1
|
Cole HD, Vali A, Roque JA, Shi G, Talgatov A, Kaur G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Ru(II) Oligothienyl Complexes with Fluorinated Ligands: Photophysical, Electrochemical, and Photobiological Properties. Inorg Chem 2024; 63:9735-9752. [PMID: 38728376 PMCID: PMC11166183 DOI: 10.1021/acs.inorgchem.3c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
A series of Ru(II) complexes incorporating two 4,4'-bis(trifluoromethyl)-2,2'-bipyridine (4,4'-btfmb) coligands and thienyl-appended imidazo[4,5-f][1,10]phenanthroline (IP-nT) ligands was characterized and assessed for phototherapy effects toward cancer cells. The [Ru(4,4'-btfmb)2(IP-nT)]2+ scaffold has greater overall redox activity compared to Ru(II) polypyridyl complexes such as [Ru(bpy)3]2+. Ru-1T-Ru-4T have additional oxidations due to the nT group and additional reductions due to the 4,4'-btfmb ligands. Ru-2T-Ru-4T also exhibit nT-based reductions. Ru-4T exhibits two oxidations and eight reductions within the potential window of -3 to +1.5 V. The lowest-lying triplets (T1) for Ru-0T-2T are metal-to-ligand charge-transfer (3MLCT) excited states with lifetimes around 1 μs, whereas T1 for Ru-3T-4T is longer-lived (∼20-24 μs) and of significant intraligand charge-transfer (3ILCT) character. Phototoxicity toward melanoma cells (SK-MEL-28) increases with n, with Ru-4T having a visible EC50 value as low as 9 nM and PI as large as 12,000. Ru-3T and Ru-4T retain some of this activity in hypoxia, where Ru-4T has a visible EC50 as low as 35 nM and PI as high as 2900. Activity over six biological replicates is consistent and within an order of magnitude. These results demonstrate the importance of lowest-lying 3ILCT states for phototoxicity and maintaining activity in hypoxia.
Collapse
Affiliation(s)
- Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Abbas Vali
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Alisher Talgatov
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Gurleen Kaur
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
2
|
Cole HD, Vali A, Roque JA, Shi G, Kaur G, Hodges RO, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Ru(II) Phenanthroline-Based Oligothienyl Complexes as Phototherapy Agents. Inorg Chem 2023; 62:21181-21200. [PMID: 38079387 PMCID: PMC10754219 DOI: 10.1021/acs.inorgchem.3c03216] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Ru(II) polypyridyl complexes have gained widespread attention as photosensitizers for photodynamic therapy (PDT). Herein, we systematically investigate a series of the type [Ru(phen)2(IP-nT)]2+, featuring 1,10-phenanthroline (phen) coligands and imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophene rings (IP-nT). The complexes were characterized and investigated for their electrochemical, spectroscopic, and (photo)biological properties. The electrochemical oxidation of the nT unit shifted by -350 mV as n = 1 → 4 (+920 mV for Ru-1T, +570 mV for Ru-4T); nT reductions were observed in complexes Ru-3T (-2530 mV) and Ru-4T (-2300 mV). Singlet oxygen quantum yields ranged from 0.53 to 0.88, with Ru-3T and Ru-4T being equally efficient (∼0.88). Time-resolved absorption spectra of Ru-0T-1T were dominated by metal-to-ligand charge-transfer (3MLCT) states (τTA = 0.40-0.85 μs), but long-lived intraligand charge-transfer (3ILCT) states were observed in Ru-2T-4T (τTA = 25-148 μs). The 3ILCT energies of Ru-3T and Ru-4T were computed to be 1.6 and 1.4 eV, respectively. The phototherapeutic efficacy against melanoma cells (SK-MEL-28) under broad-band visible light (400-700 nm) increases as n = 0 → 4: Ru-0T was inactive up to 300 μM, Ru-1T-2T were moderately active (EC50 ∼ 600 nM, PI = 200), and Ru-3T (EC50 = 57 nM, PI > 1100) and Ru-4T (EC50 = 740 pM, PI = 114,000) were the most phototoxic. The activity diminishes with longer wavelengths of light and is completely suppressed for all complexes except Ru-3T and Ru-4T in hypoxia. Ru-4T is the more potent and robust PS in 1% O2 over seven biological replicates (avg EC50 = 1.3 μM, avg PI = 985). Ru-3T exhibited hypoxic activity in five of seven replicates, underscoring the need for biological replicates in compound evaluation. Singlet oxygen sensitization is likely responsible for phototoxic effects of the compounds in normoxia, but the presence of redox-active excited states may facilitate additional photoactive pathways for complexes with three or more thienyl groups. The 3ILCT state with its extended lifetime (30-40× longer than the 3MLCT state for Ru-3T and Ru-4T) implicates its predominant role in photocytotoxicity.
