1
|
Yabuuchi Y, Furukawa H, Carsch KM, Klein RA, Tkachenko NV, Huang AJ, Cheng Y, Taddei KM, Novak E, Brown CM, Head-Gordon M, Long JR. Geometric Tuning of Coordinatively Unsaturated Copper(I) Sites in Metal-Organic Frameworks for Ambient-Temperature Hydrogen Storage. J Am Chem Soc 2024; 146:22759-22776. [PMID: 39092909 PMCID: PMC11328132 DOI: 10.1021/jacs.4c08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/04/2024]
Abstract
Porous solids can accommodate and release molecular hydrogen readily, making them attractive for minimizing the energy requirements for hydrogen storage relative to physical storage systems. However, H2 adsorption enthalpies in such materials are generally weak (-3 to -7 kJ/mol), lowering capacities at ambient temperature. Metal-organic frameworks with well-defined structures and synthetic modularity could allow for tuning adsorbent-H2 interactions for ambient-temperature storage. Recently, Cu2.2Zn2.8Cl1.8(btdd)3 (H2btdd = bis(1H-1,2,3-triazolo-[4,5-b],[4',5'-i])dibenzo[1,4]dioxin; CuI-MFU-4l) was reported to show a large H2 adsorption enthalpy of -32 kJ/mol owing to π-backbonding from CuI to H2, exceeding the optimal binding strength for ambient-temperature storage (-15 to -25 kJ/mol). Toward realizing optimal H2 binding, we sought to modulate the π-backbonding interactions by tuning the pyramidal geometry of the trigonal CuI sites. A series of isostructural frameworks, Cu2.7M2.3X1.3(btdd)3 (M = Mn, Cd; X = Cl, I; CuIM-MFU-4l), was synthesized through postsynthetic modification of the corresponding materials M5X4(btdd)3 (M = Mn, Cd; X = CH3CO2, I). This strategy adjusts the H2 adsorption enthalpy at the CuI sites according to the ionic radius of the central metal ion of the pentanuclear cluster node, leading to -33 kJ/mol for M = ZnII (0.74 Å), -27 kJ/mol for M = MnII (0.83 Å), and -23 kJ/mol for M = CdII (0.95 Å). Thus, CuICd-MFU-4l provides a second, more stable example of optimal H2 binding energy for ambient-temperature storage among reported metal-organic frameworks. Structural, computational, and spectroscopic studies indicate that a larger central metal planarizes trigonal CuI sites, weakening the π-backbonding to H2.
Collapse
Affiliation(s)
- Yuto Yabuuchi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hiroyasu Furukawa
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kurtis M Carsch
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
| | - Ryan A Klein
- Material, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Nikolay V Tkachenko
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adrian J Huang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Keith M Taddei
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eric Novak
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Wang R, Wang ZY, Zhang Y, Shaheer ARM, Liu TF, Cao R. Bridging Atom Engineering for Low-Temperature Oxygen Activation in a Robust Metal-Organic Framework. Angew Chem Int Ed Engl 2024; 63:e202400160. [PMID: 38523066 DOI: 10.1002/anie.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Achieving active site engineering at the atomic level poses a significant challenge in the design and optimization of catalysts for energy-efficient catalytic processes, especially for a reaction with two reactants competitively absorbed on catalytic active sites. Herein, we show an example that tailoring the local environment of cobalt sites in a robust metal-organic framework through substituting the bridging atom from -Cl to -OH group leads to a highly active catalyst for oxygen activation in an oxidation reaction. Comprehensive characterizations reveal that this variation imparts drastic changes on the electronic structure of metal centers, the competitive reactant adsorption behavior, and the intermediate formation. As a result, exceptional low-temperature CO oxidation performance was achieved with T25(Temperature for 25 % conversion)=35 °C and T100 (Temperature for 100 % conversion)=150 °C, which stands out from existing MOF-based catalysts and even rivals many noble metal catalysts. This work provides a guidance for the rational design of catalysts for efficient oxygen activation for an oxidation reaction.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
- Department of Chemistry School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zi-Yu Wang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
| | - A R Mahammed Shaheer
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
| | - Tian-Fu Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rong Cao
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
- Department of Chemistry School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Xiao C, Tian J, Chen Q, Hong M. Water-stable metal-organic frameworks (MOFs): rational construction and carbon dioxide capture. Chem Sci 2024; 15:1570-1610. [PMID: 38303941 PMCID: PMC10829030 DOI: 10.1039/d3sc06076d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are considered to be a promising porous material due to their excellent porosity and chemical tailorability. However, due to the relatively weak strength of coordination bonds, the stability (e.g., water stability) of MOFs is usually poor, which severely inhibits their practical applications. To prepare water-stable MOFs, several important strategies such as increasing the bonding strength of building units and introducing hydrophobic units have been proposed, and many MOFs with excellent water stability have been prepared. Carbon dioxide not only causes a range of climate and health problems but also is a by-product of some important chemicals (e.g., natural gas). Due to their excellent adsorption performances, MOFs are considered as a promising adsorbent that can capture carbon dioxide efficiently and energetically, and many water-stable MOFs have been used to capture carbon dioxide in various scenarios, including flue gas decarbonization, direct air capture, and purified crude natural gas. In this review, we first introduce the design and synthesis of water-stable MOFs and then describe their applications in carbon dioxide capture, and finally provide some personal comments on the challenges facing these areas.
