. To illustrate this point, we present several examples where modeling has helped to elucidate fundamental principles behind molecular recognition and reactivity. We highlight the importance of combining computational and experimental efforts to speed up supramolecular catalyst design while reducing time and resources.
Collapse
Affiliation(s)
- Tomasz K. Piskorz
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Valencia 46022, Spain
| | - Tom A. Young
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
6
|
Saha R, Mondal B, Mukherjee PS. Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chem Rev 2022; 122:12244-12307. [PMID: 35438968 DOI: 10.1021/acs.chemrev.1c00811] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The employment of weak intermolecular interactions in supramolecular chemistry offers an alternative approach to project artificial chemical environments like the active sites of enzymes. Discrete molecular architectures with defined shapes and geometries have become a revolutionary field of research in recent years because of their intrinsic porosity and ease of synthesis using dynamic non-covalent/covalent interactions. Several porous molecular cages have been constructed from simple building blocks by self-assembly, which undergoes many self-correction processes to form the final architecture. These supramolecular systems have been developed to demonstrate numerous applications, such as guest stabilization, drug delivery, catalysis, smart materials, and many other related fields. In this respect, catalysis in confined nanospaces using such supramolecular cages has seen significant growth over the years. These porous discrete cages contain suitable apertures for easy intake of substrates and smooth release of products to exhibit exceptional catalytic efficacy. This review highlights recent advancements in catalytic activity influenced by the nanocavities of hydrogen-bonded cages, metal-ligand coordination cages, and dynamic or reversible covalently bonded organic cages in different solvent media. Synthetic strategies for these three types of supramolecular systems are discussed briefly and follow similar and simplistic approaches manifested by simple starting materials and benign conditions. These examples demonstrate the progress of various functionalized molecular cages for specific chemical transformations in aqueous and nonaqueous media. Finally, we discuss the enduring challenges related to porous cage compounds that need to be overcome for further developments in this field of work.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495 009, Chhattisgarh, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
7
|
Léonard NG, Dhaoui R, Chantarojsiri T, Yang JY. Electric Fields in Catalysis: From Enzymes to Molecular Catalysts. ACS Catal 2021; 11:10923-10932. [DOI: 10.1021/acscatal.1c02084] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nadia G. Léonard
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Rakia Dhaoui
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
8
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
9
|
Sturm L, Göb CR, Oppel IM. Anion Directed Selective Synthesis of Supramolecular Metallocycles and Related Coordination Dimers. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lisa Sturm
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christian R. Göb
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Iris M. Oppel
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
10
|
Paul A, Shipman MA, Onabule DY, Sproules S, Symes MD. Selective aldehyde reductions in neutral water catalysed by encapsulation in a supramolecular cage. Chem Sci 2021; 12:5082-5090. [PMID: 34163748 PMCID: PMC8179549 DOI: 10.1039/d1sc00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/11/2021] [Indexed: 11/21/2022] Open
Abstract
The enhancement of reactivity inside supramolecular coordination cages has many analogies to the mode of action of enzymes, and continues to inspire the design of new catalysts for a range of reactions. However, despite being a near-ubiquitous class of reactions in organic chemistry, enhancement of the reduction of carbonyls to their corresponding alcohols remains very much underexplored in supramolecular coordination cages. Herein, we show that encapsulation of small aromatic aldehydes inside a supramolecular coordination cage allows the reduction of these aldehydes with the mild reducing agent sodium cyanoborohydride to proceed with high selectivity (ketones and esters are not reduced) and in good yields. In the absence of the cage, low pH conditions are essential for any appreciable conversion of the aldehydes to the alcohols. In contrast, the specific microenvironment inside the cage allows this reaction to proceed in bulk solution that is pH-neutral, or even basic. We propose that the cage acts to stabilise the protonated oxocarbenium ion reaction intermediates (enhancing aldehyde reactivity) whilst simultaneously favouring the encapsulation and reduction of smaller aldehydes (which fit more easily inside the cage). Such dual action (enhancement of reactivity and size-selectivity) is reminiscent of the mode of operation of natural enzymes and highlights the tremendous promise of cage architectures as selective catalysts.
Collapse
Affiliation(s)
- Avishek Paul
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Michael A Shipman
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Dolapo Y Onabule
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Mark D Symes
- WestCHEM, School of Chemistry, University of Glasgow University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
11
|
Percástegui E, Ronson TK, Nitschke JR. Design and Applications of Water-Soluble Coordination Cages. Chem Rev 2020; 120:13480-13544. [PMID: 33238092 PMCID: PMC7760102 DOI: 10.1021/acs.chemrev.0c00672] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.
