1
|
Peterson A, Adewuyi JA, Woods JJ, Wacker J, Lukens WW, Abergel RJ, Ung G. Consolidated Curium Reprocessing Procedure Inspires Molecular Design for Sensitized Curium Circularly Polarized Luminescence. Inorg Chem 2024; 63:19752-19758. [PMID: 39375943 DOI: 10.1021/acs.inorgchem.4c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Curium's stable redox chemistry and ability to emit strong metal-based luminescence make it uniquely suitable for spectroscopic studies among the actinide series. Targeted ligand and coordination compound design can support both fundamental electronic structure studies and industrial safeguards with the identification of unique spectroscopic signatures. However, limited availability, inherent radioactive hazards, and arduous purifications have long inhibited such investigations of this element. A consolidated reprocessing procedure for curium has been developed for the milligram scale. The recovery of not only standard legacy curium samples but also hazardous legacy perchlorate containing curium samples was achieved, culminating in column chromatography utilizing the extraction resin DGA (N,N,N',N'-tetra-2-ethylhexyldiglycolamide, branched). Surprisingly, controlled elution of the Cm band from the extraction resin was followed through bright pink luminescence triggered by an inexpensive hand-held UV-vis lamp (380-400 nm). This observation inspired the design of an enantiopure, C2-symmetrical ligand bearing a chiral (trans-1,2-diaminocyclohexane) backbone with achiral DGA moieties (N,N,N',N'-tetra-n-octylacetamide), that enabled rarely observed curium circularly polarized luminescence upon metal chelation. These combined achievements should unlock more luminescence and circularly polarized luminescence studies of curium, and enable the recovery of many curium and other trivalent actinide samples.
Collapse
Affiliation(s)
- Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joseph A Adewuyi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Gaël Ung
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
2
|
Wacker JN, Woods JJ, Rupert PB, Peterson A, Allaire M, Lukens WW, Gaiser AN, Minasian SG, Strong RK, Abergel RJ. Actinium chelation and crystallization in a macromolecular scaffold. Nat Commun 2024; 15:5741. [PMID: 39009580 PMCID: PMC11251196 DOI: 10.1038/s41467-024-50017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Targeted alpha therapy (TAT) pairs the specificity of antigen targeting with the lethality of alpha particles to eradicate cancerous cells. Actinium-225 [225Ac; t1/2 = 9.920(3) days] is an alpha-emitting radioisotope driving the next generation of TAT radiopharmaceuticals. Despite promising clinical results, a fundamental understanding of Ac coordination chemistry lags behind the rest of the Periodic Table due to its limited availability, lack of stable isotopes, and inadequate systems poised to probe the chemical behavior of this radionuclide. In this work, we demonstrate a platform that combines an 8-coordinate synthetic ligand and a mammalian protein to characterize the solution and solid-state behavior of the longest-lived Ac isotope, 227Ac [t1/2 = 21.772(3) years]. We expect these results to direct renewed efforts for 225Ac-TAT development, aid in understanding Ac coordination behavior relative to other +3 lanthanides and actinides, and more broadly inform this element's position on the Periodic Table.
Collapse
Affiliation(s)
- Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter B Rupert
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marc Allaire
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alyssa N Gaiser
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Roland K Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Cosby AG, Arino T, Bailey TA, Buerger M, Woods JJ, Aguirre Quintana LM, Alvarenga Vasquez JV, Wacker JN, Gaiser AN, Strong RK, Abergel RJ. Siderocalin fusion proteins enable a new 86Y/ 90Y theranostic approach. RSC Chem Biol 2023; 4:587-591. [PMID: 37547455 PMCID: PMC10398355 DOI: 10.1039/d3cb00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/02/2023] [Indexed: 08/08/2023] Open
Abstract
The mammalian protein siderocalin binds bacterial siderophores and their iron complexes through cation-π and electrostatic interactions, but also displays high affinity for hydroxypyridinone complexes of trivalent lanthanides and actinides. In order to circumvent synthetic challenges, the use of siderocalin-antibody fusion proteins is explored herein as an alternative targeting approach for precision delivery of trivalent radiometals. We demonstrate the viability of this approach in vivo, using the theranostic pair 90Y (β-, t1/2 = 64 h)/86Y (β+, t1/2 = 14.7 h) in a SKOV-3 xenograft mouse model. Ligand radiolabeling with octadentate hydroxypyridinonate 3,4,3-LI(1,2-HOPO) and subsequent protein binding were achieved at room temperature. The results reported here suggest that the rapid non-covalent binding interaction between siderocalin fusion proteins and the negatively charged Y(iii)-3,4,3-LI(1,2-HOPO) complexes could enable purification-free, cold-kit labeling strategies for the application of therapeutically relevant radiometals in the clinic.
