1
|
Thakur A, Chaudhran PA, Sharma A. Water-recyclable and reusable fluorescent sensors for nerve gas mimetic detection. Analyst 2024; 149:4714-4722. [PMID: 39101457 DOI: 10.1039/d4an00789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Herein, the serendipitous discovery of two water-recyclable and reusable fluorescent sensors IMPC (cyan-blue-cyan) and IMPC-OH (green-blue-green) is reported for sensing nerve agent simulants diethylcyanophosphonate and diethylchlorophosphate, respectively, with high sensitivity, short response time, and low detection limits. The unique features of these probes are their regeneration with the addition of a green and cheap solvent, namely water in CHCl3, and ease of fabrication into a portable paper-strip system that can also be regenerated. Various spectroscopic studies were employed to understand the mechanism of sensing and regeneration of both probes; the results reveal that water plays a critical role in the hydrolysis of the adduct formed with DCNP and DCP, which enables the retrieval of the probe with its original fluorescence.
Collapse
Affiliation(s)
- Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Transit campus Lucknow, Uttar Pradesh, India.
| | - Preeti AshokKumar Chaudhran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Transit campus Lucknow, Uttar Pradesh, India.
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Transit campus Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Safarkhani M, Kim H, Han S, Taghavimandi F, Park Y, Umapathi R, Jeong YS, Shin K, Huh YS. Advances in sprayable sensors for nerve agent detection. Coord Chem Rev 2024; 509:215804. [DOI: 10.1016/j.ccr.2024.215804] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Maiti A, Sultana T, Rajbanshi B, Bhaumik B, Roy N, Nath Roy M. An efficient imine-linkage colorimetric probe for specific recognition of saringas surrogate, diethylchlorophosphate. Microchem J 2024; 199:109977. [DOI: 10.1016/j.microc.2024.109977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Meng WQ, Sedgwick AC, Kwon N, Sun M, Xiao K, He XP, Anslyn EV, James TD, Yoon J. Fluorescent probes for the detection of chemical warfare agents. Chem Soc Rev 2023; 52:601-662. [PMID: 36149439 DOI: 10.1039/d2cs00650b] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.
Collapse
Affiliation(s)
- Wen-Qi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
5
|
Sultana T, Mahato M, Tohora N, Ahamed S, Pramanik P, Ghanta S, Kumar Das S. A Phthalimide-based Turn on Fluorosensor for Selective and Rapid Detection of G-Series Nerve Agent’s Mimics. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Du X, Gong Y, Ren Y, Fu L, Duan R, Zhang Y, Zhang Y, Zhao J, Che Y. Development of Binary Coassemblies for Sensitively and Selectively Detecting Gaseous Sarin. Anal Chem 2022; 94:16418-16426. [DOI: 10.1021/acs.analchem.2c03712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiaoming Du
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Ren
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyang Fu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Duan
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yibin Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhu B, Sheng R, Chen T, Rodrigues J, Song QH, Hu X, Zeng L. Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: https://doi.org/10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Guo X, Liu CX, Lu Y, Wang YW, Peng Y. A Double-Site Chemodosimeter for Selective Fluorescence Detection of a Nerve Agent Mimic. Molecules 2022; 27:489. [PMID: 35056803 PMCID: PMC8780492 DOI: 10.3390/molecules27020489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
A novel two-site chemodosimeter (SWJT-4) based on fluorescein skeleton to detect diethyl chlorophosphate (DCP) was designed and synthesized. It is a turn-on fluorescent probe for DCP with good selectivity and obvious color change in aqueous solution. Interestingly, the two oxime groups of SWJT-4 as dual response sites initiated different reactions with DCP to form a cyano group and an isoxazole ring, respectively. The corresponding mechanism was confirmed by 1H NMR, MS and DFT calculation. Moreover, SWJT-4 could be used as a fluorescent test paper to detect DCP vapor.
Collapse
Affiliation(s)
- Xin Guo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (X.G.); (C.-X.L.)
| | - Chang-Xiang Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (X.G.); (C.-X.L.)
| | - Yuan Lu
- Chengdu Municipal Bureau of Economic and Information Technology, Chengdu 610229, China;
| | - Ya-Wen Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (X.G.); (C.-X.L.)
| | - Yu Peng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (X.G.); (C.-X.L.)
| |
Collapse
|
10
|
Mia R, Cragg PJ, Fronczek FR, Wallace KJ. Killing two birds with one stone: phosphorylation by a tabun mimic and subsequent capture of cyanide using a single fluorescent chemodosimeter. NEW J CHEM 2022. [DOI: 10.1039/d2nj04014j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the presence of the tabun mimic diethylcyanophosphonate (DECP), a fluorescent bifunctional coumarin–enamine chemodosimeter is first phosphorylated and subsequently attacked by the released cyanide ions.
