1
|
D’Amore V, Donati G, Lenci E, Ludwig BS, Kossatz S, Baiula M, Trabocchi A, Kessler H, Di Leva FS, Marinelli L. Molecular View on the iRGD Peptide Binding Mechanism: Implications for Integrin Activity and Selectivity Profiles. J Chem Inf Model 2023; 63:6302-6315. [PMID: 37788340 PMCID: PMC10598797 DOI: 10.1021/acs.jcim.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 10/05/2023]
Abstract
Receptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide iRGD (CRGDKPGDC, 1) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins. Despite the high number of preclinical studies and the recent success of a phase I trial for the treatment of pancreatic ductal adenocarcinoma (PDAC), there is little information available about the iRGD three-dimensional (3D) structure and integrin binding properties. Here, we re-evaluate the peptide's affinity for cancer-related integrins including not only the previously known targets αvβ3 and αvβ5 but also the αvβ6 isoform, which is known to drive cell growth, migration, and invasion in many malignancies including PDAC. Furthermore, we use parallel tempering in the well-tempered ensemble (PT-WTE) metadynamics simulations to characterize the in-solution conformation of iRGD and extensive molecular dynamics calculations to fully investigate its binding mechanism to integrin partners. Finally, we provide clues for fine-tuning the peptide's potency and selectivity profile, which, in turn, may further improve its tumor-homing properties.
Collapse
Affiliation(s)
- Vincenzo
Maria D’Amore
- Department
of Pharmacy, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Greta Donati
- Department
of Pharmacy, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Elena Lenci
- Department
of Chemistry “Ugo Schiff″, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Florence, Italy
| | - Beatrice Stefanie Ludwig
- Department
of Nuclear Medicine, University Hospital Klinikum Rechts der Isar
and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, Munich 81675, Germany
| | - Susanne Kossatz
- Department
of Nuclear Medicine, University Hospital Klinikum Rechts der Isar
and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, Munich 81675, Germany
- Department
of Chemistry, Institute for Advanced Study, Technical University Munich, Garching 85748, Germany
| | - Monica Baiula
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Andrea Trabocchi
- Department
of Chemistry “Ugo Schiff″, University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Florence, Italy
| | - Horst Kessler
- Department
of Chemistry, Institute for Advanced Study, Technical University Munich, Garching 85748, Germany
| | - Francesco Saverio Di Leva
- Department
of Pharmacy, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
2
|
Siani P, Frigerio G, Donadoni E, Di Valentin C. Molecular dynamics simulations of cRGD-conjugated PEGylated TiO 2 nanoparticles for targeted photodynamic therapy. J Colloid Interface Sci 2022; 627:126-141. [PMID: 35842963 DOI: 10.1016/j.jcis.2022.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/20/2022]
Abstract
The conjugation of high-affinity cRGD-containing peptides is a promising approach in nanomedicine to efficiently reduce off-targeting effects and enhance the cellular uptake by integrin-overexpressing tumor cells. Herein we utilize atomistic molecular dynamics simulations to evaluate key structural-functional parameters of these targeting ligands for an effective binding activity towards αVβ3 integrins. An increasing number of cRGD ligands is conjugated to PEG chains grafted to highly curved TiO2 nanoparticles to unveil the impact of cRGD density on the ligand's presentation, stability, and conformation in an explicit aqueous environment. We find that a low density leads to an optimal spatial presentation of cRGD ligands out of the "stealth" PEGylated layer around the nanosystem, favoring a straight upward orientation and spaced distribution of the targeting ligands in the bulk-water phase. On the contrary, high densities favor over-clustering of cRGD ligands, driven by a concerted mechanism of enhanced ligand-ligand interactions and reduced water accessibility over the ligand's molecular surface. These findings strongly suggest that the ligand density modulation is a key factor in the design of cRGD-targeting nanodevices to maximize their binding efficiency into over-expressed αVβ3 integrin receptors.
