1
|
Wang Z, Chen J, Yu L, Zhang C, Rao W, Chan PWH. Gold-Catalyzed Cascade Cycloisomerization of 3-Allyloxy-1,6-diynes to Cyclopropyl- and Cyclobutyl-Fused Benzofurans and Chromen-3a(1 H)-ols. Org Lett 2024; 26:2635-2640. [PMID: 38526487 DOI: 10.1021/acs.orglett.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A synthetic method for the efficient preparation of partially hydrogenated benzo[f]cyclobuta[cd]cyclopenta[h]benzofurans and cyclopropa[c]chromen-3a(1H)-ols that relies on the gold(I)-catalyzed cascade cycloisomerization of 3-allyloxy-1,6-diynes is described.
Collapse
Affiliation(s)
- Zeliang Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jichao Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Chunyu Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | |
Collapse
|
2
|
Ji H, Knutson PC, Harrington CM, Ke YT, Ferreira EM. The Analysis of Two Distinct Strategies toward the Enantioselective Formal Total Synthesis of (+)-Gelsenicine. Tetrahedron 2023; 134:133278. [PMID: 37034426 PMCID: PMC10077972 DOI: 10.1016/j.tet.2023.133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A full account of a formal enantioselective total synthesis of (+)-gelsenicine is described. Separate strategies based on catalytic cycloisomerization as the central step are considered. One plan involves chirality transfer from enantioenriched substrates, while the other employs asymmetric catalysis. The chirality transfer strategy is less effective, while in the latter, phosphoramidite- and bisphosphine-gold complexes are tested and ultimately provide a key intermediate in high enantiopurity in our Gelsemium alkaloid syntheses.
Collapse
Affiliation(s)
- Haofan Ji
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Phil C Knutson
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | | | - Yan-Ting Ke
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Eric M Ferreira
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Knutson PC, Ji H, Harrington CM, Ke YT, Ferreira EM. Chirality Transfer and Asymmetric Catalysis: Two Strategies toward the Enantioselective Formal Total Synthesis of (+)-Gelsenicine. Org Lett 2022; 24:4971-4976. [PMID: 35796493 DOI: 10.1021/acs.orglett.2c01974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two strategies are described en route to an enantioselective total synthesis of gelsenicine. One approach centers on a chirality transfer cycloisomerization that ultimately fell short. Separately, an asymmetric catalysis route utilizing bisphosphine-gold-catalyzed cycloisomerization was pursued. A catalytic system was identified that provided a synthetic intermediate in our Gelsemium alkaloid syntheses in high enantiopurity and with absolute configuration determined by electronic circular dichroism, thus representing an enantioselective formal total synthesis of (+)-gelsenicine.
Collapse
Affiliation(s)
- Phil C Knutson
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Haofan Ji
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | | | - Yan-Ting Ke
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Eric M Ferreira
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Abe R, Tsuchido Y, Ide T, Koizumi TA, Osakada K. Digold(I) Thianthrenyl Complexes. Effect of Diphosphine Ligands on Molecular Structures in the Solid State and in Solution. ACS OMEGA 2022; 7:9594-9601. [PMID: 35350371 PMCID: PMC8945089 DOI: 10.1021/acsomega.1c06938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/14/2022] [Indexed: 05/28/2023]
Abstract
A series of digold complexes possessing two thianthrenyl ligands, Au2(Thi)2(Ph2P(CH2) n PPh2) (Thi: 1-thianthrenyl; 1: n = 1, 2: n = 2, 3: n = 3, 4: n = 4), were prepared and characterized by crystallographic and spectroscopic measurements. X-ray crystallography of complexes 1 and 3 revealed U-shaped structures with short Au-Au distances [3.2171(3) Å and 3.0735(2) Å]. Complex 2 and three of the four structure-determined molecules of complex 4 showed structures without Au-Au contacts. UV-vis spectroscopic measurements of 1-4 and TD-DFT calculations of the two conformers of 1 revealed that complexes 1 and 3 in the solution phase contained conformers with Au(I)-Au(I) interactions in a much higher proportion than complexes 2 and 4. As a result, complexes with diphosphine ligands containing an odd number of methylene groups preferred structures with Au-Au interactions in the solid state and in solution. Oxidation of 1 with 2 equiv of PhICl2 yielded a mixture of monomeric and dimeric thianthrenes and its dimer via ligand elimination and C-C coupling, respectively.