Collapse
Affiliation(s)
- Edmundo
G. Percástegui
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Química, Ciudad UniversitariaUniversidad
Nacional Autónoma de México, Ciudad de México 04510, México
- Centro
Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, 50200 Estado de México, México
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
12
|
Taylor CGP, Metherell AJ, Argent SP, Ashour FM, Williams NH, Ward MD. Coordination-Cage-Catalysed Hydrolysis of Organophosphates: Cavity- or Surface-Based? Chemistry 2020; 26:3065-3073. [PMID: 31774202 PMCID: PMC7079011 DOI: 10.1002/chem.201904708] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/27/2022]
Abstract
The hydrophobic central cavity of a water-soluble M8 L12 cubic coordination cage can accommodate a range of phospho-diester and phospho-triester guests such as the insecticide "dichlorvos" (2,2-dichlorovinyl dimethyl phosphate) and the chemical warfare agent analogue di(isopropyl) chlorophosphate. The accumulation of hydroxide ions around the cationic cage surface due to ion-pairing in solution generates a high local pH around the cage, resulting in catalysed hydrolysis of the phospho-triester guests. A series of control experiments unexpectedly demonstrates that-in marked contrast to previous cases-it is not necessary for the phospho-triester substrates to be bound inside the cavity for catalysed hydrolysis to occur. This suggests that catalysis can occur on the exterior surface of the cage as well as the interior surface, with the exterior-binding catalysis pathway dominating here because of the small binding constants for these phospho-triester substrates in the cage cavity. These observations suggest that cationic but hydrophobic surfaces could act as quite general catalysts in water by bringing substrates into contact with the surface (via the hydrophobic effect) where there is also a high local concentration of anions (due to ion pairing/electrostatic effects).
Collapse
Affiliation(s)
| | | | | | - Fatma M. Ashour
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | | | - Michael D. Ward
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
13
|
Abstract
The aldol condensation of indane-1,3-dione (ID) to give ‘bindone’ in water is catalysed by an M8L12 cubic coordination cage (Hw). The absolute rate of reaction is slow under weakly acidic conditions (pH 3–4), but in the absence of a catalyst it is undetectable. In water, the binding constant of ID in the cavity of Hw is ca. 2.4 (±1.2) × 103 M−1, giving a ∆G for the binding of −19.3 (±1.2) kJ mol−1. The crystal structure of the complex revealed the presence of two molecules of the guest ID stacked inside the cavity, giving a packing coefficient of 74% as well as another molecule hydrogen-bonded to the cage’s exterior surface. We suggest that the catalysis occurs due to the stabilisation of the enolate anion of ID by the 16+ surface of the cage, which also attracts molecules of neutral ID to the surface because of its hydrophobicity. The cage, therefore, brings together neutral ID and its enolate anion via two different interactions to catalyse the reaction, which—as the control experiments show—occurs at the exterior surface of the cage and not inside the cage cavity.
Collapse
|
14
|
Yadav S, Kannan P, Qiu G. Cavity-based applications of metallo-supramolecular coordination cages (MSCCs). Org Chem Front 2020. [DOI: 10.1039/d0qo00681e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review describes cavity-based applications of cage-like SCCs such as molecular recognition and separation, stabilization of reactive species by encapsulation, as drug delivery systems and as molecular flasks.
Collapse
Affiliation(s)
- Sarita Yadav
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Palanisamy Kannan
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| |
Collapse
|
15
|
Nijamudheen A, Datta A. Gold-Catalyzed Cross-Coupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and Applications. Chemistry 2019; 26:1442-1487. [PMID: 31657487 DOI: 10.1002/chem.201903377] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI /AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.