Collapse
Affiliation(s)
- Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Abbas Vali
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | - Ge Shi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Gurleen Kaur
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 USA
| |
Collapse
|
3
|
Roque JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022; 144:8317-8336. [PMID: 35482975 PMCID: PMC9098688 DOI: 10.1021/jacs.2c02475] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 μs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
4
|
|
5
|
Al-Noaimi M, Awwadi FF, Aljaar N, Hammoudeh A, Bader R, Al-Azzawi R. Ruthenium(II) complexes bearing thioether-azoimine tridentate SNN donor ligands: Synthesis, spectroscopic properties, structural characterization, electrochemistry, and catalytic activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Pannwitz A, Saaring H, Beztsinna N, Li X, Siegler MA, Bonnet S. Mimicking Photosystem I with a Transmembrane Light Harvester and Energy Transfer-Induced Photoreduction in Phospholipid Bilayers. Chemistry 2021; 27:3013-3018. [PMID: 32743875 PMCID: PMC7898337 DOI: 10.1002/chem.202003391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/19/2022]
Abstract
Photosystem I (PS I) is a transmembrane protein that assembles perpendicular to the membrane, and performs light harvesting, energy transfer, and electron transfer to a final, water-soluble electron acceptor. We present here a supramolecular model of it formed by a bicationic oligofluorene 12+ bound to the bisanionic photoredox catalyst eosin Y (EY2- ) in phospholipid bilayers. According to confocal microscopy, molecular modeling, and time dependent density functional theory calculations, 12+ prefers to align perpendicularly to the lipid bilayer. In presence of EY2- , a strong complex is formed (Ka =2.1±0.1×106 m-1 ), which upon excitation of 12+ leads to efficient energy transfer to EY2- . Follow-up electron transfer from the excited state of EY2- to the water-soluble electron donor EDTA was shown via UV-Vis absorption spectroscopy. Overall, controlled self-assembly and photochemistry within the membrane provides an unprecedented yet simple synthetic functional mimic of PS I.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Holden Saaring
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Nataliia Beztsinna
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Xinmeng Li
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Maxime A. Siegler
- Johns Hopkins UniversityDepartment of ChemistryMaryland21218BaltimoreUSA
| | - Sylvestre Bonnet
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| |
Collapse
|
7
|
Pannwitz A, Klein DM, Rodríguez-Jiménez S, Casadevall C, Song H, Reisner E, Hammarström L, Bonnet S. Roadmap towards solar fuel synthesis at the water interface of liposome membranes. Chem Soc Rev 2021; 50:4833-4855. [DOI: 10.1039/d0cs00737d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This tutorial review describes the physical–chemical aspects one must consider when building photocatalytic liposomes for solar fuel production.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
- Institute of Inorganic Chemistry I
| | - David M. Klein
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| | | | - Carla Casadevall
- Yusuf Hamied Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Hongwei Song
- Department of Chemistry – Angstrom Laboratory
- Uppsala University
- 751 20 Uppsala
- Sweden
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Leif Hammarström
- Department of Chemistry – Angstrom Laboratory
- Uppsala University
- 751 20 Uppsala
- Sweden
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry
- Leiden University
- Leiden
- The Netherlands
| |
Collapse
|
8
|
Meijer MS, Bonnet S. Diastereoselective Synthesis and Two-Step Photocleavage of Ruthenium Polypyridyl Complexes Bearing a Bis(thioether) Ligand. Inorg Chem 2019; 58:11689-11698. [PMID: 31433170 PMCID: PMC6724527 DOI: 10.1021/acs.inorgchem.9b01669] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Thioethers are good
ligands for photoactivatable ruthenium(II)
polypyridyl complexes, as they form thermally stable complexes that
are prone to ligand photosubstitution. Here, we introduce a novel