Collapse
Affiliation(s)
- Rashid Mia
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Peter J. Cragg
- School of Pharmacy and Biomedical Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Karl J. Wallace
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
11
|
An effective fluorescent optical sensor: Thiazolo-thiazole based dye exhibiting anion/cation sensitivities and acidochromism. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Vijay N, Wu SP, Velmathi S. "Covalent-Assembly"-Triggered Striking Far-Red to near-Infrared Emitting Fluorescent Probe for Abrupt Detection of Nerve-Agent Mimic (DCP): Real Time Application in Monitoring the Presence of Trace Amounts in Soil and Live Cells. ACS APPLIED BIO MATERIALS 2021; 4:7007-7015. [PMID: 35006933 DOI: 10.1021/acsabm.1c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Detection of chemical warfare agents (CWA) by simple and rapid methods with real-sample applications are quite inevitable in order to ease the threats to living systems caused by uncertain terror attacks and wars. Herein we have developed the first far-red to near infra-red (NIR) probe based on a covalent assembly approach for the detection of trace amounts of nerve agent mimic diethyl chloro phosphate (DCP) in soil and their fluorescent bio imaging in live cells. The probe features abrupt fluorescence turn on sensing of DCP with fluorescence quantum yield Φ = 0.622. It senses DCP selectively over other analytes in excellent sensitivity with a detection limit of 6.9 nM. In real time, the probe treated strips were employed to detect the DCP vapor effectively with eye catching fluorescence response. The presence of trace amounts of these acute warfare agents in the environment were monitored by soil analysis. Further fluorescent bio imaging was carried out to monitor trace level DCP in living cells using the HeLa cell line.
Collapse
Affiliation(s)
- Natarajan Vijay
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Shu Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| |
Collapse
|
13
|
Gori M, Thakur A, Sharma A, Flora SJS. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides. Top Curr Chem (Cham) 2021; 379:33. [PMID: 34346011 DOI: 10.1007/s41061-021-00345-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Abstract
Organophosphorus (OP) compounds are typically a broad class of compounds that possess various uses such as insecticides, pesticides, etc. One of the most evil utilizations of these compounds is as chemical warfare agents, which pose a greater threat than biological weapons because of their ease of access. OP compounds are highly toxic compounds that cause irreversible inhibition of enzyme acetylcholinesterase, which is essential for hydrolysis of neurotransmitter acetylcholine, leading to series of neurological disorders and even death. Due to the extensive use of these organophosphorus compounds in agriculture, there is an increase in the environmental burden of these toxic chemicals, with severe environmental consequences. Hence, the rapid and sensitive, selective, real-time detection of OP compounds is very much required in terms of environmental protection, health, and survival. Several techniques have been developed over a few decades to easily detect them, but still, numerous challenges and problems remain to be solved. Major advancement has been observed in the development of sensors using the spectroscopic technique over recent years because of the advantages offered over other techniques, which we focus on in the presented review.
Collapse
Affiliation(s)
- Muskan Gori
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
14
|
A dual-channel optical chemical sensing system for selective detection of nerve agent simulant DFP. Anal Bioanal Chem 2021; 413:4501-4509. [PMID: 34041577 DOI: 10.1007/s00216-021-03413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
This paper reports a novel optical chemical sensing system for selective detection of diisopropylfluorophosphate (DFP), a simulant of fluorine-containing nerve agents (Sarin and Soman). Contrary to the reported methods involving only single sensing probe, this sensing system is comprised of two molecular sensing probes (1 and 2) having intrinsic affinities for reactive subunits of DFP (electrophilic phosphorus and fluoride ion). On exposure to DFP, two molecular probes react in tandem with electrophilic phosphorus and fluoride ion (by-product of the initial phosphorylation reaction) to induce a unique modulation in the optical properties of the sensing system which leads to selective detection of DFP in solution as interferents like phosphorus-containing compounds, acids, and anions were unable to induce similar optical modulation due to lack of both electrophilic phosphorus and fluorine in the same molecule. Calibration curve between the amount of DFP added and the absorption intensity revealed the colorimetric detection limit of the system to be 4.50 μM which was further lowered to 2.22 μM by making use of a self-immolative fluoride sensing probe 5.
Collapse
|
15
|
Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors. Commun Chem 2021; 4:45. [PMID: 36697578 PMCID: PMC9814523 DOI: 10.1038/s42004-021-00482-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/26/2021] [Indexed: 01/28/2023] Open
Abstract
A common feature of fluorescent sensing materials for detecting chemical warfare agents (CWAs) and simulants is the presence of nitrogen-based groups designed to nucleophilically displace a phosphorus atom substituent, with the reaction causing a measurable fluorescence change. However, such groups are also basic and so sensitive to acid. In this study we show it is critical to disentangle the response of a candidate sensing material to acid and CWA simulant. We report that pyridyl-containing sensing materials designed to react with a CWA gave a strong and rapid increase in fluorescence when exposed to Sarin, which is known to contain hydrofluoric acid. However, when tested against acid-free diethylchlorophosphate and di-iso-propylfluorophosphate, simulants typically used for evaluating novel G-series CWA sensors, there was no change in the fluorescence. In contrast, simulants that had been stored or tested under a standard laboratory conditions all led to strong changes in fluorescence, due to acid impurities. Thus the results provide strong evidence that care needs to be taken when interpreting the results of fluorescence-based solid-state sensing studies of G-series CWAs and their simulants. There are also implications for the application of these pyridyl-based fluorescence and other nucleophilic/basic sensing systems to real-world CWA detection.
Collapse
|
16
|
Zhang S, Zhou C, Yang B, Zhao Y, Wang L, Yuan B, Li H. Rhodamine phenol-based fluorescent probe for the visual detection of GB and its simulant DCP. NEW J CHEM 2021. [DOI: 10.1039/d1nj00525a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rhodamine phenol-based fluorescent probes have been synthesized. The probe RBNP demonstrates a rapid response and extreme low limit detection to diethylchlorophosphate and can rapidly and visually detect a real nerve agent GB in vapor.