Collapse
Affiliation(s)
- A Nijamudheen
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India.,Department of Chemical & Biomedical Engineering, Florida A&M University-Florida State University, Joint College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India
| |
Collapse
|
16
|
Wei J, Zhao L, He C, Zheng S, Reek JNH, Duan C. Metal-Organic Capsules with NADH Mimics as Switchable Selectivity Regulators for Photocatalytic Transfer Hydrogenation. J Am Chem Soc 2019; 141:12707-12716. [PMID: 31319035 DOI: 10.1021/jacs.9b05351] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Switchable selective hydrogenation among the groups in multifunctional compounds is challenging because selective hydrogenation is of great interest in the synthesis of fine chemicals and pharmaceuticals as a result of the importance of key intermediates. Herein, we report a new approach to highly selectively (>99%) reducing C═X (X = O, N) over the thermodynamically more favorable nitro groups locating the substrate in a metal-organic capsule containing NADH active sites. Within the capsule, the NADH active sites reduce the double bonds via a typical 2e- hydride transfer hydrogenation, and the formed excited-state NAD+ mimics oxidize the reductant via two consecutive 1e- processes to regenerate the NADH active sites under illumination. Outside the capsule, nitro groups are highly selectively reduced through a typical 1e- hydrogenation. By combining photoinduced 1e- transfer regeneration outside the cage, both 1e- and 2e- hydrogenation can be switched controllably by varying the concentrations of the substrates and the redox potential of electron donors. This promising alternative approach, which could proceed under mild reaction conditions and use easy-to-handle hydrogen donors with enhanced high selectivity toward different groups, is based on the localization and differentiation of the 2e- and 1e- hydrogenation pathways inside and outside the capsules, provides a deep comprehension of photocatalytic microscopic reaction processes, and will allow the design and optimization of catalysts. We demonstrate the advantage of this method over typical hydrogenation that involves specific activation via well-modified catalytic sites and present results on the high, well-controlled, and switchable selectivity for the hydrogenation of a variety of substituted and bifunctional aldehydes, ketones, and imines.
Collapse
Affiliation(s)
- Jianwei Wei
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Sijia Zheng
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , Amsterdam 1098XH , The Netherlands
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| |
Collapse
|
17
|
Affiliation(s)
- Lin Wu
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
- School of Science, Westlake University 18 Shilongshan Road, Hangzhou Zhejiang 310024 China
| | - Yusheng Chen
- School of Science, Westlake University 18 Shilongshan Road, Hangzhou Zhejiang 310024 China
| | - Jingfang Pei
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
- School of Science, Westlake University 18 Shilongshan Road, Hangzhou Zhejiang 310024 China
| | - Min Tang
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
- School of Science, Westlake University 18 Shilongshan Road, Hangzhou Zhejiang 310024 China
| | - Shangshang Wang
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
- School of Science, Westlake University 18 Shilongshan Road, Hangzhou Zhejiang 310024 China
| | - Zhichang Liu
- School of Science, Westlake University 18 Shilongshan Road, Hangzhou Zhejiang 310024 China
| |
Collapse
|
18
|
Fang Y, Powell JA, Li E, Wang Q, Perry Z, Kirchon A, Yang X, Xiao Z, Zhu C, Zhang L, Huang F, Zhou HC. Catalytic reactions within the cavity of coordination cages. Chem Soc Rev 2019; 48:4707-4730. [PMID: 31339148 DOI: 10.1039/c9cs00091g] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural enzymes catalyze reactions in their substrate-binding cavities, exhibiting high specificity and efficiency. In an effort to mimic the structure and functionality of enzymes, discrete coordination cages were designed and synthesized. These self-assembled systems have a variety of confined cavities, which have been applied to accelerate conventional reactions, perform substrate-specific reactions, and manipulate regio- and enantio-selectivity. Many coordination cages or cage-catalyst composites have achieved unprecedented results, outperforming their counterparts in different catalytic reactions. This tutorial review summarizes recent developments of coordination cages across three key approaches to coordination cage catalysis: (1) cavity promoted reactions, (2) embedding of active sites in the structure of the cage, and (3) encapsulation of catalysts within the cage. Special emphasis of the review involves (1) introduction of the structure and property of the coordination cage, (2) discussion of the catalytic pathway mediated by the cage, (3) elucidation of the structure-property relationship between the cage and the designated reaction. This work will summarize the recent progress in supramolecular catalysis and attract more researchers to pursue cavity-promoted reactions using discrete coordination cages.
Collapse
Affiliation(s)
- Yu Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
20
|
Hong CM, Morimoto M, Kapustin EA, Alzakhem N, Bergman RG, Raymond KN, Toste FD. Deconvoluting the Role of Charge in a Supramolecular Catalyst. J Am Chem Soc 2018; 140:6591-6595. [PMID: 29767972 DOI: 10.1021/jacs.8b01701] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have demonstrated that the microenvironment of a highly anionic supramolecular catalyst can mimic the active sites of enzymes and impart rate accelerations of a million-fold or more. However, these microenvironments can be challenging to study, especially in the context of understanding which specific features of the catalyst are responsible for its high performance. We report here the development of an experimental mechanistic probe consisting of two isostructural catalysts. When examined in parallel transformations, the behavior of these catalysts provides insight relevant to the importance of anionic host charge on reactivity. These two catalysts exhibit similar host-substrate interactions, but feature a significant difference in overall anionic charge (12- and 8-). Within these systems, we compare the effect of constrictive binding in a net neutral aza-Cope rearrangement. We then demonstrate how the magnitude of anionic host charge has an exceptional influence on the reaction rates for a Nazarov cyclization, evidenced by an impressive 680-fold change in reaction rate as a consequence of a 33% reduction in catalyst charge.