Collapse
Affiliation(s)
- Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Trevor Arino
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering, University of California Berkeley CA 94720 USA
| | - Tyler A Bailey
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering, University of California Berkeley CA 94720 USA
| | - Matthew Buerger
- Division of Basic Sciences, Fred Hutchinson Cancer Center Seattle WA 98109 USA
| | - Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | | | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Alyssa N Gaiser
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Roland K Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Center Seattle WA 98109 USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering, University of California Berkeley CA 94720 USA
| |
Collapse
|
4
|
Wang Q, Liu Z, Song YF, Chai Z, Wang D. Chelation Behaviors of 3,4,3-LI(1,2-HOPO) with Lanthanides and Actinides Implicated by Molecular Dynamics Simulations. Inorg Chem 2023; 62:4304-4313. [PMID: 36847745 DOI: 10.1021/acs.inorgchem.2c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The hydroxypyridinone ligand 3,4,3-LI(1,2-HOPO) (denoted as t-HOPO) is a potential chelator agent for decorporation of in vivo actinides (An), while its coordination modes with actinides and the dynamics of the complexes (An(t-HOPO)) in aqueous phase remain unclear. Here, we report molecular dynamics simulations of the complexes with key actinides (Am3+, Cm3+, Th4+, U4+, Np4+, Pu4+) to study their coordination and dynamic behaviors. For comparison, the complexation of the ligand with a ferric ion and key lanthanides (Sm3+, Eu3+, Gd3+) was also studied. The simulations show that the nature of metal ions determines the properties of the complexes. The t-HOPO in the FeIII(t-HOPO)1- complex ion formed a compact and rigid cage to encapsulate the ferric ion, which was hexa-coordinated. Ln3+/An3+ cations were ennea-coordinated with eight ligating oxygen atoms from t-HOPO and one from an aqua ligand, and An4+ cations were deca-coordinated with a second aqua ligand. The t-HOPO shows strong affinity for metal ions (stronger for An4+ than Ln3+/An3+) benefited from its high denticity and its flexible backbone. Meanwhile, the complexes displayed different dynamic flexibilities, with the AnIV(t-HOPO) complexes more significant than the others, and in the AnIV(t-HOPO) complexes, the fluctuation of the t-HOPO ligand was highly correlated with that of the eight ligating O atoms. This is attributed to the more compact conformation of the ligand, which raises backbone tension, and the competition of the aqua ligand against the t-HOPO ligand in coordinating with the tetravalent actinides. This work enriches our understanding on the structures and conformational dynamics of the complexes of actinides with t-HOPO and is expected to benefit the design of HOPO analogues for actinide sequestering.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, and School of Radiation Medicine and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, Jiangsu, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.,CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Multidisciplinary Initiative Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Colliard I, Lee JRI, Colla CA, Mason HE, Sawvel AM, Zavarin M, Nyman M, Deblonde GJP. Polyoxometalates as ligands to synthesize, isolate and characterize compounds of rare isotopes on the microgram scale. Nat Chem 2022; 14:1357-1366. [PMID: 36050378 DOI: 10.1038/s41557-022-01018-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/04/2022] [Indexed: 01/04/2023]
Abstract
The synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample-per attempt-which for some isotopes is equivalent to the world's annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal-ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties. Three curium-POM complexes were prepared, using just 1-10 μg per synthesis of the rare isotope 248Cm3+, and characterized by single-crystal X-ray diffraction, showing an eight-coordinated Cm3+ centre. Moreover, spectrophotometric, fluorescence, NMR and Raman analyses of several f-block element-POM complexes, including 243Am3+ and 248Cm3+, showed otherwise unnoticeable differences between their solution versus solid-state chemistry, and actinide versus lanthanide behaviour. This POM-driven strategy represents a viable path to isolate even rarer complexes, notably with actinium or transcalifornium elements.
Collapse
Affiliation(s)
- Ian Colliard
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Jonathan R I Lee
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Christopher A Colla
- Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Harris E Mason
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - April M Sawvel
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Gauthier J-P Deblonde
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
6
|
Folding Dynamics of 3,4,3-LI(1,2-HOPO) in Its Free and Bound State with U 4+ Implicated by MD Simulations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238151. [PMID: 36500244 PMCID: PMC9740235 DOI: 10.3390/molecules27238151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
The octadentate hydroxypyridonate ligand 3,4,3-LI(1,2-HOPO) (t-HOPO) shows strong binding affinity with actinide cations and is considered as a promising decorporation agent used to eliminate in vivo actinides, while its dynamics in its unbound and bound states in the condensed phase remain unclear. In this work, by means of MD simulations, the folding dynamics of intact t-HOPO in its neutral (t-HOPO0) and in its deprotonated state (t-HOPO4-) were studied. The results indicated that the deprotonation of t-HOPO in the aqueous phase significantly narrowed the accessible conformational space under the simulated conditions, and it was prepared in a conformation that could conveniently clamp the cations. The simulation of UIV-t-HOPO showed that the tetravalent uranium ion was deca-coordinated with eight ligating O atoms from the t-HOPO4- ligand, and two from aqua ligands. The strong electrostatic interaction between the U4+ ion and t-HOPO4- further diminished the flexibility of t-HOPO4- and confined it in a limited conformational space. The strong interaction between the U4+ ion and t-HOPO4- was also implicated in the shortened residence time of water molecules.