Collapse
Affiliation(s)
- Ryota Abe
- Laboratory
for Chemistry and Life Science, Institute
of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshitaka Tsuchido
- Laboratory
for Chemistry and Life Science, Institute
of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tomohito Ide
- Department
of Chemical Science and Engineering, National
Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo 193-0997, Japan
| | - Take-aki Koizumi
- Advanced
Institute of Analysis Center, Shizuoka Institute
of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Kohtaro Osakada
- Laboratory
for Chemistry and Life Science, Institute
of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- National
Institute of Advance Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
5
|
Suzuki S, Toda T, Kuwata S. A diazene-bridged diruthenium complex with structural restraint defined by single meta-diphosphinobenzene. Dalton Trans 2021; 50:4789-4795. [PMID: 33625422 DOI: 10.1039/d0dt04398b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Creation of confined coordination spaces with controlled flexibility is of importance in mimicking enzymatic reactions. We found that a simple, non-chelating 1,3-bis(diphenylphosphino)benzene (DPPBz) assembled two Cp*Ru units to give a dinuclear complex, wherein only one DPPBz supports an open framework without metal-metal bonding. Subsequent treatment with an excess of hydrazine resulted in formal 2e-/2H+ transfer from hydrazine to afford a diazene-bridged complex featuring intramolecular NHCl hydrogen bonds. In constrast, a monophosphine failed to stabilize the diazene-bridged dinuclear structure due to the lack of the enforcement of the conformation.
Collapse
Affiliation(s)
- Satoshi Suzuki
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| | | | | |
Collapse
|
6
|
Tsuchido Y, Abe R, Ide T, Osakada K. A Macrocyclic Gold(I)-Biphenylene Complex: Triangular Molecular Structure with Twisted Au 2 (diphosphine) Corners and Reductive Elimination of [6]Cycloparaphenylene. Angew Chem Int Ed Engl 2020; 59:22928-22932. [PMID: 32692468 DOI: 10.1002/anie.202005482] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/08/2020] [Indexed: 12/15/2022]
Abstract
The digold(I) complex [Au2 Cl2 (Cy2 PCH2 PCy2 )] reacts with 4,4'-diphenylene diboronic acid to form a triangular macrocyclic complex with twisted Au-P-C-P-Au groups at the three corners. The synthesis of the complex and its chemical oxidation produced [6]cycloparaphenylene ([6]CPP) in 59 % overall yield.
Collapse
Affiliation(s)
- Yoshitaka Tsuchido
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Ryota Abe
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Tomohito Ide
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida-machi, Hachioji-shi, Tokyo, 193-0997, Japan
| | - Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-3 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
7
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
8
|
Synergy of activating substrate and introducing C-H···O interaction to achieve Rh2(II)-catalyzed asymmetric cycloisomerization of 1,n-enynes. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9794-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Tsuchido Y, Abe R, Ide T, Osakada K. A Macrocyclic Gold(I)–Biphenylene Complex: Triangular Molecular Structure with Twisted Au
2
(diphosphine) Corners and Reductive Elimination of [6]Cycloparaphenylene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yoshitaka Tsuchido
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259-R1-3 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemistry Faculty of Science Tokyo University of Science 1–3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Ryota Abe
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259-R1-3 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Tomohito Ide
- Department of Chemical Science and Engineering National Institute of Technology, Tokyo College 1220-2 Kunugida-machi, Hachioji-shi Tokyo 193-0997 Japan
| | - Kohtaro Osakada
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259-R1-3 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
10
|
Laher R, Marin C, Michelet V. When Gold Meets Perfumes: Synthesis of Olfactive Compounds via Gold-Catalyzed Cycloisomerization Reactions. Org Lett 2020; 22:4058-4062. [PMID: 32250122 DOI: 10.1021/acs.orglett.0c00843] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An efficient, and mild synthetic route for the preparation of functionalized volatile oxa-bicyclo[4.1.0]-hept-4-ene (29 compounds, 44-98% isolated yields) has been developed relying on the association of IPrAuCl with NaBArF. The remarkable selectivity was demonstrated on a 1 g and 25 g scale with low catalyst loadings. The synthetic utility of these low-molecular-weight enols was further demonstrated by the derivatization of some adducts and by the unprecedented olfactory evaluation of all bicyclic derivatives.