symmetric chelating bis(thioether) ligand scaffold, based on 1,3-bis(methylthio)-2-propanol
(4) and report the synthesis and stereochemical characterization
of the series of novel ruthenium(II) polypyridyl complexes [Ru(bpy)2(L)](PF6)2 ([1]–[3](PF6)2), where L is ligand 4, its methyl ether, 1,3-bis(methylthio)-2-methoxypropane (5), or its carboxymethyl ether, 1,3-bis(methylthio)-2-(carboxymethoxy)propane
(6). Coordination of ligands 4–6 to the bis(bipyridine)ruthenium center gives rise to 16
possible isomers, consisting of 8 possible Λ diastereoisomers
and their Δ enantiomers. We found that the synthesis of [1]–[3](PF6)2 is
diastereoselective, yielding a racemic mixture of the Λ-(S)-eq-(S)-ax-OHeq-[Ru]2+ and Δ-(R)-ax-(R)-eq-OHeq-[Ru]2+ isomers. Upon
irradiation with blue light in water, [1]–[3](PF6)2 selectively substitute their
bis(thioether) ligands for water molecules in a two-step photoreaction,
ultimately producing [Ru(bpy)2(H2O)2]2+ as the photoproduct. The relatively stable photochemical
intermediate was identified as cis-[Ru(bpy)2(κ1-L)(H2O)]2+ by mass spectrometry.
Global fitting of the time evolution of the UV–vis absorption
spectra of [1]–[3](PF6)2 was employed to derive the photosubstitution quantum
yields (Φ443) for each of the two photochemical reaction
steps separately, revealing very high quantum yields of 0.16–0.25
for the first step and lower values (0.0055–0.0093) for the
second step of the photoreaction. The selective and efficient photochemical
reaction makes the photocleavable bis(thioether) ligand scaffold reported
here a promising candidate for use in e.g. ruthenium-based photo-activated
chemotherapy. Thioethers are excellent photocleavable ligands for ruthenium(II)
polypyridyl complexes but may lead to the formation of several stereoisomers
when they are present in bidentate ligands. Here, a chelating bis(thioether)
ligand was found to coordinate to Ru(II) diastereoselectively, in
spite of the four chiral centers of the resulting complex. Photosubstitution
of this bis(thioether) ligand in water occurs via a selective, two-step
process that involves a relatively stable mono(aqua) intermediate.
Collapse
Affiliation(s)
- Michael S Meijer
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
9
|
Askes SHC, Kloz M, Bruylants G, Kennis JTM, Bonnet S. Triplet-triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes. Phys Chem Chem Phys 2015; 17:27380-90. [PMID: 26420663 PMCID: PMC4642198 DOI: 10.1039/c5cp04352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
Upconversion is a promising way to trigger high-energy photochemistry with low-energy photons. However, combining upconversion schemes with non-radiative energy transfer is challenging because bringing several photochemically active components in close proximity results in complex multi-component systems where quenching processes may deactivate the whole assembly. In this work, PEGylated liposomes were prepared that contained three photoactive components: a porphyrin dye absorbing red light, a perylene moiety emitting in the blue, and a light-activatable ruthenium prodrug sensitive to blue light. Time-dependent spectroscopic studies demonstrate that singlet perylene excited states are non-radiatively transferred to the nearby ruthenium complex by Förster resonance energy transfer (FRET). Under red-light irradiation of the three-component membranes, triplet-triplet annihilation upconversion (TTA-UC) occurs followed by FRET, which results in a more efficient activation of the ruthenium prodrug compared to a physical mixture of two-component upconverting liposomes and liposomes containing only the ruthenium complex. This work represents a rare example where TTA-UC and Förster resonance energy transfer are combined to achieve prodrug activation in the phototherapeutic window.
Collapse
Affiliation(s)
- Sven H. C. Askes
- Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , P.O. Box 9502 , 2300 RA Leiden , The Netherlands .
| | - Miroslav Kloz
- Laserlab Amsterdam , VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems , Université Libre de Bruxelles , 50 av. F.D. Roosevelt , 1050 Brussels , Belgium
| | - John T. M. Kennis
- Laserlab Amsterdam , VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , P.O. Box 9502 , 2300 RA Leiden , The Netherlands .
| |
Collapse
|