Collapse
Affiliation(s)
- Cao Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jindou Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Chen Z, Kirlikovali KO, Shi L, Farha OK. Rational design of stable functional metal-organic frameworks. MATERIALS HORIZONS 2023; 10:3257-3268. [PMID: 37285170 DOI: 10.1039/d3mh00541k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
Functional porous metal-organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities. The implementation of reticular chemistry allows for the rational top-down design of stable porous MOFs with targeted topological networks and pore structures from the pre-selected building blocks. We highlight the reticular synthesis and applications of stable MOFs: (1) MOFs based on high valent metal ions (e.g., Al3+, Cr3+, Fe3+, Ti4+ and Zr4+) and carboxylate ligands; (2) MOFs based on low valent metal ions (e.g., Ni2+, Cu2+, and Zn2+) and azolate linkers. We envision that the synthetic strategies, including modulated synthesis and post-synthetic modification, can potentially be extended to other more complex systems like metal-phosphonate framework materials.
Collapse
Affiliation(s)
- Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
5
|
Gaidimas MA, Son FA, Mian MR, Islamoglu T, Farha OK. Influence of Pore Size on Hydrocarbon Transport in Isostructural Metal-Organic Framework Crystallites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47222-47229. [PMID: 36215126 DOI: 10.1021/acsami.2c12189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
Hydrocarbon separations using porous materials such as metal-organic frameworks (MOFs) have been proposed to reduce the energy demands associated with current distillation-based methods. Despite the potential of these materials to distinguish hydrocarbons through thermodynamic or kinetic mechanisms, experimental data quantifying hydrocarbon transport in MOFs is lacking. Such mass transfer measurements are vital to elucidate structure-property relationships and design future high-performing separation materials. In this work, we aim to isolate the influence of pore size on hydrocarbon diffusion by studying a pair of isoreticular MOFs, Co2Cl2BBTA and Co2Cl2BTDD. We use a volumetric method to extract mass transport coefficients for six hydrocarbon probe molecules of varying size and chemical functionality. From these nonequilibrium mass transport measurements, we determine the rate-limiting diffusion mechanism and identify trends in hydrocarbon surface permeabilities in the MOFs based on pore size, hydrocarbon chain length, and temperature.
Collapse
Affiliation(s)
- Madeleine A Gaidimas
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Florencia A Son
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Jaramillo DE, Jaffe A, Snyder BER, Smith A, Taw E, Rohde RC, Dods MN, DeSnoo W, Meihaus KR, Harris TD, Neaton JB, Long JR. Metal-organic frameworks as O 2-selective adsorbents for air separations. Chem Sci 2022; 13:10216-10237. [PMID: 36277628 PMCID: PMC9473493 DOI: 10.1039/d2sc03577d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consumption and would constitute an important component of broader efforts to combat climate change. Certain small-scale air separations are carried out using N2-selective adsorbents, although the low capacities, poor selectivities, and high regeneration energies associated with these materials limit the extent of their usage. In contrast, the realization of O2-selective adsorbents may facilitate more widespread adoption of adsorptive air separations, which could enable the decentralization of O2 production and utilization and advance new uses for O2. Here, we present a detailed evaluation of the potential of metal-organic frameworks (MOFs) to serve as O2-selective adsorbents for air separations. Drawing insights from biological and molecular systems that selectively bind O2, we survey the field of O2-selective MOFs, highlighting progress and identifying promising areas for future exploration. As a guide for further research, the importance of moving beyond the traditional evaluation of O2 adsorption enthalpy, ΔH, is emphasized, and the free energy of O2 adsorption, ΔG, is discussed as the key metric for understanding and predicting MOF performance under practical conditions. Based on a proof-of-concept assessment of O2 binding carried out for eight different MOFs using experimentally derived capacities and thermodynamic parameters, we identify two existing materials and one proposed framework with nearly optimal ΔG values for operation under user-defined conditions. While enhancements are still needed in other material properties, the insights from the assessments herein serve as a guide for future materials design and evaluation. Computational approaches based on density functional theory with periodic boundary conditions are also discussed as complementary to experimental efforts, and new predictions enable identification of additional promising MOF systems for investigation.
Collapse
Affiliation(s)
- David E Jaramillo
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Adam Jaffe
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Benjamin E R Snyder
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Alex Smith
- Department of Physics, University of California Berkeley Berkeley California 94720 USA
| | - Eric Taw
- Department of Chemical and Biomolecular Engineering, University of California Berkeley Berkeley California 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Rachel C Rohde
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Matthew N Dods
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - William DeSnoo
- Department of Physics, University of California Berkeley Berkeley California 94720 USA
| | - Katie R Meihaus
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - T David Harris
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Jeffrey B Neaton
- Department of Physics, University of California Berkeley Berkeley California 94720 USA
- Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kavli Nanosciences Institute at Berkeley Berkeley California 94720 USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley Berkeley California 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| |
Collapse
|
7
|
Röß-Ohlenroth R, Hirrle M, Kraft M, Kalytta-Mewes A, Jesche A, Krug von Nidda HA, Volkmer D. Synthesis, Thermal Stability and Magnetic Properties of an Interpenetrated Mn(II) Triazolate Coordination Framework. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Marcel Hirrle
- University of Augsburg: Universitat Augsburg GERMANY
| | - Maryana Kraft
- University of Augsburg: Universitat Augsburg GERMANY
| | | | - Anton Jesche
- University of Augsburg: Universitat Augsburg GERMANY
| | | | - Dirk Volkmer
- Augsburg University Institute of Physics Universitaetsstrasse 1 D-96159 Augsburg GERMANY
| |
Collapse
|
8
|
Fahy KM, Mian MR, Wasson MC, Son FA, Islamoglu T, Farha OK. Exchange of coordinated carboxylates with azolates as a route to obtain a microporous zinc-azolate framework. Chem Commun (Camb) 2022; 58:4028-4031. [PMID: 35254367 DOI: 10.1039/d2cc00925k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) containing open metal sites are advantageous for wide applications. Here, carboxylate linkers are replaced with triazolate coordination in pre-formed Zn-MOF-74 via solvent-assisted linker exchange (SALE) to prepare the novel NU-250, within the known hexagonal channel-based MAF-X25 series that has not previously been synthesized de novo.