Collapse
Affiliation(s)
- Shouxin Zhang
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- P. R. China
| | - Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- P. R. China
| | - Bo Yang
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- P. R. China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- P. R. China
| | - Lingyun Wang
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- P. R. China
| | - Bo Yuan
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- P. R. China
- Beijing Institute of Pharmaceutical Chemistry
- Beijing 102205
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- P. R. China
| |
Collapse
|
17
|
Sen B, Rabha M, Sheet SK, Koner D, Saha N, Khatua S. Bis-heteroleptic Ru(ii) polypyridine complex-based luminescent probes for nerve agent simulant and organophosphate pesticide. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00997k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two bis-heteroleptic Ru(ii) complexes of a 4,7-dihydroxy-1,10-phenanthroline ligand were synthesized for the detection of the nerve agent gas mimic, DCP, and the organophosphate pesticide, dichlorvos, through the “off–on” luminescence response.
Collapse
Affiliation(s)
- Bhaskar Sen
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | - Monosh Rabha
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | - Sanjoy Kumar Sheet
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | | | - Nirmalendu Saha
- Department of Zoology
- North Eastern Hill University
- Shillong
- India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| |
Collapse
|
18
|
|
19
|
Fan S, Zhang G, Dennison GH, FitzGerald N, Burn PL, Gentle IR, Shaw PE. Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905785. [PMID: 31692155 DOI: 10.1002/adma.201905785] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Organophosphorus (OP)-based nerve agents are extremely toxic and potent acetylcholinesterase inhibitors and recent attacks involving nerve agents highlight the need for fast detection and intervention. Fluorescence-based detection, where the sensing material undergoes a chemical reaction with the agent causing a measurable change in the luminescence, is one method for sensing and identifying nerve agents. Most studies use the simulants diethylchlorophosphate and di-iso-propylfluorophosphate to evaluate the performance of sensors due to their reduced toxicity relative to OP nerve agents. While detection of nerve agent simulants in solution is relatively widely reported, there are fewer reports on vapor detection using solid-state sensors. Herein, progress in organic semiconductor sensing materials developed for solid-state detection of OP-based nerve agent vapors is reviewed. The effect of acid impurities arising from the hydrolysis of simulants and nerve agents on the efficacy and selectivity of the reported sensing materials is also discussed. Indeed, in some cases it is unclear whether it is the simulant that is detected or the acid hydrolysis products. Finally, it is highlighted that while analyte diffusion into the sensing film is critical in the design of fast, responsive sensing systems, it is an area that is currently not well studied.
Collapse
Affiliation(s)
- Shengqiang Fan
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guanran Zhang
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Genevieve H Dennison
- Land Division, Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia
| | - Nicholas FitzGerald
- Land Division, Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian R Gentle
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
20
|
Guria UN, Maiti K, Ali SS, Gangopadhyay A, Samanta SK, Roy K, Mandal D, Mahapatra AK. An Organic Nanofibrous Polymeric Composite for Ratiometric Detection of Diethyl Chlorophosphate (DCP) in Solution and Vapor. ChemistrySelect 2020. [DOI: 10.1002/slct.202000179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Uday Narayan Guria
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Kalipada Maiti
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Syed Samim Ali
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Ankita Gangopadhyay
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Sandip Kumar Samanta
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| | - Krittish Roy
- Department of Physics Jadavpur UniversityJadavpur University Campus Area, Jadavpur, 188, Raja S.C. Mallick Rd Kolkata West Bengal 700032 India
| | - Dipankar Mandal
- Department of Physics Jadavpur UniversityJadavpur University Campus Area, Jadavpur, 188, Raja S.C. Mallick Rd Kolkata West Bengal 700032 India
- Institute of Nano Science & Technology (INST) Habitat Centre, Phase 10, Sector 64, Mohali Punjab 160062 India
| | - Ajit K. Mahapatra
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur Howrah 711103 West Bengal India
| |
Collapse
|
21
|
Xu H, Zhang H, Zhao L, Peng C, Liu G, Cheng T. A naphthalimide-based fluorescent probe for the highly sensitive and selective detection of nerve agent mimic DCP in solution and vapor phase. NEW J CHEM 2020. [DOI: 10.1039/d0nj00416b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescent probe for DCP displays excellent selectivity and sensitivity with a low detection limit of 5.5 nM in DMF.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Han Zhang
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Lei Zhao
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Cheng Peng
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200241
- P. R. China
| |
Collapse
|
22
|
A Selective Fluorescence Turn-On Probe for the Detection of DCNP (Nerve Agent Tabun Simulant). MATERIALS 2019; 12:ma12182943. [PMID: 31514369 PMCID: PMC6766206 DOI: 10.3390/ma12182943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Diethylcyanophosphonate (DCNP) is a simulant of Tabun (GA) which is an extremely toxic chemical substance and is used as a chemical warfare (CW) nerve agent. Due to its toxic properties, monitoring methods have been constantly come under the spotlight. What we are proposing within this report is a next-generation fluorescent probe, DMHN1, which allows DCNP to become fully traceable in a sensitive, selective, and responsive manner. This is the first fluorescent turn-on probe within the dipolar naphthalene platform induced by ESIPT (excited state intramolecular proton transfer) suppression that allows us to sense DCNP without any disturbance by other similar G-series chemical weapons. The successful demonstrations of practical applications, such as in vitro analysis, soil analysis, and the development of an on-site real-time prototype sensing kit, encourage further applications in a variety of fields.