Collapse
Affiliation(s)
- Cynthia M Hong
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Mariko Morimoto
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Eugene A Kapustin
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Nicola Alzakhem
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Robert G Bergman
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Kenneth N Raymond
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - F Dean Toste
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
21
|
Sgarlata C, Mugridge JS, Pluth MD, Zito V, Arena G, Raymond KN. Different and Often Opposing Forces Drive the Encapsulation and Multiple Exterior Binding of Charged Guests to a M 4 L 6 Supramolecular Vessel in Water. Chemistry 2017; 23:16813-16818. [PMID: 28898458 DOI: 10.1002/chem.201703202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 12/23/2022]
Abstract
The supramolecular assembly [Ga4 L6 ]12- acts as a nanoscale flask to mediate the reactivity of encapsulated reactive guests and also functions as a catalyst to carry out enzyme-like chemical transformations. The guest binding to the interior cavity and exterior of this host is difficult to untangle because multiple equilibria occur in solution, and only when refining simultaneously data obtained from different techniques, such as NMR, UV/Vis, and calorimetry, can the accurate solution thermodynamics of these host-guest systems be determined. This study reports the driving forces for the inclusion and stepwise exterior guest binding of different aliphatic quaternary ammonium guests to the [Ga4 L6 ]12- assembly. Encapsulation into the host cavity was found to be an entropy-driven process, whereas exterior ion association is driven either by enthalpically favorable attractive forces or by the entropy gain due to desolvation, depending on guest size and character. The analysis of the energetics of reaction may help predicting and understanding the intimate role and contribution of the transition state in those rate-accelerated reactions involving this supramolecular assembly as an enzyme-like molecular flask.
Collapse
Affiliation(s)
- Carmelo Sgarlata
- Department of Chemistry, University of California, Berkeley and Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720-1460, USA
| | - Jeffrey S Mugridge
- Department of Chemistry, University of California, Berkeley and Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720-1460, USA
| | - Michael D Pluth
- Department of Chemistry, University of California, Berkeley and Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720-1460, USA
| | - Valeria Zito
- Istituto di Biostrutture e Bioimmagini, CNR, UOS Catania, Via P. Gaifami 18, 95125, Catania, Italy
| | - Giuseppe Arena
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Kenneth N Raymond
- Department of Chemistry, University of California, Berkeley and Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720-1460, USA
| |
Collapse
|
22
|
Kim TY, Digal L, Gardiner MG, Lucas NT, Crowley JD. Octahedral [Pd6
L8
]12+
Metallosupramolecular Cages: Synthesis, Structures and Guest-Encapsulation Studies. Chemistry 2017; 23:15089-15097. [DOI: 10.1002/chem.201702518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Tae Y. Kim
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Lori Digal
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Michael G. Gardiner
- School of Physical Sciences (Chemistry); University of Tasmania; Hobart Australia
| | - Nigel T. Lucas
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - James D. Crowley
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| |
Collapse
|
23
|
|
24
|
Preston D, White KF, Lewis JEM, Vasdev RAS, Abrahams BF, Crowley JD. Solid-State Gas Adsorption Studies with Discrete Palladium(II) [Pd 2 (L) 4 ] 4+ Cages. Chemistry 2017; 23:10559-10567. [PMID: 28508442 DOI: 10.1002/chem.201701477] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 01/03/2023]
Abstract
The need for effective CO2 capture systems remains high, and due to their tunability, metallosupramolecular architectures are an attractive option for gas sorption. While the use of extended metal organic frameworks for gas adsorption has been extensively explored, the exploitation of discrete metallocage architectures to bind gases remains in its infancy. Herein the solid state gas adsorption properties of a series of [Pd2 (L)4 ]4+ lantern shaped coordination cages (L = variants of 2,6-bis(pyridin-3-ylethynyl)pyridine), which had solvent accessible internal cavities suitable for gas binding, have been investigated. The cages showed little interaction with dinitrogen gas but were able to take up CO2 . The best performing cage reversibly sorbed 1.4 mol CO2 per mol cage at 298 K, and 2.3 mol CO2 per mol cage at 258 K (1 bar). The enthalpy of binding was calculated to be 25-35 kJ mol-1 , across the number of equivalents bound, while DFT calculations on the CO2 binding in the cage gave ΔE for the cage-CO2 interaction of 23-28 kJ mol-1 , across the same range. DFT modelling suggested that the binding mode is a hydrogen bond between the carbonyl oxygen of CO2 and the internally directed hydrogen atoms of the cage.