Collapse
Affiliation(s)
- Romain Laher
- University Côte d'Azur, Institut de Chimie de Nice, UMR 7272 CNRS, Valrose Park, Faculty of Sciences, Nice 06108 CEDEX 2, France
| | - Christophe Marin
- Expressions Parfumées, 136 chemin de St Marc, Grasse 06130, France
| | - Véronique Michelet
- University Côte d'Azur, Institut de Chimie de Nice, UMR 7272 CNRS, Valrose Park, Faculty of Sciences, Nice 06108 CEDEX 2, France
| |
Collapse
|
11
|
Liu X, Wang Y, Zhou J, Yu Y, Cao H. Triflic Acid-Catalyzed Cycloisomerization of 1,6-Enynes: Facile Access to Carbo- and Azaheterocycles. J Org Chem 2020; 85:2406-2414. [PMID: 31870155 DOI: 10.1021/acs.joc.9b03112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new and efficient strategy for enynes cyclization catalyzed by triflic acid has been described. Various valuable carbocycle-fused and heterocycle-fused ketones were easily accessed by the formation of new C-C and C-O bond under benign reaction conditions. This protocol also provides another opportunity to construct polycyclic single-nitrogen ketones via a cation-induced cascade cyclization of polyenynes. Furthermore, antiviral bioassays revealed that a few compounds exhibited good antiviral activity against tobacco mosaic virus at a concentration of 200 μg mL-1.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Yuhan Wang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Jinlei Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| |
Collapse
|
12
|
Siah HSM, Fiksdahl A. Preparation and Catalytic Activity of Novel σ,π-Dual Gold(I) Acetylide Complexes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Huey-San Melanie Siah
- Department of Chemistry; Norwegian University of Science and Technology; Hoegskoleveien 7491 Trondheim Norway
| | - Anne Fiksdahl
- Department of Chemistry; Norwegian University of Science and Technology; Hoegskoleveien 7491 Trondheim Norway
| |
Collapse
|
13
|
Galchenko M, Schuster R, Black A, Riedner M, Klinke C. Preparation of high-yield and ultra-pure Au 25 nanoclusters: towards their implementation in real-world applications. NANOSCALE 2019; 11:1988-1994. [PMID: 30644932 PMCID: PMC6350625 DOI: 10.1039/c8nr08200f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Colloidal approaches allow for the synthesis of Au nanoclusters (NCs) with atomic precision and sizes ranging from a few to hundreds of atoms. In most of the cases, these processes involve a common strategy of thiol etching of initially polydisperse Au nanoparticles into atomically precise NCs, resulting in the release of Au-thiolate complexes as byproducts. To the best of our knowledge, neither the removal of these byproducts nor the mass spectra in the relevant mass region were shown in previous studies. A thorough analysis of inorganic byproducts in the synthesis of [Au25(PPh3)10(PET)5X2]2+ NC, abbreviated as Au25 NC, reveals that published protocols lead to Au25 NCs in vanishingly small quantities compared to their byproducts. Three purification methods are presented to separate byproducts from the desired Au25 NCs which are proposed to be applicable to other promising Au NC systems. Additionally, critical factors for a successful synthesis of Au25 NCs are identified and discussed including the role of residual water. An important finding is that the etching duration is very critical and must be monitored by UV-Vis spectroscopy resulting in synthetic yields as high as 40%.