Collapse
|
7
|
Cooper S, Kaltsoyannis N. Covalency in AnCl 2 (An = Th-No). Dalton Trans 2022; 51:5929-5937. [PMID: 35348160 DOI: 10.1039/d2dt00315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A potential connection has previously been proposed between the emergence of unexpected covalent behaviour in various transcurium complexes and the increasing stability of the +2 oxidation state in the later members of the actinide series. We recently used computational methods to study AnCl3, finding evidence for energy degeneracy driven covalency in the later actinides, and here present a comparative study of AnCl2. The An-Cl bond lengths of the latter divide into two data sets; Th-Np, Cm, Bk and Pu, Am, Cf-No. On average the An-Cl bond length decreases for both sets but, with significant increases between Np and Pu, and between Bk and Cf, unlike the former group (Pu, Am, Cf-No)Cl2 have significantly larger lengths than the corresponding trichlorides. Using a range of Natural Bond Orbital (NBO), Natural Resonance Theory (NRT) and Quantum Theory of Atoms In Molecules (QTAIM) metrics, the covalency of the dichloride bonds is analysed. We find that the first group of dichlorides are similar to their trichloride counterparts and possess significantly more covalent bonds than (Pu, Am, Cf-No)Cl2. We believe this change in covalent behaviour across the series for the dichlorides is due to a decreased involvement of the 6d orbital in the later elements (as a result of the f-d excitation energy exceeding the d-stabilisation energy of the actinide ions in question). Moreover, we find that unlike the trichlorides, where the QTAIM delocalisation index indicates that covalency plateaus/moderately increases, An-Cl covalency decreases across the second half of the series for AnCl2. We attribute this difference in behaviour to a lack of significant energy degeneracy driven covalency for the dichlorides, with the energy difference between the dichlorides' β 5f and 3p Natural Atomic Orbitals being larger than for the trichlorides. Hence we find it is not the presence of a stable +2 oxidation state, but instead the extent of energy matching between the actinide 5f orbitals and the ligand 3p, that drives covalency in the transcurium chlorides.
Collapse
Affiliation(s)
- Sophie Cooper
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
8
|
Arnedo-Sanchez L, Smith KF, Deblonde GJP, Carter KP, Moreau LM, Rees JA, Tratnjek T, Booth CH, Abergel RJ. Combining the Best of Two Chelating Titans: A Hydroxypyridinone-Decorated Macrocyclic Ligand for Efficient and Concomitant Complexation and Sensitized Luminescence of f-Elements. Chempluschem 2021; 86:483-491. [PMID: 33733616 DOI: 10.1002/cplu.202100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/02/2021] [Indexed: 12/11/2022]
Abstract
An ideal chelator for f-elements features rapid kinetics of complexation, high thermodynamic stability, and slow kinetics of dissociation. Here we present the facile synthesis of a macrocyclic ligand bearing four 1-hydroxy-2-pyridinone units linked to a cyclen scaffold that rapidly forms thermodynamically stable complexes with lanthanides (Sm3+ , Eu3+ , Tb3+ , Dy3+ ) and a representative late actinide (Cm3+ ) in aqueous media and concurrently sensitizes them. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed an increase in the Ln/An-O bond lengths following the trend Cm>Eu>Tb and EXAFS data were compatible with time-resolved luminescence studies, which indicated one to two water molecules in the inner metal coordination sphere of Eu(III) and two water molecules for the Cm(III) complex. Spectrofluorimetric ligand competition titrations against DTPA confirmed the high thermodynamic stability of DOTHOPO complexes, with pM values between 19.9(1) and 21.9(2).
Collapse
Affiliation(s)
- Leticia Arnedo-Sanchez
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt F Smith
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Glenn T. Seaborg Institute, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Korey P Carter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Liane M Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julian A Rees
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Toni Tratnjek
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corwin H Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Nuclear Engineering, University of California, Berkeley, CA 94709, USA
| |
Collapse
|
9
|
M. Pallares R, Hébert S, Sturzbecher-Hoehne M, Abergel RJ. Chelator-assisted high performance liquid chromatographic separation of trivalent lanthanides and actinides. NEW J CHEM 2021. [DOI: 10.1039/d1nj01966j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
3,4,3-LI(1,2-HOPO) can be used as a HPLC chelating agent, promoting lanthanide and trivalent actinide separation without column modifications.