Collapse
Affiliation(s)
- Dan Preston
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Keith F White
- School of Chemistry, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - James E M Lewis
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Roan A S Vasdev
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Brendan F Abrahams
- School of Chemistry, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
25
|
Sgarlata C, Giuffrida A, Trivedi ER, Pecoraro VL, Arena G. Anion Encapsulation Drives the Formation of Dimeric Gd III[15-metallacrown-5] 3+ Complexes in Aqueous Solution. Inorg Chem 2017; 56:4771-4774. [PMID: 28414219 DOI: 10.1021/acs.inorgchem.6b03043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallacrown complexes capable of sequestering dianions, as shown in the solid state, also exist in aqueous solution at neutral pH, as demonstrated by calorimetric and mass spectrometric data. The driving forces for the formation of these dimeric complexes in solution strongly depend on the chain length of the guest rather than its degree of unsaturation.
Collapse
Affiliation(s)
- Carmelo Sgarlata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania , Via A. Doria 6, 95125 Catania, Italy
| | - Alessandro Giuffrida
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania , Via A. Doria 6, 95125 Catania, Italy
| | - Evan R Trivedi
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Giuseppe Arena
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania , Via A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
26
|
Zhang D, Jamieson K, Guy L, Gao G, Dutasta JP, Martinez A. Tailored oxido-vanadium(V) cage complexes for selective sulfoxidation in confined spaces. Chem Sci 2017; 8:789-794. [PMID: 28451228 PMCID: PMC5299934 DOI: 10.1039/c6sc03045a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/04/2016] [Indexed: 01/31/2023] Open
Abstract
Five sets of oxido-vanadium(V) complexes, which include both cages and open structures, were prepared and tested in the catalytic oxidation of sulfides. It was found that the hemicryptophane complexes, which are simultaneously comprised of cyclotriveratrylene (CTV), binaphthol and oxido-vanadium(V) moieties, are the most efficient supramolecular catalysts. The specific shape of the confined hydrophobic space above the metal center leads to a strong improvement in the yield, selectivity and rate of the reaction, compared to the other catalysts investigated herein. A remarkable turnover number (TON) of 10 000 was obtained, which can be attributed to both the high reactivity and stability of the catalyst. Similarly to enzymes, the kinetic analysis shows that the mechanism of oxidation with the supramolecular catalysts obeys the Michaelis-Menten model, in which initial rate saturation occurs upon an increase in substrate concentration. This enzyme-like behavior is also supported by the competitive inhibition and substrate size-selectivity observed, which underline the crucial role played by the cavity.
Collapse
Affiliation(s)
- Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai , 200062 , P. R. China
- Laboratoire de Chimie , École Normale Supérieure de Lyon , CNRS , UCBL , 46 allée d'Italie , F-69364 Lyon , France
| | - Kelsey Jamieson
- Laboratoire de Chimie , École Normale Supérieure de Lyon , CNRS , UCBL , 46 allée d'Italie , F-69364 Lyon , France
| | - Laure Guy
- Laboratoire de Chimie , École Normale Supérieure de Lyon , CNRS , UCBL , 46 allée d'Italie , F-69364 Lyon , France
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , School of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai , 200062 , P. R. China
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie , École Normale Supérieure de Lyon , CNRS , UCBL , 46 allée d'Italie , F-69364 Lyon , France
| | - Alexandre Martinez
- Laboratoire de Chimie , École Normale Supérieure de Lyon , CNRS , UCBL , 46 allée d'Italie , F-69364 Lyon , France
- Aix Marseille Univ , CNRS , Centrale Marseille , iSm2 , Marseille , France .