Collapse
|
23
|
Huo B, Du M, Shen A, Li M, Lai Y, Bai X, Gong A, Yang Y. “Covalent-Assembly”-Based Fluorescent Probe for Detection of a Nerve-Agent Mimic (DCP) via Lossen Rearrangement. Anal Chem 2019; 91:10979-10983. [DOI: 10.1021/acs.analchem.9b01006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Baolong Huo
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Man Du
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ao Shen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengwen Li
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yaru Lai
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xue Bai
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Aijun Gong
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunxu Yang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
24
|
Qin T, Huang Y, Zhu K, Wang J, Pan C, Liu B, Wang L. A flavonoid-based fluorescent test strip for sensitive and selective detection of a gaseous nerve agent simulant. Anal Chim Acta 2019; 1076:125-130. [PMID: 31203956 DOI: 10.1016/j.aca.2019.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/26/2019] [Accepted: 05/11/2019] [Indexed: 01/12/2023]
Abstract
Developing fluorescent sensors with ability of monitoring gaseous nerve agents in a sensitive and selective manner is of great importance due to the extreme toxicity and volatility of organophosphorus nerve agents. Herein we reported a novel oxime-modified flavonoid sensor and carefully investigated its sensing behavior towards nerve agent simulants, diethylchlorophosphate (DCP). In the presence of DCP, a remarkable fluorescence enhancement accompanied with emission color change could be observed by naked eyes in solution. The response time was less than 90 s and LOD value was calculated as 0.78 μmol/L in solution. The sensing mechanism could be ascribed to the specific reaction between halophosphate and hydroxyl group of oxime. Furthermore, sensor strips have been successfully constructed by using PEG as matrix with a simple preparation process, and also achieved the sensitive and selective detection of DCP vapor. These results in this study may provide important references for further design of dye-based sensor strips for detection of nerve agents both in solution and gas phase.
Collapse
Affiliation(s)
- Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Yingying Huang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kangning Zhu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Jiahao Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chengjun Pan
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China.
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
25
|
Sheet SK, Sen B, Khatua S. Organoiridium(III) Complexes as Luminescence Color Switching Probes for Selective Detection of Nerve Agent Simulant in Solution and Vapor Phase. Inorg Chem 2019; 58:3635-3645. [PMID: 30843684 DOI: 10.1021/acs.inorgchem.8b03044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, cationic organoiridium(III) complex based photoluminescent (PL) probes have been developed to selectively detect the chemical warfare nerve agent mimic, diethyl chlorophosphate(DCP) at nanomolar range by distinct bright green to orange-red luminescence color switching (on-off-on) in solution as well as in the vapor phase. Interference of other chemical warfare agents (CWAs) and their mimics was not observed either by PL spectroscopy or with the naked-eye in solution and gas phase. The detection was attained via a simultaneous nucleophilic attack of two -OH groups of the 4,7-dihydroxy-1,10-phenanthroline ligand with DCP by forming bulkier phosphotriester. The detailed reaction mechanism was established through extensive 1H NMR titration, 31P NMR, and ESI-MS analysis. Finally, a test paper strip and solid poly(ethylene oxide) (PEO) film with iridium(III) complex 1[PF6] were fabricated for the vapor-phase detection of DCP. The solution and vapor-phase detection properties of these luminescent Ir(III) complexes can offer a worthy approach into the design of new metal complex based PL switching probes for chemical warfare agents.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| |
Collapse
|
26
|
Zhu J, Zou J, Zhang J, Sun Y, Dong X, Zhang Q. An anthracene functionalized BODIPY derivative with singlet oxygen storage ability for photothermal and continuous photodynamic synergistic therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00180h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Singlet oxygen (1O2) generated from the photosensitization process within tumor tissues during photodynamic therapy (PDT) is self-limiting.
Collapse
Affiliation(s)
- Jianwei Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
- Nanjing
| | - Jianhua Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
- Nanjing
- China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| |
Collapse
|
27
|
Gharami S, Aich K, Das S, Patra L, Mondal TK. Facile detection of organophosphorus nerve agent mimic (DCP) through a new quinoline-based ratiometric switch. NEW J CHEM 2019. [DOI: 10.1039/c9nj02218j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here a new quinoline-based (BIMQ) probe was developed which displayed ratiometric detection of organophosphorus chemical vapor threat, DCP.
Collapse
Affiliation(s)
- Saswati Gharami
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Krishnendu Aich
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sangita Das
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Lakshman Patra
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | | |
Collapse
|
28
|
Lloyd EP, Pilato RS, Van Houten KA. Polymer-Bound 4-Pyridyl-5-hydroxyethyl-thiazole Fluorescent Chemosensors for the Detection of Organophosphate Nerve Agent Simulants. ACS OMEGA 2018; 3:16028-16034. [PMID: 30556023 PMCID: PMC6288808 DOI: 10.1021/acsomega.8b02313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Fluorescent sensors have been synthesized for organophosphate nerve agent detection. The resulting 4-pyridyl-5-hydroxyethyl structures react with organophosphate nerve agent simulants such as diethylchlorophosphate and diisopropylfluorophosphate and cyclize to form a dihydroquinolizinium ring that results in an increased fluorescence response to long-wave UV excitation. These sensors have been functionalized with monomeric substitutions that allow for covalent incorporation into a polymer matrix for organophosphate detection to develop a fieldable sensor. In addition, inclusion of silicon dioxide into the polymer matrix eliminated false-positive responses from mineral acids, greatly advancing this class of sensors.