Collapse
Affiliation(s)
- Kira M Fahy
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Mohammad Rasel Mian
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Megan C Wasson
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Florencia A Son
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Timur Islamoglu
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | - Omar K Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA. .,Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Rosen AS, Notestein JM, Snurr RQ. Exploring mechanistic routes for light alkane oxidation with an iron-triazolate metal-organic framework. Phys Chem Chem Phys 2022; 24:8129-8141. [PMID: 35332353 DOI: 10.1039/d2cp00963c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
In this work, we computationally explore the formation and subsequent reactivity of various iron-oxo species in the iron-triazolate framework Fe2(μ-OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) for the catalytic activation of strong C-H bonds. With the direct conversion of methane to methanol as the probe reaction of interest, we use density functional theory (DFT) calculations to evaluate multiple mechanistic pathways in the presence of either N2O or H2O2 oxidants. These calculations reveal that a wide range of transition metal-oxo sites - both terminal and bridging - are plausible in this family of metal-organic frameworks, making it a unique platform for comparing the electronic structure and reactivity of different proposed active site motifs. Based on the DFT calculations, we predict that Fe2(μ-OH)2(bbta) would exhibit a relatively low barrier for N2O activation and energetically favorable formation of an [Fe(O)]2+ species that is capable of oxidizing C-H bonds. In contrast, the use of H2O2 as the oxidant is predicted to yield an assortment of bridging iron-oxo sites that are less reactive. We also find that abstracting oxo ligands can exhibit a complex mixture of both positive and negative spin density, which may have broader implications for relating the degree of radical character to catalytic activity. In general, we consider the coordinatively unsaturated iron sites to be promising for oxidation catalysis, and we provide several recommendations on how to further tune the catalytic properties of this family of metal-triazolate frameworks.
Collapse
Affiliation(s)
- Andrew S Rosen
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
10
|
Zhang JW, Li H, Li JQ, Chen Y, Qu P, Zhai QG. Enhancement of the fluorescence properties via introducing the tetraphenylethylene chromophores into a novel Mn-organic framework with a rare [Mn 4(μ 3-OH) 2] cluster. Dalton Trans 2021; 50:17482-17486. [PMID: 34788353 DOI: 10.1039/d1dt03349b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
By employing a tetraphenylethylene (TPE)-based tetracarboxylate linker, tetrakis(4-carboxyphenyl)ethylene (H4TCPE), we herein constructed a novel luminescent Mn-MOF based on a rare [Mn4(μ3-OH)2] cluster (SQNU-55). Interestingly, the TPE-based SQNU-55 not only provides a good material for the blue LED device, but also has a better luminescent molecular thermometer for low-temperature detection.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Hui Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Jie-Qiong Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Ya Chen
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Peng Qu
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China.
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China.
| |
Collapse
|
11
|
Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi MR, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications. CHEMOSPHERE 2021; 281:130717. [PMID: 34020194 DOI: 10.1016/j.chemosphere.2021.130717] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Porous Metal-Organic Frameworks (MOFs) have emerged as eye-catching materials in recent years. They are widely used in numerous fields of chemistry thanks to their desirable properties. MOFs have a key role in the development of bioimaging platforms that are hopefully expected to effectually pave the way for accurate and selective detection and diagnosis of abnormalities. Recently, many types of MOFs have been employed for detection of RNA, DNA, enzyme activity and small-biomolecules, as well as for magnetic resonance imaging (MRI) and computed tomography (CT), which are valuable methods for clinical analysis. The optimal performance of the MOF in the bio-imaging field depends on the core structure, synthesis method and modifications processes. In this review, we have attempted to present crucial parameters for designing and achieving an efficient MOF as bioimaging platforms, and provide a roadmap for researchers in this field. Moreover, the influence of modifications/fractionalizations on MOFs performance has been thoroughly discussed and challenging problems have been extensively addressed. Consideration is mainly focused on the principal concepts and applications that have been achieved to modify and synthesize advanced MOFs for future applications.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol. Iran
| | - Younes Hanifehpour
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
12
|
Bien CE, Cai Z, Wade CR. Using Postsynthetic X-Type Ligand Exchange to Enhance CO 2 Adsorption in Metal-Organic Frameworks with Kuratowski-Type Building Units. Inorg Chem 2021; 60:11784-11794. [PMID: 34185507 DOI: 10.1021/acs.inorgchem.1c01077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Postsynthetic modification methods have emerged as indispensable tools for tuning the properties and reactivity of metal-organic frameworks (MOFs). In particular, postsynthetic X-type ligand exchange (PXLE) at metal building units has gained increasing attention as a means of immobilizing guest species, modulating the reactivity of framework metal ions, and introducing new functional groups. The reaction of a Zn-OH functionalized analogue of CFA-1 (1-OH, Zn(ZnOH)4(bibta)3, where bibta2- = 5,5'-bibenzotriazolate) with organic substrates containing mildly acidic E-H groups (E = C, O, N) results in the formation of Zn-E species and water as a byproduct. This Brønsted acid-base PXLE reaction is compatible with substrates with pKa(DMSO) values as high as 30 and offers a rapid and convenient means of introducing new functional groups at Kuratwoski-type metal nodes. Gas adsorption and diffuse reflectance infrared Fourier transform spectroscopy experiments reveal that the anilide-exchanged MOFs 1-NHPh0.9 and 1-NHPh2.5 exhibit enhanced low-pressure CO2 adsorption compared to 1-OH as a result of a Zn-NHPh + CO2 ⇌ Zn-O2CNHPh chemisorption mechanism. The MFU-4l analogue 2-NHPh ([Zn5(OH)2.1(NHPh)1.9(btdd)3], where btdd2- = bis(1,2,3-triazolo)dibenzodioxin), shows a similar improvement in CO2 adsorption in comparison to the parent MOF containing only Zn-OH groups.