Collapse
Affiliation(s)
- Roger M. Pallares
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Solène Hébert
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | | - Rebecca J. Abergel
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Nuclear Engineering
| |
Collapse
|
10
|
Mattocks JA, Cotruvo JA. Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem Soc Rev 2020; 49:8315-8334. [PMID: 33057507 DOI: 10.1039/d0cs00653j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanides and actinides are elements of ever-increasing technological importance in the modern world. However, the similar chemical and physical properties within these groups make purification of individual elements a challenge. Current industrial standards for the extraction, separation, and purification of these metals from natural sources, recycled materials, and industrial waste are inefficient, relying upon harsh conditions, repetitive steps, and ligands with only modest selectivity. Biological, biomolecular, and bio-inspired strategies towards improving these separations and making them more environmentally sustainable have been researched for many years; however, these methods often have insufficient selectivity for practical application. Recent developments in the understanding of how lanthanides are selectively acquired and used by certain bacteria offer the opportunity for a newer, more efficient take on these designs, as well as the possibility for fundamentally new designs and strategies. Herein, we review current cell-based and biomolecular (primarily small-molecule and protein-based) methods for detection, extraction, and separations of f-block elements. We discuss how the increasing knowledge regarding the selective recognition, uptake, trafficking, and storage of these elements in biological systems has informed and will continue to promote development of novel approaches to achieve these ends.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
11
|
Pallares RM, Agbo P, Liu X, An DD, Gauny SS, Zeltmann SE, Minor AM, Abergel RJ. Engineering Mesoporous Silica Nanoparticles for Targeted Alpha Therapy against Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40078-40084. [PMID: 32805833 DOI: 10.1021/acsami.0c11051] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Targeted alpha therapy, where highly cytotoxic doses are delivered to tumor cells while sparing surrounding healthy tissue, has emerged as a promising treatment against cancer. Radionuclide conjugation with targeting vectors and dose confinement, however, are still limiting factors for the widespread application of this therapy. In the current study, we developed multifunctional silica nanoconstructs for targeted alpha therapy that show targeting capabilities against breast cancer cells, cytotoxic responses at therapeutic dosages, and enhanced clearance. The silica nanoparticles were conjugated to transferrin, which promoted particle accumulation in cancerous cells, and 3,4,3-LI(1,2-HOPO), a chelator with high selectivity and binding affinity for f-block elements. High cytotoxic effects were observed when the nanoparticles were loaded with 225Ac, a clinically relevant radioisotope. Lastly, in vivo studies in mice showed that the administration of radionuclides with nanoparticles enhanced their excretion and minimized their deposition in bones. These results highlight the potential of multifunctional silica nanoparticles as delivery systems for targeted alpha therapy and offer insight into design rules for the development of new nanotherapeutic agents.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peter Agbo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xin Liu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stacey S Gauny
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Steven E Zeltmann
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Andrew M Minor
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Pallares RM, Sturzbecher-Hoehne M, Shivaram NH, Cryan JP, D'Aléo A, Abergel RJ. Two-Photon Antenna Sensitization of Curium: Evidencing Metal-Driven Effects on Absorption Cross Section in f-Element Complexes. J Phys Chem Lett 2020; 11:6063-6067. [PMID: 32635727 DOI: 10.1021/acs.jpclett.0c01888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-photon-excited fluorescence spectroscopy is a powerful tool to study the structural and electronic properties of optically active complexes and molecules. Although numerous lanthanide complexes have been characterized by two-photon-excited fluorescence in solution, this report is the first to apply such a technique to actinide compounds. Contrasting with previous observations in lanthanides, we demonstrate that the two-photon absorption properties of the complexes significantly depend on the metal (4f vs 5f), with Cm(III) complexes showing significantly higher two-photon absorption cross sections than lanthanide analogues and up to 200-fold stronger emission intensities. These results are consistent with electronic and structural differences between the lanthanide and actinide systems studied. Hence, the described methodology can provide valuable insights into the interactions between f-elements and ligands, along with promising prospects on the characterization of scarce compounds.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Manuel Sturzbecher-Hoehne
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Niranjan H Shivaram
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Anthony D'Aléo
- Aix Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, Case 913, 13288 Marseille, France
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. Commun Chem 2020; 3:61. [PMID: 36703424 PMCID: PMC9814396 DOI: 10.1038/s42004-020-0307-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 01/29/2023] Open
Abstract
The octadentate siderophore analog 3,4,3-LI(1,2-HOPO), denoted 343-HOPO hereafter, is known to have high affinity for both trivalent and tetravalent lanthanide and actinide cations. Here we extend its coordination chemistry to the rare-earth cations Sc3+ and Y3+ and characterize fundamental metal-chelator binding interactions in solution via UV-Vis spectrophotometry, nuclear magnetic resonance spectroscopy, and spectrofluorimetric metal-competition titrations, as well as in the solid-state via single crystal X-ray diffraction. Sc3+ and Y3+ binding with 343-HOPO is found to be robust, with both high thermodynamic stability and fast room temperature radiolabeling, indicating that 343-HOPO is likely a promising chelator for in vivo applications with both metals. As a proof of concept, we prepared a 86Y-343-HOPO complex for in vivo PET imaging, and the results presented herein highlight the potential of 343-HOPO chelated trivalent metal cations for therapeutic and theranostic applications.