Collapse
Affiliation(s)
- Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Giulia Frigerio
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Edoardo Donadoni
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy.
| |
Collapse
|
3
|
Hoang LG, Goßen J, Capelli R, Nguyen TT, Sun Z, Zuo K, Schulz JB, Rossetti G, Carloni P. Multiple Poses and Thermodynamics of Ligands Targeting Protein Surfaces: The Case of Furosemide Binding to mitoNEET in Aqueous Solution. Front Cell Dev Biol 2022; 10:886568. [PMID: 35557955 PMCID: PMC9086288 DOI: 10.3389/fcell.2022.886568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Human NEET proteins, such as NAF-1 and mitoNEET, are homodimeric, redox iron-sulfur proteins characterized by triple cysteine and one histidine-coordinated [2Fe-2S] cluster. They exist in an oxidized and reduced state. Abnormal release of the cluster is implicated in a variety of diseases, including cancer and neurodegeneration. The computer-aided and structure-based design of ligands affecting cluster release is of paramount importance from a pharmaceutical perspective. Unfortunately, experimental structural information so far is limited to only one ligand/protein complex. This is the X-ray structure of furosemide bound to oxidized mitoNEET. Here we employ an enhanced sampling approach, Localized Volume-based Metadynamics, developed by some of us, to identify binding poses of furosemide to human mitoNEET protein in solution. The binding modes show a high variability within the same shallow binding pocket on the protein surface identified in the X-ray structure. Among the different binding conformations, one of them is in agreement with the crystal structure’s one. This conformation might have been overstabilized in the latter because of the presence of crystal packing interactions, absent in solution. The calculated binding affinity is compatible with experimental data. Our protocol can be used in a straightforward manner in drug design campaigns targeting this pharmaceutically important family of proteins.
Collapse
Affiliation(s)
- Linh Gia Hoang
- INM-11, Forschungszentrum, Jülich, Germany.,Key Laboratory for Multiscale Simulations of Complex Systems, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Jonas Goßen
- IAS-5/INM-9, Forschungszentrum, Jülich, Germany.,Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - Riccardo Capelli
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - Toan T Nguyen
- Key Laboratory for Multiscale Simulations of Complex Systems, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing, China
| | - Ke Zuo
- IAS-5/INM-9, Forschungszentrum, Jülich, Germany.,The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, Israel.,Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- INM-11, Forschungszentrum, Jülich, Germany.,Department of Neurology, University Hospital Aachen (UKA), RWTH Aachen University, Aachen, Germany
| | - Giulia Rossetti
- IAS-5/INM-9, Forschungszentrum, Jülich, Germany.,Department of Neurology, University Hospital Aachen (UKA), RWTH Aachen University, Aachen, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum, Jülich, Germany
| | - Paolo Carloni
- INM-11, Forschungszentrum, Jülich, Germany.,Key Laboratory for Multiscale Simulations of Complex Systems, VNU University of Science, Vietnam National University, Hanoi, Vietnam.,IAS-5/INM-9, Forschungszentrum, Jülich, Germany
| |
Collapse
|
4
|
Tomassi S, D’Amore VM, Di Leva FS, Vannini A, Quilici G, Weinmüller M, Reichart F, Amato J, Romano B, Izzo AA, Di Maro S, Novellino E, Musco G, Gianni T, Kessler H, Marinelli L. Halting the Spread of Herpes Simplex Virus-1: The Discovery of an Effective Dual αvβ6/αvβ8 Integrin Ligand. J Med Chem 2021; 64:6972-6984. [PMID: 33961417 PMCID: PMC8279406 DOI: 10.1021/acs.jmedchem.1c00533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Over recent years, αvβ6 and αvβ8 Arg-Gly-Asp (RGD) integrins have risen to prominence as interchangeable co-receptors for the cellular entry of herpes simplex virus-1 (HSV-1). In fact, the employment of subtype-specific integrin-neutralizing antibodies or gene-silencing siRNAs has emerged as a valuable strategy for impairing HSV infectivity. Here, we shift the focus to a more affordable pharmaceutical approach based on small RGD-containing cyclic pentapeptides. Starting from our recently developed αvβ6-preferential peptide [RGD-Chg-E]-CONH2 (1), a small library of N-methylated derivatives (2-6) was indeed synthesized in the attempt to increase its affinity toward αvβ8. Among the novel compounds, [RGD-Chg-(NMe)E]-CONH2 (6) turned out to be a potent αvβ6/αvβ8 binder and a promising inhibitor of HSV entry through an integrin-dependent mechanism. Furthermore, the renewed selectivity profile of 6 was fully rationalized by a NMR/molecular modeling combined approach, providing novel valuable hints for the design of RGD integrin ligands with the desired specificity profile.