Collapse
Affiliation(s)
- Evan P. Lloyd
- Johns
Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Robert S. Pilato
- Lowery
Creek Consulting, LLC, 1211 Mill Creek Ln, Kilmarnock, Virginia 22482, United
States
| | - Kelly A. Van Houten
- Johns
Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| |
Collapse
|
29
|
Fu Y, Yu J, Wang K, Liu H, Yu Y, Liu A, Peng X, He Q, Cao H, Cheng J. Simple and Efficient Chromophoric-Fluorogenic Probes for Diethylchlorophosphate Vapor. ACS Sens 2018; 3:1445-1450. [PMID: 30059204 DOI: 10.1021/acssensors.8b00313] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we developed two small-molecule probes for real-time and onsite detecting of diethylchlorophosphate (DCP) vapor by incorporating amine groups into Schiff base skeletons. Both probes can be easily synthesized with high yield through one-step and low-cost synthesis. They can detect DCP vapor in the chromophoric-fluorogenic dual mode, which combines both the advantages of the visualization of color sensing and the high sensitivity of the fluorescence sensing. Furthermore, its sensing is based on the "turn-on" mode which can avoid the interference arising from photobleaching or fluorescence quenching agents based on "turn-off" mode. The detection limit was quantified to be as low as 0.14 ppb.
Collapse
Affiliation(s)
- Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Jinping Yu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Kaixia Wang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Huan Liu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Yaguo Yu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Ao Liu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Xin Peng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Qingguo He
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Huimin Cao
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| |
Collapse
|
30
|
Witkiewicz Z, Neffe S, Sliwka E, Quagliano J. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents. Crit Rev Anal Chem 2018. [PMID: 29533075 DOI: 10.1080/10408347.2018.1439366] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.
Collapse
Affiliation(s)
- Zygfryd Witkiewicz
- a Faculty of Advanced Technologies and Chemistry , Military University of Technology , Warsaw , Poland
| | - Slawomir Neffe
- a Faculty of Advanced Technologies and Chemistry , Military University of Technology , Warsaw , Poland
| | - Ewa Sliwka
- b Division of Chemistry and Technology of Fuel , Wroclaw University of Technology , Wroclaw , Poland
| | - Javier Quagliano
- c Applied Chemistry Department , Argentine Institute for Scientific and Technical Research for the Defense (CITEDEF) , Buenos Aires , Argentina
| |
Collapse
|
31
|
Zhai C, Yang ZY, Xu D, Wang ZK, Hao XY, Shi YJ, Yang GW, Li QY. pH dependent synthesis of two zinc(II) compounds derived from 5-aminotetrazole-1-isopropanoic acid for treatment of cancer cells. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2017.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Chen L, Wu D, Yoon J. Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene. ACS Sens 2018; 3:27-43. [PMID: 29231710 DOI: 10.1021/acssensors.7b00816] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extreme toxicity and ready accessibility of nerve agents and phosgene has caused an increase in the demand to develop effective systems for the detection of these substances. Among the traditional platforms utilized for this purpose, chemosensors including surface acoustic wave (SAW) sensors, enzymes, carbon nanotubes, nanoparticles, and chromophore based sensors have attracted increasing attention. In this review, we describe in a comprehensive manner recent progress that has been made on the development of chromophore-based chemosensors for detecting nerve agents (mimic) and phosgene. This review comprises two sections focusing on studies of the development of chemosensors for nerve agents (mimic) and phosgene. In each of the sections, the discussion follows a format which concentrates on different reaction sites/mechanisms involved in the sensing processes. Finally, chemosensors uncovered in these efforts are compared with those based on other sensing methods and challenges facing the design of more effective chemosensors for the detection of nerve agents (mimic) and phosgene are discussed.
Collapse
Affiliation(s)
- Liyan Chen
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Di Wu
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Juyoung Yoon
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| |
Collapse
|
33
|
Chen L, Oh H, Wu D, Kim MH, Yoon J. An ESIPT fluorescent probe and a nanofiber platform for selective and sensitive detection of a nerve gas mimic. Chem Commun (Camb) 2018; 54:2276-2279. [DOI: 10.1039/c7cc09901k] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An ESIPT based fluorescent probe, containing a hydroxyphenyl-benzothiazole fluorophore and an oxime reaction site, serves as a selective probe for a nerve gas mimic, diethyl cyanophosphonate (DECP), in solutions and the gas phase.
Collapse
Affiliation(s)
- Liyan Chen
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| | - Hyerim Oh
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| | - Di Wu
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
- School of Chemistry
| | - Myung Hwa Kim
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul
- Korea
| |
Collapse
|
34
|
Qi F, Lan Y, Meng Z, Yan C, Li S, Xue M, Wang Y, Qiu L, He X, Liu X. Acetylcholinesterase-functionalized two-dimensional photonic crystals for the detection of organophosphates. RSC Adv 2018; 8:29385-29391. [PMID: 35548014 PMCID: PMC9084495 DOI: 10.1039/c8ra04953j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/05/2018] [Indexed: 01/28/2023] Open
Abstract
AChE-modified 2D-PC was developed for the easy and visual detection of organophosphates.