Collapse
|
14
|
Carter KP, Smith KF, Tratnjek T, Shield KM, Moreau LM, Rees JA, Booth CH, Abergel RJ. Spontaneous Chelation‐Driven Reduction of the Neptunyl Cation in Aqueous Solution. Chemistry 2020; 26:2354-2359. [DOI: 10.1002/chem.201905695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Korey P. Carter
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Kurt F. Smith
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Toni Tratnjek
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Katherine M. Shield
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering University of California Berkeley CA 94709 USA
| | - Liane M. Moreau
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Julian A. Rees
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Corwin H. Booth
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Rebecca J. Abergel
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering University of California Berkeley CA 94709 USA
| |
Collapse
|
15
|
Deblonde GJP, Ricano A, Abergel RJ. Ultra-selective ligand-driven separation of strategic actinides. Nat Commun 2019; 10:2438. [PMID: 31164638 PMCID: PMC6547845 DOI: 10.1038/s41467-019-10240-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
Metal ion separations are critical to numerous fields, including nuclear medicine, waste recycling, space exploration, and fundamental research. Nonetheless, operational conditions and performance are limited, imposing compromises between recovery, purity, and cost. Siderophore-inspired ligands show unprecedented charge-based selectivity and compatibility with harsh industry conditions, affording excellent separation efficiency, robustness and process control. Here, we successfully demonstrate a general separation strategy on three distinct systems, for Ac, Pu, and Bk purification. Separation factors (SF) obtained with model compound 3,4,3-LI(1,2-HOPO) are orders of magnitude higher than with any other ligand currently employed: 106 between Ac and relevant metal impurities, and over 108 for redox-free Pu purification against uranyl ions and trivalent actinides or fission products. Finally, a one-step separation method (SF > 3 × 106 and radiopurity > 99.999%) enables the isolation of Bk from adjacent actinides and fission products. The proposed approach offers a paradigm change for the production of strategic elements. Radionuclides are of great importance for fields such as nuclear medicine and waste recycling, but their efficient purification remains a challenge. Here the authors show that an octadentate hydroxypyridinone chelator enables efficient and robust separation processes for isotopes of Ac, Pu, and Bk.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Abel Ricano
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Nuclear Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
16
|
Agbo P, Müller A, Arnedo-Sanchez L, Ercius P, Minor AM, Abergel RJ. Amplified luminescence in organo-curium nanocrystal hybrids. NANOSCALE 2019; 11:7609-7612. [PMID: 30969284 DOI: 10.1039/c9nr01360a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present the first report of ligand-sensitized, actinide luminescence in a lanthanide nanoparticle host. Amplified luminescence of 248Cm3+ doped in a NaGdF4 lattice is achieved through optical pumping of a surface-localized metal chelator, 3,4,3-LI(1,2-HOPO), capable of sensitizing Cm3+ excited states. The data suggest the possibility of using such materials in theranostic applications, with a ligand-sensitized actinide or radio-lanthanide serving the dual roles of a nuclear decay source for radiotherapeutics, and as a luminescent center or energy transfer conduit to another emissive metal ion, for biological imaging.
Collapse
Affiliation(s)
- Peter Agbo
- Chemical Sciences Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Deblonde GJP, Lohrey TD, Abergel RJ. Inducing selectivity and chirality in group IV metal coordination with high-denticity hydroxypyridinones. Dalton Trans 2019; 48:8238-8247. [PMID: 31094380 DOI: 10.1039/c9dt01031a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The solution- and solid-state interactions between the octadentate siderophore mimic 3,4,3-LI(1,2-HOPO) (343HOPO) and group IV metal ions were investigated using high-resolution mass spectrometry, liquid chromatography, UV-visible spectrophotometry, metal-competition batch titrations, and single crystal X-ray diffraction. 343HOPO forms a neutral 1 : 1 complex, [HfIV343HOPO], that exhibits extreme stability in aqueous solution, with a log β110 value reaching 42.3. These results affirm the remarkable charge-based selectivity of 343HOPO for octacoordinated tetravalent cations with a Hf(iv) complex 1021 more stable than its Lu(iii) analogue. Moreover, [HfIV343HOPO] and its Zr(iv) counterpart show exceptional robustness, with the ligand remaining bound to the cation over a very broad pH range: from pH ∼ 11 to acidic conditions as strong as 10 M HCl. In stark contrast, Ti(iv)-343HOPO species are far less stable and undergo hydrolysis at pH as low as ∼6, likely due to the mismatch between the preferred hexacoordinated Ti(iv) ion and octadentate 343HOPO ligand. The extreme charge-based and denticity-driven selectivity of 343HOPO, now observed across the periodic table, paves the way for new selective sequestration systems for radionuclides including medical 44Ti, 89Zr or 177Lu/Hf isotopes, toxic polonium (Po) contaminants, as well as rutherfordium (Rf) research isotopes. Furthermore, despite the lack of a chiral center in 343HOPO, its complexes with metal ions are chiral and appear to form a single set of enantiomers.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