Collapse
Affiliation(s)
- Caitlin E Bien
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhongzheng Cai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey R Wade
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Jaramillo DE, Jiang HZH, Evans HA, Chakraborty R, Furukawa H, Brown CM, Head-Gordon M, Long JR. Ambient-Temperature Hydrogen Storage via Vanadium(II)-Dihydrogen Complexation in a Metal-Organic Framework. J Am Chem Soc 2021; 143:6248-6256. [PMID: 33852299 PMCID: PMC10951977 DOI: 10.1021/jacs.1c01883] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
The widespread implementation of H2 as a fuel is currently hindered by the high pressures or cryogenic temperatures required to achieve reasonable storage densities. In contrast, the realization of materials that strongly and reversibly adsorb hydrogen at ambient temperatures and moderate pressures could transform the transportation sector and expand adoption of fuel cells in other applications. To date, however, no adsorbent has been identified that exhibits a binding enthalpy within the optimal range of -15 to -25 kJ/mol for ambient-temperature hydrogen storage. Here, we report the hydrogen adsorption properties of the metal-organic framework (MOF) V2Cl2.8(btdd) (H2btdd, bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), which features exposed vanadium(II) sites capable of backbonding with weak π acids. Significantly, gas adsorption data reveal that this material binds H2 with an enthalpy of -21 kJ/mol. This binding energy enables usable hydrogen capacities that exceed that of compressed storage under the same operating conditions. The Kubas-type vanadium(II)-dihydrogen complexation is characterized by a combination of techniques. From powder neutron diffraction data, a V-D2(centroid) distance of 1.966(8) Å is obtained, the shortest yet reported for a MOF. Using in situ infrared spectroscopy, the H-H stretch was identified, and it displays a red shift of 242 cm-1. Electronic structure calculations show that a main contribution to bonding stems from the interaction between the vanadium dπ and H2 σ* orbital. Ultimately, the pursuit of MOFs containing high densities of weakly π-basic metal sites may enable storage capacities under ambient conditions that far surpass those accessible with compressed gas storage.
Collapse
Affiliation(s)
- David E Jaramillo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hayden A Evans
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Romit Chakraborty
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Hiroyasu Furukawa
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Knippen K, Bredenkötter B, Kanschat L, Kraft M, Vermeyen T, Herrebout W, Sugimoto K, Bultinck P, Volkmer D. CFA-18: a homochiral metal-organic framework (MOF) constructed from rigid enantiopure bistriazolate linker molecules. Dalton Trans 2020; 49:15758-15768. [PMID: 33146189 DOI: 10.1039/d0dt02847a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
In this work, we introduce the first enantiopure bistriazolate-based metal-organic framework, CFA-18 (Coordination Framework Augsburg-18), built from the R-enantiomer of 7,7,7',7'-tetramethyl-6,6',7,7'-tetrahydro-3H,3'H-5,5'-spirobi[indeno[5,6-d]-[1,2,3]triazole] (H2-spirta). The enantiopurity and absolute configuration of the new linker were confirmed by several chiroselective methods. Reacting H2-spirta in hot N,N-dimethylformamide (DMF) with manganese(ii) chloride gave CFA-18 as colorless crystals. The crystal structure with the composition [Mn2Cl2(spirta)(DMF)2] was solved using synchrotron single-crystal X-ray diffraction. CFA-18 shows a framework topology that is closely related to previously reported metal-azolate framework (MAF) structures in which the octahedrally coordinated manganese(ii) ions are triazolate moieties, and the chloride anions form crosslinked one-dimensional helical chains, giving rise to hexagonal channels. In contrast to MAFs crystallizing in the centrosymmetric space group R3[combining macron], the handedness of the helices found in CFA-18 is strictly uniform, leading to a homochiral framework that crystallizes in the trigonal crystal system within the chiral space group P3121 (no. 152).
Collapse
Affiliation(s)
- Katharina Knippen
- Institute of Physics, Chair of Solid State and Materials Science Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany.
| | - Björn Bredenkötter
- Institute of Physics, Chair of Solid State and Materials Science Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany.
| | - Lisa Kanschat
- Institute of Physics, Chair of Solid State and Materials Science Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany.
| | - Maryana Kraft
- Institute of Physics, Chair of Solid State and Materials Science Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany.
| | - Tom Vermeyen
- Departement of Chemistry, University of Antwerp, Campus Groenenborger, Groenenborgerlaan, 171 G.V.018, 2020 Antwerp, Belgium and Department of Chemistry, University of Ghent, Krijgslaan 281, S3, 9000 Ghent, Belgium
| | - Wouter Herrebout
- Departement of Chemistry, University of Antwerp, Campus Groenenborger, Groenenborgerlaan, 171 G.V.018, 2020 Antwerp, Belgium
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Patrick Bultinck
- Department of Chemistry, University of Ghent, Krijgslaan 281, S3, 9000 Ghent, Belgium
| | - Dirk Volkmer
- Institute of Physics, Chair of Solid State and Materials Science Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany.
| |
Collapse
|
15
|
Batra R, Chen C, Evans TG, Walton KS, Ramprasad R. Prediction of water stability of metal–organic frameworks using machine learning. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-00249-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
|
16
|
Peng F, Yang H, Hernandez A, Schier DE, Feng P, Bu X. Bimetallic Rod-Packing Metal-Organic Framework Combining Two Charged Forms of 2-Hydroxyterephthalic Acid. Chemistry 2020; 26:11146-11149. [PMID: 32767615 DOI: 10.1002/chem.202002541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Indexed: 11/08/2022]
Abstract
Although many rod-packing metal-organic frameworks are known, few are based on ordered heterometallic rod building unit. We show here the synthesis of CPM-76 based on an unprecedented Zn-Mg bimetallic rod with crystallographically distinguishable metal sites. The configuration of the rod offers two types of coordination site with trigonal bipyramidal and octahedral sites selectively occupied by Zn and Mg, respectively. Also unusual is the inter-connection mode between the rods, which is based on dual-charged forms (-3 and -2) of the 2-hydroxyterephthalic acid (H3 OBDC) ligand. Interestingly, each metal site in CPM-76 binds one solvent molecule, leading to a high density of solvent binding sites.