Collapse
Affiliation(s)
- Stefano Tomassi
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Maria D’Amore
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesco Saverio Di Leva
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Andrea Vannini
- Department
of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Giacomo Quilici
- Biomolecular
NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Michael Weinmüller
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Florian Reichart
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jussara Amato
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Barbara Romano
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Angelo Antonio Izzo
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania
“Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Facoltà
di Medicina e Chirurgia, Università
Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy
| | - Giovanna Musco
- Biomolecular
NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Tatiana Gianni
- Department
of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Horst Kessler
- Institute
for Advanced Study, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Luciana Marinelli
- Dipartimento
di Farmacia, Università degli Studi
di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
5
|
Damjanovic J, Miao J, Huang H, Lin YS. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chem Rev 2021; 121:2292-2324. [PMID: 33426882 DOI: 10.1021/acs.chemrev.0c01087] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
6
|
Panzeri S, Arosio D, Gazzola S, Belvisi L, Civera M, Potenza D, Vasile F, Kemker I, Ertl T, Sewald N, Reiser O, Piarulli U. Cyclic RGD and isoDGR Integrin Ligands Containing cis-2-amino-1-cyclopentanecarboxylic ( cis-β-ACPC) Scaffolds. Molecules 2020; 25:molecules25245966. [PMID: 33339382 PMCID: PMC7766232 DOI: 10.3390/molecules25245966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Integrin ligands containing the tripeptide sequences Arg-Gly-Asp (RGD) and iso-Asp-Gly- Arg (isoDGR) were actively investigated as inhibitors of tumor angiogenesis and directing unit in tumor-targeting drug conjugates. Reported herein is the synthesis, of two RGD and one isoDGR cyclic peptidomimetics containing (1S,2R) and (1R,2S) cis-2-amino-1-cyclopentanecarboxylic acid (cis-β-ACPC), using a mixed solid phase/solution phase synthetic protocol. The three ligands were examined in vitro in competitive binding assays to the purified αvβ3 and α5β1 receptors using biotinylated vitronectin (αvβ3) and fibronectin (α5β1) as natural displaced ligands. The IC50 values of the ligands ranged from nanomolar (the two RGD ligands) to micromolar (the isoDGR ligand) with a pronounced selectivity for αvβ3 over α5β1. In vitro cell adhesion assays were also performed using the human skin melanoma cell line WM115 (rich in integrin αvβ3). The two RGD ligands showed IC50 values in the same micromolar range as the reference compound (cyclo[RGDfV]), while for the isoDGR derivative an IC50 value could not be measured for the cell adhesion assay. A conformational analysis of the free RGD and isoDGR ligands by NMR (VT-NMR and NOESY experiments) and computational studies (MC/EM and MD), followed by docking simulations performed in the αVβ3 integrin active site, provided a rationale for the behavior of these ligands toward the receptor.