18
|
Sadhu B, Mishra V. The coordination chemistry of lanthanide and actinide metal ions with hydroxypyridinone-based decorporation agents: orbital and density based analyses. Dalton Trans 2018; 47:16603-16615. [PMID: 30417921 DOI: 10.1039/c8dt03262a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of the mitigation of the biological effects of internal radionuclide contamination and for efficient decorporation, the design and development of efficient chelators for lanthanide and actinide metal ions has become a central issue. The pioneering work of Raymond and coworkers (Chem. Rev., 2003, 103, 4207-4282) led to the development of siderophore-related hydroxypyridinonate ligands for possible treatment of internalized radionuclides. However, the structure-function relationship of Ln/An bound to these ligands, particularly the bonding and coordination aspects are not clearly understood at the atomic level. Here, we have investigated the structure, binding and energetics of trivalent and tetravalent Ln/An (Sm3+, Eu3+, Am3+, Cm3+, Th4+, Pu4+) ions with spermine-based octadentate hydroxypyridinonate chelators, namely 3,4,3-LI(1,2-HOPO) and its 3,3,3 variant, using relativistic density functional theory (DFT). Furthermore, we have performed orbital and density based analyses to elucidate the nature of bonding in these complexes. In accordance with the experimental stability constant, we found the maximum binding free energy for An4+ (Pu4+, Th4+) as compared to trivalent metal ions. CDA and ECDA analyses along with orbital-based population analyses confirmed the higher ligand to metal charge transfer for An4+ than for trivalent metal ions. Furthermore, the aromaticity index analysis suggested the presence of crucial chelatoaromatic stabilization for all these metal ions with the maximum for An4+. QTAIM descriptors indicated that the binding of An/Ln with the hard oxygen donor of the ligands is of the donor-acceptor type but a higher degree of covalency exists for actinides as compared to lanthanides. Furthermore, QTAIM and molecular orbital analysis confirmed that such covalency is of the energy-driven type and strictly originates from the orbital mixing event of An-5f orbitals with the ligand orbitals.
Collapse
Affiliation(s)
- Biswajit Sadhu
- Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India.
| | | |
Collapse
|
19
|
Deblonde GJP, Lohrey TD, Booth CH, Carter KP, Parker BF, Larsen Å, Smeets R, Ryan OB, Cuthbertson AS, Abergel RJ. Solution Thermodynamics and Kinetics of Metal Complexation with a Hydroxypyridinone Chelator Designed for Thorium-227 Targeted Alpha Therapy. Inorg Chem 2018; 57:14337-14346. [PMID: 30372069 DOI: 10.1021/acs.inorgchem.8b02430] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solution chemistry of a chelator developed for 227Th targeted alpha therapy was probed. The compound of interest is an octadentate ligand comprising four N-methyl-3-hydroxy-pyridine-2-one metal-binding units, two tertiary amine groups, and one carboxylate arm appended for bioconjugation. The seven p Ka values of the ligand and the stability constants of complexes formed with Th(IV), Hf(IV), Zr(IV), Gd(III), Eu(III), Al(III), and Fe(III) were determined. The ligand exhibits extreme thermodynamic selectivity toward tetravalent metal ions with a ca. 20 orders of magnitude difference between the formation constant of the Th(IV) species formed at physiological pH, namely [ThL]-, and that of its Eu(III) analogue. Likewise, log β110 values of 41.7 ± 0.3 and 26.9 ± 0.3 (T = 25 °C) were measured for [ThL]- and [FeIIIL]2-, respectively, highlighting the high affinity and selectivity of the ligand for Th ions over potentially competing endogenous metals. Single crystal X-ray analysis of the Fe(III) complex revealed a dinuclear 2:2 metal:chelator complex crystallizing in the space group P1̅. The formation of this dimeric species is likely favored by several intramolecular hydrogen bonds and the protonation state of the chelator in acidic media. LIII edge EXAFS data on the Th(IV) complexes of both the ligand and a monoclonal antibody conjugate revealed the expected mononuclear 1:1 metal:chelator coordination environment. This was also confirmed by high resolution mass spectrometry. Finally, kinetic experiments demonstrated that labeling the bioconjugated ligand with Th(IV) could be achieved and completed after 1 h at room temperature, reinforcing the high suitability of this chelator for 227Th targeted alpha therapy.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Trevor D Lohrey
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California, Berkeley , California 94720 , United States
| | - Corwin H Booth
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Korey P Carter
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Bernard F Parker
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry , University of California, Berkeley , California 94720 , United States
| | - Åsmund Larsen
- Department of Thorium Conjugate Research , Bayer AS , 0283 Oslo , Norway
| | - Roger Smeets
- Department of Thorium Conjugate Research , Bayer AS , 0283 Oslo , Norway
| | - Olav B Ryan
- Department of Thorium Conjugate Research , Bayer AS , 0283 Oslo , Norway
| | - Alan S Cuthbertson