Collapse
Affiliation(s)
- Fang Peng
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Huajun Yang
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Anthony Hernandez
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Danielle E Schier
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| |
Collapse
|
17
|
Huang NY, He H, Li H, Liao PQ, Chen XM. A metal-organic framework with in situ generated low-coordinate binuclear Cu(i) units as a highly effective catalyst for photodriven hydrogen production. Chem Commun (Camb) 2020; 56:6700-6703. [PMID: 32418996 DOI: 10.1039/c9cc09589f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Herein, we report a metal-organic framework featuring a binuclear copper unit, showing extraordinarily high catalytic activity (102.8 mmol g-1 h-1) for photodriven hydrogen generation, which is attributed to the synergistic catalytic effect between the two copper ions.
Collapse
Affiliation(s)
- Ning-Yu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Hai He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Hao Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
18
|
Oktawiec J, Jiang HZH, Vitillo JG, Reed DA, Darago LE, Trump BA, Bernales V, Li H, Colwell KA, Furukawa H, Brown CM, Gagliardi L, Long JR. Negative cooperativity upon hydrogen bond-stabilized O 2 adsorption in a redox-active metal-organic framework. Nat Commun 2020; 11:3087. [PMID: 32555184 PMCID: PMC7303157 DOI: 10.1038/s41467-020-16897-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022] Open
Abstract
The design of stable adsorbents capable of selectively capturing dioxygen with a high reversible capacity is a crucial goal in functional materials development. Drawing inspiration from biological O2 carriers, we demonstrate that coupling metal-based electron transfer with secondary coordination sphere effects in the metal-organic framework Co2(OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) leads to strong and reversible adsorption of O2. In particular, moderate-strength hydrogen bonding stabilizes a cobalt(III)-superoxo species formed upon O2 adsorption. Notably, O2-binding in this material weakens as a function of loading, as a result of negative cooperativity arising from electronic effects within the extended framework lattice. This unprecedented behavior extends the tunable properties that can be used to design metal-organic frameworks for adsorption-based applications.
Collapse
Affiliation(s)
- Julia Oktawiec
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Jenny G Vitillo
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Douglas A Reed
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Lucy E Darago
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Benjamin A Trump
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, MD, 20899, USA
| | - Varinia Bernales
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Harriet Li
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kristen A Colwell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Hiroyasu Furukawa
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Craig M Brown
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, MD, 20899, USA
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Laura Gagliardi
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
19
|
Mian MR, Afrin U, Fataftah MS, Idrees KB, Islamoglu T, Freedman DE, Farha OK. Control of the Porosity in Manganese Trimer-Based Metal-Organic Frameworks by Linker Functionalization. Inorg Chem 2020; 59:8444-8450. [PMID: 32463656 DOI: 10.1021/acs.inorgchem.0c00885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Manganese complexes have attracted significant interest in chemical industries and academic research for their application as catalysts owing to their ability to attain a variety of oxidation states. Generally, sterically bulky ligands are required to isolate molecular homogeneous catalysts in order to prevent decomposition. Herein, we capitalize on the catalytic properties of Mn and circumvent the instability of these complexes through incorporation of Mn-atoms into porous crystalline frameworks, such as metal-organic frameworks (MOFs). MOFs are able to enhance the stability of these catalysts while also providing accessibility to the Mn sites for enhanced reactivity. We solvothermally synthesized two trinuclear Mn-based MOFs, namely [Mn3O(BDC)3(H2O)3]n (Mn-MIL-88, where H2BDC = benzene-1,4-dicarboxylic acid) and [Mn3O(BDC-Me4)3(H2O)3]n (Mn-MIL-88-Me4, where H2BDC-Me4 = 2,3,5,6-tetramethylterephthalic acid). Through comprehensive single-crystal X-ray diffraction, spectroscopic, and magnetic studies, we revealed that both MOFs are in a Mn(II/III) mixed-valence state instead of the commonly observed Mn(III) oxidation state. Furthermore, the use of a methylated linker (BDC-Me4) allowed access to permanent porosity in Mn-MIL-88-Me4, which is an analogue of the flexible MIL-88 family, yielding a catalyst for alcohol oxidation.
Collapse
Affiliation(s)
- Mohammad Rasel Mian
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Unjila Afrin
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Majed S Fataftah
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Danna E Freedman
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Rosen AS, Notestein JM, Snurr RQ. Comparing GGA, GGA+U, and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks. J Chem Phys 2020; 152:224101. [DOI: 10.1063/5.0010166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
21
|
Rosen AS, Notestein JM, Snurr RQ. High‐Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‐State Reactivity for C−H Bond Activation. Angew Chem Int Ed Engl 2020; 59:19494-19502. [DOI: 10.1002/anie.202004458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| |
Collapse
|
22
|
Rosen AS, Notestein JM, Snurr RQ. High‐Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‐State Reactivity for C−H Bond Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| |
Collapse
|
23
|
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
24
|
Rosen AS, Mian MR, Islamoglu T, Chen H, Farha OK, Notestein JM, Snurr RQ. Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O2 Binding: Design Rules and Ambient Temperature O2 Chemisorption in a Cobalt–Triazolate Framework. J Am Chem Soc 2020; 142:4317-4328. [DOI: 10.1021/jacs.9b12401] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M. Rasel Mian
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q. Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
|
26
|
|
27
|
Ha J, Lee JH, Moon HR. Alterations to secondary building units of metal–organic frameworks for the development of new functions. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01119f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Post-synthetic modification methods for the secondary building units in MOFs facilitate unique structures and properties that are impossible to access via direct syntheses, which can be classified as four categories.