| |
Collapse
|
27
|
|
28
|
Howlader P, Mukherjee PS. Face and edge directed self-assembly of Pd 12 tetrahedral nano-cages and their self-sorting. Chem Sci 2016; 7:5893-5899. [PMID: 30034731 PMCID: PMC6024303 DOI: 10.1039/c6sc02012g] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Reactions of a cis-blocked Pd(ii) 90° acceptor [cis-(tmeda)Pd(NO3)2] (M) with 1,4-di(1H-tetrazol-5-yl)benzene (H2L1 ) and [1,3,5-tri(1H-tetrazol-5-yl)benzene] (H3L2 ) in 1 : 1 and 3 : 2 molar ratios respectively, yielded soft metallogels G1 and G2 [tmeda = N,N,N',N'-tetramethylethane-1,2-diamine]. Post-metalation of the gels G1 and G2 with M yielded highly water-soluble edge and face directed self-assembled Pd12 tetrahedral nano-cages T1 and T2, respectively. Such facile conversion of Pd(ii) gels to discrete tetrahedral metallocages is unprecedented. Moreover, distinct self-sorting of these two tetrahedral cages of similar sizes was observed in the self-assembly of M with a mixture of H2L1 and H3L2 in aqueous medium. The edge directed tetrahedral cage (T1) was successfully used to perform Michael reactions of a series of water insoluble nitro-olefins assisted by encapsulation into the cage in aqueous medium.
Collapse
Affiliation(s)
- Prodip Howlader
- Inorganic and Physical Chemistry Department , Indian Institute of Science , Bangalore-560012 , India . ; ; Tel: +91-80-22933352
| | - Partha Sarathi Mukherjee
- Inorganic and Physical Chemistry Department , Indian Institute of Science , Bangalore-560012 , India . ; ; Tel: +91-80-22933352
| |
Collapse
|
29
|
Levin MD, Kaphan DM, Hong CM, Bergman RG, Raymond KN, Toste FD. Scope and Mechanism of Cooperativity at the Intersection of Organometallic and Supramolecular Catalysis. J Am Chem Soc 2016; 138:9682-93. [PMID: 27458778 DOI: 10.1021/jacs.6b05442] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The scope and mechanism of the microenvironment-catalyzed C(sp(3))-C(sp(3)) reductive elimination from transition metal complexes [Au(III), Pt(IV)] is explored. Experiments detailing the effect of structural perturbation of neutral and anionic spectator ligands, reactive alkyl ligands, solvent, and catalyst structure are disclosed. Indirect evidence for a coordinatively unsaturated encapsulated cationic intermediate is garnered via observation of several inactive donor-arrested inclusion complexes, including a crystallographically characterized encapsulated Au(III) cation. Finally, based on stoichiometric experiments under catalytically relevant conditions, a detailed mechanism is outlined for the dual supramolecular and platinum-catalyzed C-C coupling between methyl iodide and tetramethyltin. Determination of major platinum species present under catalytic conditions and subsequent investigation of their chemistry reveals an unexpected interplay between cis-trans isomerism and the supramolecular catalyst in a Pt(II)/Pt(IV) cycle, as well as several off-cycle reactions.
Collapse
Affiliation(s)
- Mark D Levin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - David M Kaphan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Cynthia M Hong
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
30
|
Bräuer TM, Zhang Q, Tiefenbacher K. Iminium Catalysis inside a Self-Assembled Supramolecular Capsule: Modulation of Enantiomeric Excess. Angew Chem Int Ed Engl 2016; 55:7698-701. [DOI: 10.1002/anie.201602382] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas M. Bräuer
- Department of Chemistry; Technical University of Munich; Lichtenbergstrasse 4 85747 Garching Germany
| | - Qi Zhang
- Department of Chemistry; Technical University of Munich; Lichtenbergstrasse 4 85747 Garching Germany
| | - Konrad Tiefenbacher
- Department of Chemistry; University of Basel; St. Johannsring 19 CH-4056 Basel Switzerland
| |
Collapse
|
31
|
Bräuer TM, Zhang Q, Tiefenbacher K. Iminiumkatalyse in einer selbstorganisierten supramolekularen Kapsel: Modulation des Enantiomerenüberschusses. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602382] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas M. Bräuer
- Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Qi Zhang
- Department Chemie; Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Konrad Tiefenbacher
- Departement Chemie; Universität Basel; St. Johannsring 19 CH-4056 Basel Schweiz
| |
Collapse
|
32
|
Vardhan H, Yusubov M, Verpoort F. Self-assembled metal–organic polyhedra: An overview of various applications. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.05.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Lai TL, Awada M, Floquet S, Roch-Marchal C, Watfa N, Marrot J, Haouas M, Taulelle F, Cadot E. Tunable Keplerate Type-Cluster “Mo132” Cavity with Dicarboxylate Anions. Chemistry 2015. [DOI: 10.1002/chem.201406648] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Brown CJ, Toste FD, Bergman RG, Raymond KN. Supramolecular catalysis in metal-ligand cluster hosts. Chem Rev 2015; 115:3012-35. [PMID: 25898212 DOI: 10.1021/cr4001226] [Citation(s) in RCA: 902] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Casey J Brown