Collapse
Affiliation(s)
- Silvia Panzeri
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Daniela Arosio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze e Tecnologie Chimiche (SCITEC), Giulio Natta, Via C. Golgi 19, 20133 Milan, Italy;
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Donatella Potenza
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Francesca Vasile
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy; (L.B.); (M.C.); (D.P.); (F.V.)
| | - Isabell Kemker
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany; (I.K.); (N.S.)
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany; (I.K.); (N.S.)
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (T.E.); (O.R.)
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (S.P.); (S.G.)
- Correspondence:
| |
Collapse
|
7
|
Talhami A, Swed A, Hess S, Ovadia O, Greenberg S, Schumacher-Klinger A, Rosenthal D, Shalev DE, Hurevich M, Lazarovici P, Hoffman A, Gilon C. Cyclizing Painkillers: Development of Backbone-Cyclic TAPS Analogs. Front Chem 2020; 8:532577. [PMID: 33282822 PMCID: PMC7689096 DOI: 10.3389/fchem.2020.532577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Painkillers are commonly used medications. Native peptide painkillers suffer from various pharmacological disadvantages, while small molecule painkillers like morphine are highly addictive. We present a general approach aimed to use backbone-cyclization to develop a peptidomimetic painkiller. Backbone-cyclization was applied to transform the linear peptide Tyr-Arg-Phe-Sar (TAPS) into an active backbone-cyclic peptide with improved drug properties. We designed and synthesized a focused backbone-cyclic TAPS library with conformational diversity, in which the members of the library have the generic name TAPS c(n-m) where n and m represent the lengths of the alkyl chains on the nitrogens of Gly and Arg, respectively. We used a combined screening approach to evaluate the pharmacological properties and the potency of the TAPS c(n-m) library. We focused on an in vivo active compound, TAPS c(2-6), which is metabolically stable and has the potential to become a peripheral painkiller being a full μ opioid receptor functional agonist. To prepare a large quantity of TAPS c(2-6), we optimized the conditions of the on-resin reductive alkylation step to increase the efficiency of its SPPS. NMR was used to determine the solution conformation of the peptide lead TAPS c(2-6).
Collapse
Affiliation(s)
- Alaa Talhami
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Swed
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel Hess
- Meytav Technologies Incubator, Kiryat Shmona, Israel
| | - Oded Ovadia
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sarit Greenberg
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Schumacher-Klinger
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Rosenthal
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E Shalev
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem, Israel.,Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mattan Hurevich
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philip Lazarovici
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amnon Hoffman
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chaim Gilon
- Department of Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Saha I, Dang EK, Svatunek D, Houk KN, Harran PG. Computational generation of an annotated gigalibrary of synthesizable, composite peptidic macrocycles. Proc Natl Acad Sci U S A 2020; 117:24679-24690. [PMID: 32948694 PMCID: PMC7547232 DOI: 10.1073/pnas.2007304117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptidomimetic macrocycles have the potential to regulate challenging therapeutic targets. Structures of this type having precise shapes and drug-like character are particularly coveted, but are relatively difficult to synthesize. Our laboratory has developed robust methods that integrate small-peptide units into designed scaffolds. These methods create macrocycles and embed condensed heterocycles to diversify outcomes and improve pharmacological properties. The hypothetical scope of the methodology is vast and far outpaces the capacity of our experimental format. We now describe a computational rendering of our methodology that creates an in silico three-dimensional library of composite peptidic macrocycles. Our open-source platform, CPMG (Composite Peptide Macrocycle Generator), has algorithmically generated a library of 2,020,794,198 macrocycles that can result from the multistep reaction sequences we have developed. Structures are generated based on predicted site reactivity and filtered on the basis of physical and three-dimensional properties to identify maximally diverse compounds for prioritization. For conformational analyses, we also introduce ConfBuster++, an RDKit port of the open-source software ConfBuster, which allows facile integration with CPMG and ready parallelization for better scalability. Our approach deeply probes ligand space accessible via our synthetic methodology and provides a resource for large-scale virtual screening.