Collapse
Affiliation(s)
- Junsu Ha
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Jae Hwa Lee
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
28
|
Liu H, Guo Z, Lv H, Liu X, Che Y, Mei Y, Bai R, Chi Y, Xing H. Visible-light-driven self-coupling and oxidative dehydrogenation of amines to imines via a Mn(ii)-based coordination polymer. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01396b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
The direct synthesis of various imines through visible-light-driven photocatalytic self-coupling and dehydrogenation of amines was achieved using a novel coordination polymer.
Collapse
Affiliation(s)
- Hui Liu
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Zhifen Guo
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hui Lv
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xin Liu
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yan Che
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yingchun Mei
- Dyestuff Factory
- Jilin Petrochemical Company
- Jilin 132022
- China
| | - Rong Bai
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yanhong Chi
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hongzhu Xing
- Provincial Key Laboratory of Advanced Energy Materials
- College of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
29
|
Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chem Soc Rev 2020; 49:2751-2798. [DOI: 10.1039/c9cs00609e] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
The defined synthesis of OMS in MOFs is the basis for targeted functionalization through grafting, the coordination of weakly binding species and increased (supramolecular) interactions with guest molecules.
Collapse
Affiliation(s)
- Ülkü Kökçam-Demir
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Anna Goldman
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Leili Esrafili
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Maniya Gharib
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| |
Collapse
|
30
|
Bunzen H, Grzywa M, Aljohani R, Krug von Nidda H, Volkmer D. Synthesis, Thermal Stability, and Magnetic Properties of a Manganese(II) Coordination Framework Containing Bistriazolate Ligands. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hana Bunzen
- Chair of Solid State and Materials Chemistry Institute of Physics University of Augsburg Universitätsstraße 1 86159 Augsburg Germany
| | - Maciej Grzywa
- Chair of Solid State and Materials Chemistry Institute of Physics University of Augsburg Universitätsstraße 1 86159 Augsburg Germany
| | - Reem Aljohani
- Chair of Solid State and Materials Chemistry Institute of Physics University of Augsburg Universitätsstraße 1 86159 Augsburg Germany
| | - Hans‐Albrecht Krug von Nidda
- Experimental Physics V Center for Electronic Correlations and Magnetism University of Augsburg Universitätsstraße 1 86159 Augsburg Germany
| | - Dirk Volkmer
- Chair of Solid State and Materials Chemistry Institute of Physics University of Augsburg Universitätsstraße 1 86159 Augsburg Germany
| |
Collapse
|
31
|
Loukopoulos E, Kostakis GE. Recent advances in the coordination chemistry of benzotriazole-based ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
|
32
|
Wang Z, Guan A, Kung MC, Peng A, Kung HH, Lv X, Zheng G, Qian L. In situ formed Co clusters in selective oxidation of α-C H bond: Stabilizing effect from reactants. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
|
33
|
Rieth AJ, Wright AM, Rao S, Kim H, LaPotin AD, Wang EN, Dincă M. Tunable Metal-Organic Frameworks Enable High-Efficiency Cascaded Adsorption Heat Pumps. J Am Chem Soc 2018; 140:17591-17596. [PMID: 30462920 DOI: 10.1021/jacs.8b09655] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Rising global standards of living coupled to the recent agreement to eliminate hydrofluorocarbon refrigerants are creating intense pressure to develop more sustainable climate control systems. In this vein, the use of water as the refrigerant in adsorption heat pumps is highly attractive, but such adsorption systems are constrained to large size and poor efficiency by the characteristics of currently employed water sorbents. Here we demonstrate control of the relative humidity of water uptake by modulating the pore size in a family of isoreticular triazolate metal-organic frameworks. Using this method, we identify a pair of materials with stepped, nonoverlapping water isotherms that can function in tandem to provide continuous cooling with a record ideal coefficient of performance of 1.63. Additionally, when used in a single-stage heat pump, the microporous Ni2Cl2BBTA has the largest working capacity of any material capable of generating a 25 °C difference between ambient and chiller output.