Collapse
Affiliation(s)
- Fenglian Qi
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Yunhe Lan
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | | | | | - Min Xue
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Yifei Wang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Xuan He
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Xueyong Liu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| |
Collapse
|
35
|
Ali SS, Gangopadhyay A, Pramanik AK, Samanta SK, Guria UN, Manna S, Mahapatra AK. Real time detection of the nerve agent simulant diethylchlorophosphate by nonfluorophoric small molecules generating a cyclization-induced fluorogenic response. Analyst 2018; 143:4171-4179. [DOI: 10.1039/c8an01012a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Herein, we report the detection of DCP by nonfluorophoric small molecules.
Collapse
Affiliation(s)
- Syed Samim Ali
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Ankita Gangopadhyay
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Ajoy Kumar Pramanik
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Sandip Kumar Samanta
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Uday Narayan Guria
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Srimanta Manna
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Ajit Kumar Mahapatra
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| |
Collapse
|
36
|
Wei B, Guo MY, Lu YM, Sun PP, Yang GW, Li QY. Synthesis of a Ruthenium(II) Compound based on 5-(2-Pyrimidyl)-1H-tetrazole for Photodynamic Therapy. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Bo Wei
- Jiangsu Laboratory of Advanced Functional Material; Changshu Institute of Technology; 215500 Changshu Jiangsu P. R. China
- Department of Chemistry and Material Engineering; Changshu Institute of Technology; 215500 Changshu Jiangsu P. R. China
| | - Meng Yue Guo
- Jiangsu Laboratory of Advanced Functional Material; Changshu Institute of Technology; 215500 Changshu Jiangsu P. R. China
| | - Yi Ming Lu
- Jiangsu Laboratory of Advanced Functional Material; Changshu Institute of Technology; 215500 Changshu Jiangsu P. R. China
| | - Peng Peng Sun
- Jiangsu Laboratory of Advanced Functional Material; Changshu Institute of Technology; 215500 Changshu Jiangsu P. R. China
| | - Gao Wen Yang
- Jiangsu Laboratory of Advanced Functional Material; Changshu Institute of Technology; 215500 Changshu Jiangsu P. R. China
- Department of Chemistry and Material Engineering; Changshu Institute of Technology; 215500 Changshu Jiangsu P. R. China
| | - Qiao Yun Li
- Jiangsu Laboratory of Advanced Functional Material; Changshu Institute of Technology; 215500 Changshu Jiangsu P. R. China
- Department of Chemistry and Material Engineering; Changshu Institute of Technology; 215500 Changshu Jiangsu P. R. China
| |
Collapse
|
37
|
Structure and Conformational Studies of Aza-Crown 8-Amino-BODIPY Derivatives: Influence of Steric Hindrance on Their Photophysical Properties. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Zou J, Yin Z, Ding K, Tang Q, Li J, Si W, Shao J, Zhang Q, Huang W, Dong X. BODIPY Derivatives for Photodynamic Therapy: Influence of Configuration versus Heavy Atom Effect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32475-32481. [PMID: 28875695 DOI: 10.1021/acsami.7b07569] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heavy atom effect and configuration are important for BODIPY derivatives to generate singlet oxygen (1O2) for photodynamic therapy. Herein, a series of BODIPY derivatives with different halogens were synthesized. 1O2 quantum yields (QYs) and MTT assay confirm that incorporation of more heavy atoms onto dimeric BODIPY cannot effectively enhance the 1O2 QYs. Rather, the dark toxicity increases. This phenomenon can be attributed to the competition of heavy atom effect and configuration of dimeric BODIPY. In addition the BODIPY derivative with two iodine atoms (BDPI) owns the highest 1O2 QYs (73%) and the lowest phototoxicity IC50 (1 μM). Furthermore, an in vivo study demonstrates that BDPI NPs can effectively inhibit tumor growth and can be used as a promising threanostic agent for photodynamic therapy in clinic.
Collapse
Affiliation(s)
- Jianhua Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Zhihui Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Kaikai Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Qianyun Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Jiewei Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
39
|
Cai YC, Li C, Song QH. Fluorescent Chemosensors with Varying Degrees of Intramolecular Charge Transfer for Detection of a Nerve Agent Mimic in Solutions and in Vapor. ACS Sens 2017; 2:834-841. [PMID: 28723127 DOI: 10.1021/acssensors.7b00205] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nerve agents are highly toxic organophosphorus compounds, and their possible use in terrorist attacks has led to increasing interest in the development of reliable and accurate methods to detect these lethal chemicals. In this paper, we have prepared six 6-aminoquinolines with various N-substituents as chemosensors for a nerve-agent mimic diethylchlorophosphate (DCP). The chemosensors with the nucleophilic pyridine-N atom as the active site detect DCP via a catalytic hydrolysis approach to form the protonated sensor. The nucleophilicity of the pyridine-N atom depends on the donating ability of the 6-amine group, which affects the intramolecular charge-transfer (ICT) character of sensors and the protonated sensors, leading to different fluorescence-response modes. The effects of the ICT character on the sensing property have been clarified. Among these charge transfer sensors, the sensor 3 displays ratiometric fluorescence response to DCP and a low limit of detection (8 nM). Furthermore, a facile testing strip with 3 has been fabricated with poly(ethylene oxide) for real-time selective monitoring of DCP vapor.