- †Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - F Dean Toste
- †Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Robert G Bergman
- †Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,‡Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- †Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,‡Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Cook TR, Stang PJ. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem Rev 2015; 115:7001-45. [DOI: 10.1021/cr5005666] [Citation(s) in RCA: 1299] [Impact Index Per Article: 144.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Timothy R. Cook
- Department
of Chemistry, University at Buffalo, State University of New York, 359 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Peter J. Stang
- Department
of Chemistry, University of Utah, 315 S. 1400 E. Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
36
|
Hart-Cooper WM, Zhao C, Triano RM, Yaghoubi P, Ozores HL, Burford KN, Toste FD, Bergman RG, Raymond KN. The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations. Chem Sci 2015; 6:1383-1393. [PMID: 29560226 PMCID: PMC5811099 DOI: 10.1039/c4sc02735c] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/18/2014] [Indexed: 12/03/2022] Open
Abstract
The effect of host structure on the selectivity and mechanism of intramolecular Prins reactions is evaluated using K12Ga4L6 tetrahedral catalysts. The host structure was varied by modifying the structure of the chelating moieties and the size of the aromatic spacers. While variation in chelator substituents was generally observed to affect changes in rate but not selectivity, changing the host spacer afforded differences in efficiency and product diastereoselectivity. An extremely high number of turnovers (up to 840) was observed. Maximum rate accelerations were measured to be on the order of 105, which numbers among the largest magnitudes of transition state stabilization measured with a synthetic host-catalyst. Host/guest size effects were observed to play an important role in host-mediated enantioselectivity.
Collapse
Affiliation(s)
- William M Hart-Cooper
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Chen Zhao
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Rebecca M Triano
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Parastou Yaghoubi
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Haxel Lionel Ozores
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Kristen N Burford
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - F Dean Toste
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Robert G Bergman
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| | - Kenneth N Raymond
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Department of Chemistry , University of California , Berkeley , California 94720 , USA . ; ;
| |
Collapse
|
37
|
Howlader P, Mukherjee S, Saha R, Mukherjee PS. Conformation-selective coordination-driven self-assembly of a ditopic donor with PdII acceptors. Dalton Trans 2015; 44:20493-501. [DOI: 10.1039/c5dt03185k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different binding conformations of 3-(5-(pyridin-3-yl)-1H-1,2,4-triazol-3-yl)pyridine (L) yielded a self-assembled 3D cube and 2D macrocycles selectively depending on the nature of acceptors. Selection of a particular conformation of the donor L by a specific metal acceptor during self-assembly was corroborated well by a theoretical study.
Collapse
Affiliation(s)
- Prodip Howlader
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | - Sandip Mukherjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | - Rajat Saha
- Guru Ghasidas Central University
- Koni
- India
| | | |
Collapse
|
38
|
Xiao L, Sun S, Pei Z, Pei Y, Pang Y, Xu Y. A Ga(3+)self-assembled fluorescent probe for ATP imaging in vivo. Biosens Bioelectron 2014; 65:166-70. [PMID: 25461153 DOI: 10.1016/j.bios.2014.10.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is a functional molecule associated with many important biological processes. Fluorescent detection methods for ATP with facile performance and high selectivity are in demand. One of the possible multi-membered arrays assembled between DHBO and Ga(3+) ions was conducted in aqueous solution, which can selectively recognize ATP with fluorescence enhancement from ADP, AMP and other structurally similar nucleoside triphosphates in vitro and in vivo. ATP facilitates the interaction between DHBO and Ga(3+) ions, resulting in the fluorescence increase. The detection limit for ATP was calculated to be 5.49×10(-7)M, which is much lower than that of intracellular concentrations (1-10mM). In addition, DHBO-Ga(3+) can be applied to detect ATP-relevant enzyme activity.
