1
|
Patra SK, Mahato MK, Prasad E. Aggregation induced emission and volatile acid vapour sensing in acridine appended poly (aryl ether) based low molecular weight organogelator. Org Biomol Chem 2024; 22:2596-2607. [PMID: 38450570 DOI: 10.1039/d3ob01945d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Considerable research attention has been devoted to the development of portable and rapid fluorescence sensors that can selectively detect volatile acids, due to the harmful effects of acid vapour on the environment and human health. Although various types of fluorophores have been reported for sensing volatile acid vapours, regulation of the sensory response using aggregation induced emissive (AIE) based gelators has rarely been reported. In this study, we present the design and synthesis of a novel organogelator that is capable of sensing volatile acids through AIE. An acridine-attached poly(aryl ether) dendron molecular system is synthesized through an aldimine coupling reaction, which self-assembles and forms a gel, exhibiting AIE behavior. The synthesized molecule and prepared gel were characterized using NMR, MASS, XRD, HRSEM and rheology techniques. The AIE property of APD was investigated using steady-state absorption and emission spectroscopic techniques. The sensory response of the APD gelator was tested with various analytes, and the results indicated that APD shows rapid response, particularly to acid vapours, where the detection limits (DL) of trifluoroacetic acid (TFA), hydrochloric acid (HCl) and nitric acid (HNO3) vapor were as low as 0.22, 0.9 and 0.30 ppm, respectively. An APD solid film in filter paper shows a visual color change from yellow to red in an aqueous acidic medium, and the effect is reversed in an alkaline medium. These findings suggest that an APD gelator could potentially be utilized to generate a portable acid vapor sensor kit due to its low detection limit and rapid response time, and it could be also be used as a substitute for existing acid indicators.
Collapse
Affiliation(s)
- Srikanta Kumar Patra
- Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| | - Malay Krishna Mahato
- Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| | - Edamana Prasad
- Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India.
| |
Collapse
|
2
|
Raju L, Javan Nikkhah S, K M, Vandichel M, Eswaran R. Anticancer Potential of Dendritic Poly(aryl ether)-Substituted Polypyridyl Ligand-Based Ruthenium(II) Coordination Entities. ACS APPLIED BIO MATERIALS 2023; 6:4226-4239. [PMID: 37782900 DOI: 10.1021/acsabm.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
This paper studies the anticancer potency of dendritic poly(aryl ether)-substituted polypyridyl ligand-based ruthenium(II) coordination entities. The dendritic coordination entities were successfully designed, synthesized, and characterized by different spectral methods such as Fourier transform infrared (FTIR), 1H and 13C- NMR, and mass spectrometry. Further, to understand the structure and solvation behavior of the coordination entities, we performed all-atom molecular dynamics (MD) simulations. The behavior, configuration, and size of the coordination entities in DMSO and water were studied by calculating the radius of gyration (Rg) and solvent-accessible surface area (SASA). The MTT assay was used to assess the in vitro cytotoxicity of all of the coordination entities against cancerous A549 (lung cancer cells), MDA MB 231 (breast cancer cells), and HepG2 (liver cancer cells) and was found to be good with comparable IC50 values with respect to the standard drug cisplatin. The coordination entities exhibited dose dependence, and the highest activity was shown against HepG2 cell lines in comparison to the other cancer cell lines. In addition, fluorescence staining studies, such as AO/EB, DAPI, and cell death analysis by PI staining, were performed on the coordination entities to understand the apoptosis mechanism. Furthermore, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) assays confirmed apoptosis in cancer cells via the mitochondrial pathway. The DNA fragmentation assay was done followed by molecular docking analysis with DNA executed to strengthen and support the experimental observations.
Collapse
Affiliation(s)
- Liju Raju
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai 600059, Tamilnadu, India
| | - Sousa Javan Nikkhah
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - MosaChristas K
- Department of Plant Biology and Biotechnology, Loyola Institute of Frontier Energy (LIFE), Loyola College (Autonomous), University of Madras, Chennai 600034, India
| | - Matthias Vandichel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Rajkumar Eswaran
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Tambaram East, Chennai 600059, Tamilnadu, India
| |
Collapse
|
3
|
Sheet PS, Koley D. Dendritic Hydrogel Bioink for 3D Printing of Bacterial Microhabitat. ACS APPLIED BIO MATERIALS 2019; 2:5941-5948. [PMID: 32490360 PMCID: PMC7266169 DOI: 10.1021/acsabm.9b00866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A glucose-modified dendritic hydrogel is used as a bioink for bacterial encapsulation. This biocompatible hydrogel is a potentially suitable alternative to conventional alginate hydrogel for bacterial encapsulation, as it readily forms gel in the presence of Na+ or K+ ions without any additional stimuli such as pH, temperature, sonication, or the presence of divalent metal ions. We created a bacterial microhabitat by adding the gelator to phosphate-buffered saline containing live bacteria at physiological pH and using an additive three-dimensional (3D) printing technique. The bacteria remained viable and metabolically active within the 3D printed bacterial microhabitat, as shown with confocal laser scanning microscopy (CLSM) and scanning electrochemical microscopy (SECM).