Collapse
Affiliation(s)
- Adam J Rieth
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ashley M Wright
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Sameer Rao
- Department of Mechanical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Hyunho Kim
- Department of Mechanical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Alina D LaPotin
- Department of Mechanical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Evelyn N Wang
- Department of Mechanical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Mircea Dincă
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
34
|
|
35
|
Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou HC. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704303. [PMID: 29430732 DOI: 10.1002/adma.201704303] [Citation(s) in RCA: 1196] [Impact Index Per Article: 170.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Indexed: 05/17/2023]
Abstract
Metal-organic frameworks (MOFs) are an emerging class of porous materials with potential applications in gas storage, separations, catalysis, and chemical sensing. Despite numerous advantages, applications of many MOFs are ultimately limited by their stability under harsh conditions. Herein, the recent advances in the field of stable MOFs, covering the fundamental mechanisms of MOF stability, design, and synthesis of stable MOF architectures, and their latest applications are reviewed. First, key factors that affect MOF stability under certain chemical environments are introduced to guide the design of robust structures. This is followed by a short review of synthetic strategies of stable MOFs including modulated synthesis and postsynthetic modifications. Based on the fundamentals of MOF stability, stable MOFs are classified into two categories: high-valency metal-carboxylate frameworks and low-valency metal-azolate frameworks. Along this line, some representative stable MOFs are introduced, their structures are described, and their properties are briefly discussed. The expanded applications of stable MOFs in Lewis/Brønsted acid catalysis, redox catalysis, photocatalysis, electrocatalysis, gas storage, and sensing are highlighted. Overall, this review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Liang Feng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Kecheng Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Matheiu Bosch
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Christina Lollar
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Yujia Sun
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Junsheng Qin
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Xinyu Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Peng Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Qi Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Lanfang Zou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Yingmu Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Liangliang Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Yu Fang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jialuo Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
36
|
Zhao X, Shimazu MS, Chen X, Bu X, Feng P. Homo‐Helical Rod Packing as a Path Toward the Highest Density of Guest‐Binding Metal Sites in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2018; 57:6208-6211. [DOI: 10.1002/anie.201802267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2018] [Revised: 03/17/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Xiang Zhao
- Department of Chemistry University of California, Riverside CA 92521 USA
| | - Matthew S. Shimazu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Xitong Chen
- Department of Chemistry University of California, Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Pingyun Feng
- Department of Chemistry University of California, Riverside CA 92521 USA
| |
Collapse
|
37
|
Zhao X, Shimazu MS, Chen X, Bu X, Feng P. Homo‐Helical Rod Packing as a Path Toward the Highest Density of Guest‐Binding Metal Sites in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiang Zhao
- Department of Chemistry University of California, Riverside CA 92521 USA
| | - Matthew S. Shimazu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Xitong Chen
- Department of Chemistry University of California, Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Pingyun Feng
- Department of Chemistry University of California, Riverside CA 92521 USA
| |
Collapse
|
38
|
Rieth AJ, Dincă M. Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption. J Am Chem Soc 2018; 140:3461-3466. [PMID: 29425040 DOI: 10.1021/jacs.8b00313] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Ammonia is a vital commodity in our food supply chain, but its toxicity and corrosiveness require advanced protection and mitigation. These needs are not met efficiently by current materials, which suffer from either low capacity or low affinity for NH3. Here, we report that a series of microporous triazolate metal-organic frameworks containing open metal sites exhibit record static and dynamic ammonia capacities. Under equilibrium conditions at 1 bar, the materials adsorb up to 19.79 mmol NH3 g-1, more than twice the capacity of activated carbon, the industry standard. Under conditions relevant to personal protection equipment, capacities reach 8.56 mmol g-1, 27% greater than the previous best material. Structure-function relationships and kinetic analyses of NH3 uptake in isostructural micro- and mesoporous materials made from Co, Ni, and Cu reveal stability trends that are in line with the water substitution rates in simple metal-aquo complexes. Altogether, these results provide clear, intuitive descriptors that govern the static and dynamic uptake, kinetics, and stability of MOF sorbents for strongly interacting gases.
Collapse
Affiliation(s)
- Adam J Rieth
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Mircea Dincă
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
39
|
Saghian M, Dehghanpour S, Sharbatdaran M. “Ship in a bottle” Porph@MOMs as highly efficient catalysts for selective controllable oxidation and insights into different mechanisms in heterogeneous and homogeneous environments. NEW J CHEM 2018. [DOI: 10.1039/c8nj00315g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
3D “ship in a bottle” Porph@MOMs with selectivity control capability and interesting catalytic properties were used as biomimetic oxidation catalysts for different reactions.
Collapse
Affiliation(s)
- M. Saghian
- Department of Chemistry
- Alzahra University
- Tehran
- Iran
| | | | - M. Sharbatdaran
- Physics and Accelerators School
- Nuclear Science and Technology Research Institute
- Karaj
- Iran
| |
Collapse
|
40
|
Wang Y, Huang NY, Shen JQ, Liao PQ, Chen XM, Zhang JP. Hydroxide Ligands Cooperate with Catalytic Centers in Metal–Organic Frameworks for Efficient Photocatalytic CO2 Reduction. J Am Chem Soc 2017; 140:38-41. [DOI: 10.1021/jacs.7b10107] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Wang
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ning-Yu Huang
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Qiang Shen
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
41
|
|
42
|
Reed DA, Keitz BK, Oktawiec J, Mason JA, Runčevski T, Xiao DJ, Darago LE, Crocellà V, Bordiga S, Long JR. A spin transition mechanism for cooperative adsorption in metal-organic frameworks. Nature 2017; 550:96-100. [PMID: 28892810 DOI: 10.1038/nature23674] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023]
Abstract
Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(ii) sites. Functioning via a mechanism by which neighbouring iron(ii) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.
Collapse
Affiliation(s)
- Douglas A Reed
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Benjamin K Keitz
- Department of Chemistry, University of California, Berkeley, California 94720, USA.,McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, USA
| | - Julia Oktawiec
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jarad A Mason
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tomče Runčevski
- Department of Chemistry, University of California, Berkeley, California 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Dianne J Xiao
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Lucy E Darago
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Valentina Crocellà
- Chemistry Department, NIS and INSTM Centre of Reference, University of Turin, Via Quarello 15, I-10135 Torino, Italy
| | - Silvia Bordiga
- Chemistry Department, NIS and INSTM Centre of Reference, University of Turin, Via Quarello 15, I-10135 Torino, Italy
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Lin WQ, Peng YY, Tong L, Jia JH, Liu JL, Chen YC, Chen WB, Tong ML. Metal-Ion Induced In Situ Ligand Oxidation for Self-Assembled Clusters: from Bis(5-(2-pyridine-2-yl)-1,2,4-triazole-3-yl)methane to Alcohol or Ketone. Chem Asian J 2017. [PMID: 28632963 DOI: 10.1002/asia.201700719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Hydrothermal reactions of metal nitrates and ligand bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)methane (H2 L1 ) gave three cluster compounds, {Cr2 }, {Zn12 } and {Fe8 }. Notably, methylene group of H2 L1 was in situ oxidized either to hydroxymethylated (L2 -O)3- in the metallo-ring {Zn12 } or to a rigid carbonylated (L3 =O)2- in the screw-type {Fe8 }. In light of comparative experimental results, NO3- was deduced to be of a catalytic role in the ligand oxidation. Metal ion could be regarded as an "induced" tool for clusters generation in self-assembly process.