Collapse
Affiliation(s)
- Liangliang Xiao
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shiguo Sun
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhichao Pei
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuxin Pei
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yi Pang
- Department of Chemistry & Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | - Yongqian Xu
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
39
|
Ito H, Shinoda S. Chirality Sensing and Size Discrimination of Anions by Macrotricyclic Cyclen-Disodium Complexes. ChemistryOpen 2014. [PMCID: PMC4280822 DOI: 10.1002/open.201402049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Hiroshi Ito
- Department of Chemistry, Osaka City University and JST, CRESTSugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan) E-mail:
| | - Satoshi Shinoda
- Department of Chemistry, Osaka City University and JST, CRESTSugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan) E-mail:
| |
Collapse
|
40
|
Elacqua E, Lye DS, Weck M. Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials. Acc Chem Res 2014; 47:2405-16. [PMID: 24905869 DOI: 10.1021/ar500128w] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Owing to the mastery exhibited by Nature in integrating both covalent and noncovalent interactions in a highly efficient manner, the quest to construct polymeric systems that rival not only the precision and fidelity but also the structure of natural systems has remained a daunting challenge. Supramolecular chemists have long endeavored to control the interplay between covalent and noncovalent bond formation, so as to examine and fully comprehend how function is predicated on self-assembly. The ability to reliably control polymer self-assembly is essential to generate "smart" materials and has the potential to tailor polymer properties (i.e., viscosity, electronic properties) through fine-tuning the noncovalent interactions that comprise the polymer architecture. In this context, supramolecular polymers have a distinct advantage over fully covalent systems in that they are dynamically modular, since noncovalent recognition motifs can be engineered to either impart a desired functionality within the overall architecture or provide a designed bias for the self-assembly process. In this Account, we describe engineering principles being developed and pursued by our group that exploit the orthogonal nature of noncovalent interactions, such as hydrogen bonding, metal coordination, and Coulombic interactions, to direct the self-assembly of functionalized macromolecules, resulting in the formation of supramolecular polymers. To begin, we describe our efforts to fabricate a modular poly(norbornene)-based scaffold via ring-opening metathesis polymerization (ROMP), wherein pendant molecular recognition elements based upon nucleobase-mimicking elements (e.g., thymine, diaminotriazine) or SCS-Pd(II) pincer were integrated within covalent monofunctional or symmetrically functionalized polymers. The simple polymer backbones exhibited reliable self-assembly with complementary polymers or small molecules. Within these systems, we applied successful protecting group strategies and template polymerizations to enhance the control afforded by ROMP. Main-chain-functionalized alternating block polymers based upon SCS-Pd(II) pincer-pyridine motifs were achieved through the combined exploitation of bimetallic initiators and supramolecularly functionalized terminators. Our initial design principles led to the successful fabrication of both main-chain- and side-chain-functionalized poly(norbornenes) via ROMP. Utilizing all of these techniques in concert led to engineering orthogonality while achieving complexity through the installation of multiple supramolecular motifs within the side chain, main chain, or both in our polymer systems. The exploitation and modification of design principles based upon functional ROMP initiators and terminators has resulted in the first synthesis of main-chain heterotelechelic polymers that self-assemble into A/B/C supramolecular triblock polymers composed of orthogonal cyanuric acid-Hamilton wedge and SCS-Pd(II) pincer-pyridine motifs. Furthermore, supramolecular A/B/A triblock copolymers were realized through the amalgamation of functionalized monomers, ROMP initiators, and terminators. To date, this ROMP-fabricated system represents the only known method to afford polymer main chains and side chains studded with orthogonal motifs. We end by discussing the impetus to attain functional materials via orthogonal self-assembly. Collectively, our studies suggest that combining covalent and noncovalent bonds in a well-defined and precise manner is an essential design element to achieve complex architectures. The results discussed in this Account illustrate the finesse associated with engineering orthogonal interactions within supramolecular systems and are considered essential steps toward developing complex biomimetic materials with high precision and fidelity.
Collapse
Affiliation(s)
- Elizabeth Elacqua
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United States
| | - Diane S. Lye
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United States
| | - Marcus Weck
- Molecular Design Institute and Department
of Chemistry, New York University, New York, New York 10003-6688, United States
| |
Collapse
|
41
|
Dale EJ, Vermeulen NA, Thomas AA, Barnes JC, Juríček M, Blackburn AK, Strutt NL, Sarjeant AA, Stern CL, Denmark SE, Stoddart JF. ExCage. J Am Chem Soc 2014; 136:10669-82. [DOI: 10.1021/ja5041557] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Edward J. Dale
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicolaas A. Vermeulen
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Andy A. Thomas
- Department
of Chemistry, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan C. Barnes
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Michal Juríček
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Anthea K. Blackburn
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nathan L. Strutt
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amy A. Sarjeant
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Scott E. Denmark
- Department
of Chemistry, University of Illinois, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|