Collapse
Affiliation(s)
- Ishika Saha
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Eric K Dang
- Department of Computer Science, University of California, Los Angeles, CA 90095
| | - Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095;
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095;
| |
Collapse
|
9
|
Novel cilengitide-based cyclic RGD peptides as αvβ integrin inhibitors. Bioorg Med Chem Lett 2020; 30:127039. [DOI: 10.1016/j.bmcl.2020.127039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 01/23/2023]
|
10
|
Reversal of EGFR inhibitors' resistance by co-delivering EGFR and integrin αvβ3 inhibitors with nanoparticles in non-small cell lung cancer. Biosci Rep 2019; 39:BSR20181259. [PMID: 31316001 PMCID: PMC6712436 DOI: 10.1042/bsr20181259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Tumor cells, with drug resistance, are associated with failed treatment and poor prognosis. Our aim was to explore potential strategy to overcome the epidermal growth factor receptor (EGFR) inhibitors resistance in non-small cell lung cancer (NSCLC).Materials and methods: Flow cytometry was used to examine and sort cells. Using MTT assay, we detected the cell viability under different conditions. Using RT-qPCR and Western blot, we determined the targeted gene expression in mRNA and protein levels. The morphology of the prepared nanoparticles was pictured by transmission electron microscopy. We also performed immunohistochemistry (IHC) and immunofluorescence (IF) to detect the proteins expression. Subcutaneous cancer models in nude mice were constructed to evaluate the anti-cancer effects in vivo Results: Here, we observed enhanced expression of integrin αvβ3 in tumor tissues from EGFR inhibitors resistant patients. Also, integrin αvβ3-positive NSCLC cells revealed significant EGFR inhibitors resistance, resulting from the activation of Galectin-3/KRAS/RalB/TBK1/NF-κB signaling pathway. Co-encapsulating integrin αvβ3 inhibitor and EGFR inhibitor further improved the drug delivery system, leading to superior anti-cancer effects and reduced systemic toxicity.Conclusion: Our results demonstrated that co-encapsulation of erlotinib and cilengitide by MPEG-PLA (Erlo+Cilen/PP) nanoparticles revealed enhanced tumor suppression along with reduced organ damages, providing an innovative approach for NSCLC treatment.
Collapse
|
11
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
12
|
Jusot M, Stratmann D, Vaisset M, Chomilier J, Cortés J. Exhaustive Exploration of the Conformational Landscape of Small Cyclic Peptides Using a Robotics Approach. J Chem Inf Model 2018; 58:2355-2368. [DOI: 10.1021/acs.jcim.8b00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maud Jusot
- Sorbonne Université, MNHN, CNRS, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Dirk Stratmann
- Sorbonne Université, MNHN, CNRS, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Marc Vaisset
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Jacques Chomilier
- Sorbonne Université, MNHN, CNRS, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| |
Collapse
|
13
|
Kamenik AS, Lessel U, Fuchs JE, Fox T, Liedl KR. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization. J Chem Inf Model 2018; 58:982-992. [PMID: 29652495 PMCID: PMC5974701 DOI: 10.1021/acs.jcim.8b00097] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 11/28/2022]
Abstract
Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design.