Collapse
Affiliation(s)
- Wei-Quan Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xigang Xi Road, Guangzhou, 510275, P.R. China
| | - Yuan-Yuan Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xigang Xi Road, Guangzhou, 510275, P.R. China
| | - Lang Tong
- School of Pharmaceutical Science, Sun Yat-Sen University, No. 132, Waihuan East Road, Higher Education Megacenter, Guangzhou, 510006, P.R. China
| | - Jian-Hua Jia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xigang Xi Road, Guangzhou, 510275, P.R. China
| | - Jun-Liang Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xigang Xi Road, Guangzhou, 510275, P.R. China
| | - Yan-Cong Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xigang Xi Road, Guangzhou, 510275, P.R. China
| | - Wen-Bin Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xigang Xi Road, Guangzhou, 510275, P.R. China
| | - Ming-Liang Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xigang Xi Road, Guangzhou, 510275, P.R. China
| |
Collapse
|
44
|
Yu J, Xie LH, Li JR, Ma Y, Seminario JM, Balbuena PB. CO 2 Capture and Separations Using MOFs: Computational and Experimental Studies. Chem Rev 2017; 117:9674-9754. [PMID: 28394578 DOI: 10.1021/acs.chemrev.6b00626] [Citation(s) in RCA: 501] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
This Review focuses on research oriented toward elucidation of the various aspects that determine adsorption of CO2 in metal-organic frameworks and its separation from gas mixtures found in industrial processes. It includes theoretical, experimental, and combined approaches able to characterize the materials, investigate the adsorption/desorption/reaction properties of the adsorbates inside such environments, screen and design new materials, and analyze additional factors such as material regenerability, stability, effects of impurities, and cost among several factors that influence the effectiveness of the separations. CO2 adsorption, separations, and membranes are reviewed followed by an analysis of the effects of stability, impurities, and process operation conditions on practical applications.
Collapse
Affiliation(s)
| | | | | | - Yuguang Ma
- Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Jorge M Seminario
- Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843, United States
| | - Perla B Balbuena
- Department of Chemical Engineering, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
45
|
Guo ZJ, Yu J, Zhang YZ, Zhang J, Chen Y, Wu Y, Xie LH, Li JR. Water-Stable In(III)-Based Metal–Organic Frameworks with Rod-Shaped Secondary Building Units: Single-Crystal to Single-Crystal Transformation and Selective Sorption of C2H2 over CO2 and CH4. Inorg Chem 2017; 56:2188-2197. [DOI: 10.1021/acs.inorgchem.6b02840] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhen-Ji Guo
- Institute
of Circular Economy, Beijing University of Technology, Beijing 100124, P. R. China
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemistry and Chemical Engineering, College of Environmental and Energy
Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jiamei Yu
- Institute
of Circular Economy, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yong-Zheng Zhang
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemistry and Chemical Engineering, College of Environmental and Energy
Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian Zhang
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemistry and Chemical Engineering, College of Environmental and Energy
Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Ya Chen
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemistry and Chemical Engineering, College of Environmental and Energy
Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yufeng Wu
- Institute
of Circular Economy, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lin-Hua Xie
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemistry and Chemical Engineering, College of Environmental and Energy
Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jian-Rong Li
- Beijing
Key Laboratory for Green Catalysis and Separation and Department of
Chemistry and Chemical Engineering, College of Environmental and Energy
Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
46
|
Kuwahara Y, Yoshimura Y, Yamashita H. Liquid-phase oxidation of alkylaromatics to aromatic ketones with molecular oxygen over a Mn-based metal–organic framework. Dalton Trans 2017. [DOI: 10.1039/c7dt01351e] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
A microporous Mn-based metal–organic framework (Mn-MOF-74) acts as a heterogeneous catalyst active for liquid-phase oxidation of alkylaromatics with molecular O2.
Collapse
Affiliation(s)
- Yasutaka Kuwahara
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Yukihiro Yoshimura
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
47
|
Kuwahara Y, Yoshimura Y, Yamashita H. In situ-created Mn(iii) complexes active for liquid-phase oxidation of alkylaromatics to aromatic ketones with molecular oxygen. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01308a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Mn(OH)x supported on oxides in situ transforms into a monomeric Mn(iii) species coordinated with the PhCOO− ligand, which efficiently oxidizes alkylaromatics with O2.
Collapse
Affiliation(s)
- Yasutaka Kuwahara
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Yukihiro Yoshimura
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
48
|
Zhang YY, Zhao H, Yang EC, Liu ZY, Shang Q, Zhao XJ. Triazolate-based 3D frameworks and a 2D layer with centrosymmetric CuII7, CuII5, CuII4 clusters and tunable interlayer/interchain compactness: hydrothermal syntheses, crystal structures and magnetic properties. Dalton Trans 2015; 44:5826-36. [DOI: 10.1039/c4dt04013a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
A 2D layer and three 3D frameworks with different interchain/interlayer compactness and spin ground-states were reported.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Hong Zhao
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - En-Cui Yang
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Zhong-Yi Liu
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Qiu Shang
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| | - Xiao-Jun Zhao
- College of Chemistry
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin Normal University
| |
Collapse
|