Collapse
Affiliation(s)
- Yuan-Chao Cai
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chen Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
40
|
Kim Y, Jang YJ, Mulay SV, Nguyen TTT, Churchill DG. Fluorescent Sensing of a Nerve Agent Simulant with Dual Emission over Wide pH Range in Aqueous Solution. Chemistry 2017; 23:7785-7790. [DOI: 10.1002/chem.201700975] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Youngsam Kim
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institution of Basic Science (IBS); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Yoon Jeong Jang
- Chemical Defense Research Institute; Seoul Republic of Korea
| | - Sandip V. Mulay
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institution of Basic Science (IBS); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Thuy-Tien T. Nguyen
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - David G. Churchill
- Molecular Logic Gate Laboratory; Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institution of Basic Science (IBS); 373-1 Guseong-dong, Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|
41
|
Ortmeyer CP, Haufe G, Schwegmann K, Hermann S, Schäfers M, Börgel F, Wünsch B, Wagner S, Hugenberg V. Synthesis and evaluation of a [ 18F]BODIPY-labeled caspase-inhibitor. Bioorg Med Chem 2017; 25:2167-2176. [PMID: 28284866 DOI: 10.1016/j.bmc.2017.02.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
Abstract
BODIPYs (boron dipyrromethenes) are fluorescent dyes which show high stability and quantum yields. They feature the possibility of selective 18F-fluorination at the boron-core. Attached to a bioactive molecule and labeled with [18F]fluorine, the resulting compounds are promising tracers for multimodal imaging in vivo and can be used for PET and fluorescence imaging. A BODIPY containing a phenyl and a hydroxy substituent on boron was synthesized and characterized. Fluorinated and hydroxy substituted dyes were coupled to an isatin-based caspase inhibitor via cycloaddition and the resulting compounds were evaluated in vitro in caspase inhibition assays. The metabolic stability and the formed metabolites were investigated by incubation with mouse liver microsomes and LC-MS analysis. Subsequently the fluorophores were labeled with [18F]fluorine and an in vivo biodistribution study using dynamic PET was performed.
Collapse
Affiliation(s)
- Christian Paul Ortmeyer
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany; Organic Chemistry Institute, University of Münster, Corrensstr. 40, D-48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstr. 40, D-48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany.
| | - Katrin Schwegmann
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany; European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - Frederik Börgel
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
| | - Verena Hugenberg
- Institute for Radiology, Nuclear Medicine and Molecular Imaging, HDZ NRW, Georgstr. 11, D-32545 Bad Oeynhausen, Germany
| |
Collapse
|
42
|
Rey YP, Abradelo DG, Santschi N, Strassert CA, Gilmour R. Quantitative Profiling of the Heavy-Atom Effect in BODIPY Dyes: Correlating Initial Rates, Atomic Numbers, and1O2Quantum Yields. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601372] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yannick P. Rey
- Institut für Organische Chemie and Excellence Cluster EXC 1003; Cells in Motion; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Dario G. Abradelo
- CeNTech; Physikalisches Institut; Westfälische Wilhelms-Universität; Heisenbergstrasse 11 48149 Münster Germany
| | - Nico Santschi
- Institut für Organische Chemie and Excellence Cluster EXC 1003; Cells in Motion; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Cristian A. Strassert
- CeNTech; Physikalisches Institut; Westfälische Wilhelms-Universität; Heisenbergstrasse 11 48149 Münster Germany
| | - Ryan Gilmour
- Institut für Organische Chemie and Excellence Cluster EXC 1003; Cells in Motion; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
43
|
Aich K, Das S, Gharami S, Patra L, Kumar Mondal T. Triphenylamine–benzimidazole based switch offers reliable detection of organophosphorus nerve agent (DCP) both in solution and gaseous state. NEW J CHEM 2017. [DOI: 10.1039/c7nj02543b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triphenylamine-conjugated imidazole dye acts as a potential sensor for the liquid and vapour phase detection of nerve agent simulantDCP.
Collapse
Affiliation(s)
- Krishnendu Aich
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sangita Das
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Saswati Gharami
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Lakshman Patra
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | | |
Collapse
|
44
|
Guo Z, Zou Y, He H, Rao J, Ji S, Cui X, Ke H, Deng Y, Yang H, Chen C, Zhao Y, Chen H. Bifunctional Platinated Nanoparticles for Photoinduced Tumor Ablation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10155-10164. [PMID: 27714878 DOI: 10.1002/adma.201602738] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Indexed: 05/22/2023]
Abstract
Bifunctional self-assembled nanoparticles with a platinated fluorophore core with ultra-low radiative transition are developed, which can generate both singlet oxygen and the photothermal effect for synergistic photodynamic and photothermal therapy with tumor ablation.