Collapse
Affiliation(s)
- Anna S. Kamenik
- Institute
of General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| | - Uta Lessel
- Medicinal
Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Julian E. Fuchs
- Department
of Medicinal Chemistry, Boehringer Ingelheim
RCV GmbH & Co KG, 1120 Vienna, Austria
| | - Thomas Fox
- Medicinal
Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Klaus R. Liedl
- Institute
of General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Investigating the Interaction of Cyclic RGD Peptidomimetics with α Vβ₆ Integrin by Biochemical and Molecular Docking Studies. Cancers (Basel) 2017; 9:cancers9100128. [PMID: 28934103 PMCID: PMC5664067 DOI: 10.3390/cancers9100128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023] Open
Abstract
The interaction of a small library of cyclic RGD (Arg-Gly-Asp) peptidomimetics with αVβ6 integrin has been investigated by means of competitive solid phase binding assays to the isolated receptor and docking calculations in the crystal structure of the αVβ6 binding site. To this aim, a rigid receptor-flexible ligand docking protocol has been set up and then applied to predict the binding mode of the cyclic RGD peptidomimetics to αVβ6 integrin. Although the RGD interaction with αVβ6 recapitulates the RGD binding mode observed in αVβ3, differences between the integrin binding pockets can strongly affect the ligand binding ability. In general, the peptidomimetics exhibited IC50 values for integrin αVβ6 (i.e., the concentration of compound required for 50% inhibition of biotinylated fibronectin binding to isolated αVβ6 integrin) in the nanomolar range (77–345 nM), about 10–100 times higher than those for the related αVβ3 receptor, with a single notable ligand displaying a low nanomolar IC50 value (2.3 nM). Insights from the properties of the binding pocket combined with the analysis of the docking poses provided a rationale for ligand recognition and selectivity.
Collapse
|
15
|
Kapp TG, Rechenmacher F, Neubauer S, Maltsev OV, Cavalcanti-Adam EA, Zarka R, Reuning U, Notni J, Wester HJ, Mas-Moruno C, Spatz J, Geiger B, Kessler H. A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Sci Rep 2017; 7:39805. [PMID: 28074920 PMCID: PMC5225454 DOI: 10.1038/srep39805] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIbβ3, using homogenous ELISA-like solid phase binding assay.
Collapse
Affiliation(s)
- Tobias G Kapp
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Oleg V Maltsev
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Elisabetta A Cavalcanti-Adam
- Max-Planck-Institute for Medical Research, Department of Biointerface Science and Technology, Heidelberg, Postal address: Heisenbergstr. 3, 70 569 Stuttgart, Germany
| | - Revital Zarka
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics &Gynecology, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Johannes Notni
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, and Centre for Research in NanoEngineering (CRNE), Technical University of Catalonia, 08028-Barcelona, Spain
| | - Joachim Spatz
- Max-Planck-Institute for Medical Research, Department of Biointerface Science and Technology, Heidelberg, Postal address: Heisenbergstr. 3, 70 569 Stuttgart, Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
16
|
Allen SE, Dokholyan NV, Bowers AA. Dynamic Docking of Conformationally Constrained Macrocycles: Methods and Applications. ACS Chem Biol 2016; 11:10-24. [PMID: 26575401 DOI: 10.1021/acschembio.5b00663] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many natural products consist of large and flexible macrocycles that engage their targets via multiple contact points. This combination of contained flexibility and large contact area often allows natural products to bind at target surfaces rather than deep pockets, making them attractive scaffolds for inhibiting protein-protein interactions and other challenging therapeutic targets. The increasing ability to manipulate such compounds either biosynthetically or via semisynthetic modification means that these compounds can now be considered as starting points for medchem campaigns rather than solely as ends. Modern medchem benefits substantially from rational improvements made on the basis of molecular docking. As such, docking methods have been enhanced in recent years to deal with the complicated binding modalities and flexible scaffolds of macrocyclic natural products and natural product-like structures. Here, we comprehensively review methods for treating and docking these large macrocyclic scaffolds and discuss some of the resulting advances in medicinal chemistry.
Collapse
Affiliation(s)
- Scott E. Allen
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nikolay V. Dokholyan
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew Chem Int Ed Engl 2015; 54:8896-927. [PMID: 26119925 PMCID: PMC4557054 DOI: 10.1002/anie.201412070] [Citation(s) in RCA: 526] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A-D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.
Collapse
Affiliation(s)
- Marta Pelay-Gimeno
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Oliver Koch
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| |
Collapse
|
18
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Strukturbasierte Entwicklung von Protein-Protein-Interaktionsinhibitoren: Stabilisierung und Nachahmung von Peptidliganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412070] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|