- Department of Thorium Conjugate Research , Bayer AS , 0283 Oslo , Norway
| | - Rebecca J Abergel
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Nuclear Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
20
|
Kelley MP, Deblonde GJP, Su J, Booth CH, Abergel RJ, Batista ER, Yang P. Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO). Inorg Chem 2018; 57:5352-5363. [DOI: 10.1021/acs.inorgchem.8b00345] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Morgan P. Kelley
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Gauthier J.-P. Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jing Su
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Corwin H. Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J. Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| |
Collapse
|
21
|
Sturzbecher-Hoehne M, Yang P, D'Aléo A, Abergel RJ. Intramolecular sensitization of americium luminescence in solution: shining light on short-lived forbidden 5f transitions. Dalton Trans 2018; 45:9912-9. [PMID: 26961598 DOI: 10.1039/c6dt00328a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The photophysical properties and solution thermodynamics of water soluble trivalent americium (Am(III)) complexes formed with multidentate chromophore-bearing ligands, 3,4,3-LI(1,2-HOPO), Enterobactin, and 5-LIO(Me-3,2-HOPO), were investigated. The three chelators were shown to act as antenna chromophores for Am(III), generating sensitized luminescence emission from the metal upon complexation, with very short lifetimes ranging from 33 to 42 ns and low luminescence quantum yields (10(-3) to 10(-2)%), characteristic of Near Infra-Red emitters in similar systems. The specific emission peak of Am(III) assigned to the (5)D1 → (7)F1 f-f transition was exploited to characterize the high proton-independent stability of the complex formed with the most efficient sensitizer 3,4,3-LI(1,2-HOPO), with a log β110 = 20.4 ± 0.2 value. In addition, the optical and solution thermodynamic features of these Am(III) complexes, combined with density functional theory calculations, were used to probe the influence of electronic structure on coordination properties across the f-element series and to gain insight into ligand field effects.
Collapse
Affiliation(s)
- M Sturzbecher-Hoehne
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - P Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - A D'Aléo
- Aix Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France.
| | - R J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Junker AKR, Deblonde GJP, Abergel RJ, Sørensen TJ. Investigating subtle 4f vs. 5f coordination differences using kinetically inert Eu(iii), Tb(iii), and Cm(iii) complexes of a coumarin-appended 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate (DO3A) ligand. Dalton Trans 2018; 47:7362-7369. [DOI: 10.1039/c8dt01547c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coumarin appended DO3A complexes of Cm(iii), Eu(iii), and Tb(iii) show that more than ionic radius determines the coordination chemistry of the f-elements.
Collapse
Affiliation(s)
- Anne Kathrine R. Junker
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | | | - Rebecca J. Abergel
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Nuclear Engineering
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| |
Collapse
|
23
|
Chelation and stabilization of berkelium in oxidation state +IV. Nat Chem 2017; 9:843-849. [PMID: 28837177 DOI: 10.1038/nchem.2759] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/02/2017] [Indexed: 11/09/2022]
Abstract
Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin-a mammalian metal transporter-in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.
Collapse
|
24
|
Daumann LJ, Werther P, Ziegler MJ, Raymond KN. Siderophore inspired tetra- and octadentate antenna ligands for luminescent Eu(III) and Tb(III) complexes. J Inorg Biochem 2016; 162:263-273. [DOI: 10.1016/j.jinorgbio.2016.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 01/09/2023]
|
25
|
Coburn KM, Hardy DA, Patterson MG, McGraw SN, Peruzzi MT, Boucher F, Beelen B, Sartain HT, Neils T, Lawrence CL, Staples RJ, Werner EJ, Biros SM. f-Element coordination and extraction selectivity of a carbamoylmethylphosphine oxide ligand based on a tripodal phosphine oxide scaffold. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Cary SK, Silver MA, Liu G, Wang JC, Bogart JA, Stritzinger JT, Arico AA, Hanson K, Schelter EJ, Albrecht-Schmitt TE. Spontaneous Partitioning of Californium from Curium: Curious Cases from the Crystallization of Curium Coordination Complexes. Inorg Chem 2015; 54:11399-404. [DOI: 10.1021/acs.inorgchem.5b02052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samantha K. Cary
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Mark A. Silver
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Guokui Liu
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jamie C. Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Justin A. Bogart
- P. Roy and Diana T. Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jared T. Stritzinger
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexandra A. Arico
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Thomas E. Albrecht-Schmitt
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
27
|
Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc Natl Acad Sci U S A 2015; 112:10342-7. [PMID: 26240330 DOI: 10.1073/pnas.1508902112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.