Collapse
Affiliation(s)
- Zhengqing Guo
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yelin Zou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hui He
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jiaming Rao
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Shuangshuang Ji
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiaoneng Cui
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, West Campus, 2 Ling Gong Rd, Dalian, 116024, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hong Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Excellence for Nanosciences, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Excellence for Nanosciences, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Huabing Chen
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
45
|
Whitaker CM, Derouin EE, O'Connor MB, Whitaker CK, Whitaker JA, Snyder JJ, Kaufmann NR, Gilliard AN, Reitmayer AK. Smart hydrogel sensor for detection of organophosphorus chemical warfare nerve agents. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2016. [DOI: 10.1080/10601325.2017.1250313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Hu Y, Chen L, Jung H, Zeng Y, Lee S, Swamy KMK, Zhou X, Kim MH, Yoon J. Effective Strategy for Colorimetric and Fluorescence Sensing of Phosgene Based on Small Organic Dyes and Nanofiber Platforms. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22246-52. [PMID: 27498559 DOI: 10.1021/acsami.6b07138] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three o-phenylendiamine (OPD) derivatives, containing 4-chloro-7-nitrobenzo[c][1,2,5]oxadiazole (NBD-OPD), rhodamine (RB-OPD), and 1,8-naphthalimide (NAP-OPD) moieties, were prepared and tested as phosgene chemosensors. Unlike previously described methods to sense this toxic agent, which rely on chemical processes that transform alcohols and amines to respective phosphate esters and phosphoramides, the new sensors operate through a benzimidazolone-forming reaction between their OPD groups and phosgene. These processes promote either naked eye visible color changes and/or fluorescence intensity enhancements in conjunction with detection limits that range from 0.7 to 2.8 ppb. NBD-OPD and RB-OPD-embedded polymer fibers, prepared using the electrospinning technique, display distinct color and fluorescence changes upon exposure to phosgene even in the solid state.
Collapse
Affiliation(s)
- Ying Hu
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Liyan Chen
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Hyeseung Jung
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Yiying Zeng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University , Yanji 133-002, China
| | - Songyi Lee
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Kunemadihalli Mathada Kotraiah Swamy
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
- Department of Pharmaceutical Chemistry, V. L. College of Pharmacy , Raichur 584103, India
| | - Xin Zhou
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University , Yanji 133-002, China
| | - Myung Hwa Kim
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 120-750, Korea
| |
Collapse
|
47
|
Kim TI, Maity SB, Bouffard J, Kim Y. Molecular Rotors for the Detection of Chemical Warfare Agent Simulants. Anal Chem 2016; 88:9259-63. [DOI: 10.1021/acs.analchem.6b02516] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tae-Il Kim
- Department
of Chemistry, Kyung Hee University, 126 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Shubhra Bikash Maity
- Department
of Chemistry, Kyung Hee University, 126 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jean Bouffard
- Department
of Chemistry and Nano Science (BK 21 Plus), Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Youngmi Kim
- Department
of Chemistry, Kyung Hee University, 126 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
48
|
Climent E, Biyikal M, Gawlitza K, Dropa T, Urban M, Costero AM, Martínez-Máñez R, Rurack K. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials. Chemistry 2016; 22:11138-42. [DOI: 10.1002/chem.201601269] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Estela Climent
- Chemical and Optical Sensing Division (1.9); Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Mustafa Biyikal
- Chemical and Optical Sensing Division (1.9); Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Kornelia Gawlitza
- Chemical and Optical Sensing Division (1.9); Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Tomáš Dropa
- Laboratory of Toxic Compounds; National Institute for Nuclear, Chemical and Biological Protection; Kamenná 71 262 31 Milín Czech Republic
| | - Martin Urban
- Laboratory of Toxic Compounds; National Institute for Nuclear, Chemical and Biological Protection; Kamenná 71 262 31 Milín Czech Republic
| | - Ana M. Costero
- Organic Chemistry Department; Universitat de Valencia; Dr. Moliner 50 46100 Burjassot, Valencia Spain
- Research Institute for Molecular Recognition and Technological, Development (IDM); Unidad Mixta Universidad Politécnica de Valencia-, Universidad de Valencia; Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
| | - Ramón Martínez-Máñez
- Research Institute for Molecular Recognition and Technological, Development (IDM); Unidad Mixta Universidad Politécnica de Valencia-, Universidad de Valencia; Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Spain
- Department of Chemistry; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Knut Rurack
- Chemical and Optical Sensing Division (1.9); Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| |
Collapse
|
49
|
Balamurugan A, Lee HI. A Visible Light Responsive On–Off Polymeric Photoswitch for the Colorimetric Detection of Nerve Agent Mimics in Solution and in the Vapor Phase. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00309] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. Balamurugan
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyung-il Lee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| |
Collapse
|
50
|
Zhou X, Zeng Y, Liyan C, Wu X, Yoon J. A Fluorescent Sensor for Dual-Channel Discrimination between Phosgene and a Nerve-Gas Mimic. Angew Chem Int Ed Engl 2016; 55:4729-33. [PMID: 26938275 DOI: 10.1002/anie.201601346] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 12/21/2022]
Abstract
The ability to analyze highly toxic chemical warfare agents (CWAs) and related chemicals in a rapid and precise manner is essential in order to alleviate serious threats to humankind and public security caused by unexpected terrorist attacks and industrial accidents. In this investigation, we designed a o-phenylenediamine-pyronin linked dye that is capable of both fluorogenic and colorimetric discrimination between phosgene and the prototypical nerve-agent mimic, diethyl chlorophosphate (DCP) in the solution or gas phase. Moreover, this dye has been used to construct a portable kit that can be employed for real-time monitoring of DCP and phosgene in the field, both in a discriminatory manner, and in a simple and safe way.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea.,Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, 133-002, China
| | - Yiying Zeng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, 133-002, China
| | - Chen Liyan
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Xue Wu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, 133-002, China.
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|