Collapse
Affiliation(s)
- Partha S. Sheet
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Satapathy S, Prasad E. Charge Transfer Modulated Self-Assembly in Poly(aryl ether) Dendron Derivatives with Improved Stability and Transport Characteristics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26176-26189. [PMID: 27603727 DOI: 10.1021/acsami.6b09175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alteration of native gelation properties of anthracene and pyrene cored first generation poly(aryl ether) dendrons, G1-An and G1-Py, by introducing a common acceptor, 2,4,7-trinitro-9H-fluoren-9-one (TNF), results in forming charge transfer gels in long chain alcoholic solvents. This strategy leads to significant perturbation of optical and electronic properties within the gel matrix. Consequently, a noticeable increase of their electrical conductivities is observed, making these poly(aryl ether) dendron based gels potential candidates for organic electronics. While the dc-conductivity (σ) value for the native gel from G1-An is 2.8 × 10-4 S m-1, the value increased 3 times (σ = 8.7 × 10-4 S m-1) for its corresponding charge transfer gel. Further, the dc-conductivity for the native gel self-assembled from G1-Py dramatically enhanced by approximately an order of magnitude from 4.9 × 10-4 to 1.3 × 10-3 S m-1, under the influence of an acceptor. Apart from H-bonding and π···π interactions, charge transfer results in the formation of a robust 3D network of fibers, with improved aspect ratio, providing high thermo-mechanical stability to the gels compared to the native ones. The charge transfer gels self-assembled from G1-An/TNF (1:1) and G1-Py/TNF exhibit a 7.3- and 2.5-fold increase in their yield stress, respectively, compared to their native assemblies. A similar trend follows in the case of their thermal stabilities. This is attributed to the typical bilayer self-assembly of the former which is not present in the case of G1-Py/TNF charge transfer gel. Density functional calculations provide deeper insights accounting for the role of charge transfer interactions in the mode of self-assembly. The 1D potential energy surface for the G1-An/TNF dimer and G1-Py/TNF dimer is found to be 11.8 and 1.9 kcal mol-1 more stable than their corresponding native gel dimers, G1-An/G1-An and G1-Py/G1-Py, respectively.
Collapse
Affiliation(s)
- Sitakanta Satapathy
- Department of Chemistry, Indian Institute of Technology Madras (IIT M) , Chennai 600 036, India
| | - Edamana Prasad
- Department of Chemistry, Indian Institute of Technology Madras (IIT M) , Chennai 600 036, India
| |
Collapse
|
5
|
Datta S, Bhattacharya S. Carbon-Nanotube-Mediated Electrochemical Transition in a Redox-Active Supramolecular Hydrogel Derived from Viologen and an l-Alanine-Based Amphiphile. Chemistry 2016; 22:7524-32. [PMID: 27059107 DOI: 10.1002/chem.201600214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 12/16/2022]
Abstract
A two-component hydrogelator (16-A)2 -V(2+) , comprising an l-alanine-based amphiphile (16-A) and a redox-active viologen based partner (V(2+) ), is reported. The formation the hydrogel depended, not only on the acid-to-amine stoichiometric ratio, but on the choice of the l-amino acid group and also on the hydrocarbon chain length of the amphiphilic component. The redox responsive property and the electrochemical behavior of this two-component system were further examined by step-wise chemical and electrochemical reduction of the viologen nucleus (V(2+) /V(+) and V(+) /V(0) ). The half-wave reduction potentials (E1/2 ) associated with the viologen ring shifted to more negative values with increasing amine component. This indicates that higher extent of salt formation hinders reduction of the viologen moiety. Interestingly, the incorporation of single-walled carbon nanotubes in the electrochemically irreversible hydrogel (16-A)2 -V(2+) transformed it into a quasi-reversible electrochemical system.
Collapse
Affiliation(s)
- Sougata Datta
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India.,Director's Research Unit (DRU), Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India. .,Director's Research Unit (DRU), Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India. .,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560 064, Jakkur, India.
| |
Collapse
|
6
|
Liu Y, Lei W, Chen T, Jin L, Sun G, Yin B. Poly(aryl ether) Dendrons with Monopyrrolotetrathiafulvalene Unit-Based Organogels exhibiting Gel-Induced Enhanced Emission (GIEE). Chemistry 2015; 21:15235-45. [DOI: 10.1002/chem.201502044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 01/06/2023]
|
7
|
Abstract
Metallopolymers combine a processable, versatile organic polymeric skeleton with functional metals, providing multiple functions and methodologies in materials science. Taking advantage of cationic cobaltocenium as the key building block, organogels could be simply switched to hydrogels via a highly efficient ion exchange. With the unique ionic complexion ability, cobaltocenium moieties provide a robust soft substrate for recycling antibiotics from water. The essential polyelectrolyte nature offers the metallopolymer hydrogels to kill multidrug resistant bacteria. The multifunctional characteristics of these hydrogels highlight the potential for metallopolymers in the field of healthcare and environmental treatment.
Collapse
|