Collapse
|
28
|
D'Aléo A, Moore EG, Xu J, Daumann LJ, Raymond KN. Optimization of the Sensitization Process and Stability of Octadentate Eu(III) 1,2-HOPO Complexes. Inorg Chem 2015; 54:6807-20. [PMID: 26151082 PMCID: PMC4556046 DOI: 10.1021/acs.inorgchem.5b00748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The synthesis of
a series of octadentate ligands containing the 1-hydroxypyridin-2-one
(1,2-HOPO) group in complex with europium(III) is reported. Within
this series, the central bridge connecting two diethylenetriamine
units linked to two 1,2-HOPO chromophores at the extremities (5-LIN-1,2-HOPO)
is varied from a short ethylene chain (H(2,2)-1,2-HOPO) to a long
pentaethylene oxide chain (H(17O5,2)-1,2-HOPO). The thermodynamic
stability of the europium complexes has been studied and reveals these
complexes may be effective for biological measurements. Extension
of the central bridge results in exclusion of the inner-sphere water
molecule observed for [Eu(H(2,2)-1,2-HOPO)]− going
from a nonacoordinated to an octacoordinated Eu(III) ion. With the
longer chain length ligands, the complexes display increased luminescence
properties in aqueous medium with an optimum of 20% luminescence quantum
yield for the [Eu(H(17O5,2)-1,2-HOPO)]− complex.
The luminescence properties for [Eu(H(14O4,2)-1,2-HOPO)]− and [Eu(H(17O5,2)-1,2-HOPO)]− are better than
that of the model bis-tetradentate [Eu(5LINMe-1,2-HOPO)2]− complex, suggesting a different geometry
around the metal center despite the geometric freedom allowed by the
longer central chain in the H(mOn,2) scaffold. These differences are also evidenced by examining the
luminescence spectra at room temperature and at 77 K and by calculating
the luminescence kinetic parameters of the europium complexes. The tetradentate 5LINMe-1,2-HOPO ligand is a
proven sensitizer for Eu(III) emission. Herein, we report the synthesis,
stability, and photophysical characterization for a series of octadentate
ligands prepared by linking these subunits together with various aliphatic
or oligoethylene glycol chains to form Eu(III) complexes with fully
optimized emission in aqueous solution, in terms of their overall
quantum yield and brightness, for potential applications in biological
luminescence.
Collapse
Affiliation(s)
- Anthony D'Aléo
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Evan G Moore
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jide Xu
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lena J Daumann
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Sturzbecher-Hoehne M, Choi TA, Abergel RJ. Hydroxypyridinonate complex stability of group (IV) metals and tetravalent f-block elements: the key to the next generation of chelating agents for radiopharmaceuticals. Inorg Chem 2015; 54:3462-8. [PMID: 25799124 DOI: 10.1021/acs.inorgchem.5b00033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution thermodynamics of the water-soluble complexes formed between 3,4,3-LI(1,2-HOPO) and Zr(IV) or Pu(IV) were investigated to establish the metal coordination properties of this octadentate chelating agent. Stability constants log β110 = 43.1 ± 0.6 and 43.5 ± 0.7 were determined for [Zr(IV)(3,4,3-LI(1,2-HOPO))] and [Pu(IV)(3,4,3-LI(1,2-HOPO))], respectively, by spectrophotometric competition titrations against Ce(IV). Such high thermodynamic stabilities not only confirm the unparalleled Pu(IV) affinity of 3,4,3-LI(1,2-HOPO) as a decorporation agent but also corroborate the great potential of hydroxypyridinonate ligands as new (89)Zr-chelating platforms for immuno-PET applications. These experimental values are in excellent agreement with previous estimates and are discussed with respect to ionic radius and electronic configuration, in comparison with those of Ce(IV) and Th(IV). Furthermore, a liquid chromatography assay combined with mass spectrometric detection was developed to probe the separation of the neutral [M(IV)(3,4,3-LI(1,2-HOPO))] complex species (M = Zr, Ce, Th, and Pu), providing additional insight into the coordination differences between group IV and tetravalent f-block metals and on the role of d and f orbitals in bonding interactions.
Collapse
Affiliation(s)
- Manuel Sturzbecher-Hoehne
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Taylor A Choi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Daumann LJ, Tatum DS, Snyder BER, Ni C, Law GL, Solomon EI, Raymond KN. New insights into structure and luminescence of Eu(III) and Sm(III) complexes of the 3,4,3-LI(1,2-HOPO) ligand. J Am Chem Soc 2015; 137:2816-9. [PMID: 25607882 PMCID: PMC4433002 DOI: 10.1021/ja5116524] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [M(III)L](-) (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with Eu(III) as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the Eu(III) and Sm(III) complexes of this ligand undergo a transformation after in situ preparation to yield complexes with higher quantum yield (QY) over time. It is proposed that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements.
Collapse
Affiliation(s)
- Lena J Daumann
- Chemical Science Division, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | | | | | | | | | |
Collapse
|