Collapse
Affiliation(s)
- Michael Galchenko
- Institute of Physical Chemistry
, University of Hamburg
,
Martin-Luther-King-Platz 6
, 20146 Hamburg
, Germany
| | - Raphael Schuster
- Institute of Organic Chemistry
, University of Hamburg
,
Martin-Luther-King-Platz 6
, 20146 Hamburg
, Germany
| | - Andres Black
- Institute of Physical Chemistry
, University of Hamburg
,
Martin-Luther-King-Platz 6
, 20146 Hamburg
, Germany
| | - Maria Riedner
- Institute of Organic Chemistry
, University of Hamburg
,
Martin-Luther-King-Platz 6
, 20146 Hamburg
, Germany
| | - Christian Klinke
- Institute of Physical Chemistry
, University of Hamburg
,
Martin-Luther-King-Platz 6
, 20146 Hamburg
, Germany
- Department of Chemistry
, Swansea University – Singleton Park
,
Swansea SA2 8PP
, UK
.
| |
Collapse
|
14
|
Zhou Y, Yu L, Chen J, Xu J, He Z, Shen G, Fan B. Rhodium-Catalyzed Asymmetric Cyclization/Addition Reactions of 1,6-Enynes and Oxa/Azabenzonorbornadienes. Org Lett 2018; 20:1291-1294. [DOI: 10.1021/acs.orglett.7b04044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongyun Zhou
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Lu Yu
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Jingchao Chen
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Jianbin Xu
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Zhenxiu He
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Guoli Shen
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Baomin Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| |
Collapse
|
15
|
Abadie MA, Trivelli X, Medina F, Duhal N, Kouach M, Linden B, Génin E, Vandewalle M, Capet F, Roussel P, Del Rosal I, Maron L, Agbossou-Niedercorn F, Michon C. Gold(I)-Catalysed Asymmetric Hydroamination of Alkenes: A Silver- and Solvent-Dependent Enantiodivergent Reaction. Chemistry 2017; 23:10777-10788. [DOI: 10.1002/chem.201701301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Marc-Antoine Abadie
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
- ENSCL; UCCS-CCM-MOCAH (Chimie-C7) CS 90108; 59652 Villeneuve d'Ascq Cedex France
| | - Xavier Trivelli
- UGSF CNRS, UMR 8576; Université Lille Nord de France; 59655 Villeneuve d'Ascq Cedex France
| | - Florian Medina
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
- ENSCL; UCCS-CCM-MOCAH (Chimie-C7) CS 90108; 59652 Villeneuve d'Ascq Cedex France
| | - Nathalie Duhal
- Service commun de physico-chimie CUMA; Faculté de Pharmacie-Univ. Lille; 3 rue du Professeur Laguesse BP 83-59006 Lille Cedex France
| | - Mostafa Kouach
- Service commun de physico-chimie CUMA; Faculté de Pharmacie-Univ. Lille; 3 rue du Professeur Laguesse BP 83-59006 Lille Cedex France
| | - Bernhard Linden
- Linden ChroMasSpec GmbH; Auf dem Berge 25 28844 Weyhe Germany
| | - Eric Génin
- ThermoFisher Scientific; 16 avenue du Québec-silic 765 Villebon-sur-Yvette 91963 Courtaboeuf Cedex France
| | - Maxence Vandewalle
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
| | - Frédéric Capet
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
| | - Pascal Roussel
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
| | - Iker Del Rosal
- Université de Toulouse et CNRS INSA; UPS, CNRS, UMR 5215, LPCNO; 135 avenue de Rangueil 31077 Toulouse France
| | - Laurent Maron
- Université de Toulouse et CNRS INSA; UPS, CNRS, UMR 5215, LPCNO; 135 avenue de Rangueil 31077 Toulouse France
| | - Francine Agbossou-Niedercorn
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
- ENSCL; UCCS-CCM-MOCAH (Chimie-C7) CS 90108; 59652 Villeneuve d'Ascq Cedex France
| | - Christophe Michon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois; UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; 59000 Lille France
- ENSCL; UCCS-CCM-MOCAH (Chimie-C7) CS 90108; 59652 Villeneuve d'Ascq Cedex France
| |
Collapse
|
16
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Stevenson SM, Newcomb ET, Ferreira EM. C-C Bond Migration in the Cycloisomerization of 1,6-Enynes. Org Chem Front 2016; 3:1228-1235. [PMID: 28239480 DOI: 10.1039/c6qo00224b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A full account of our investigation of C-C bond migration in the cycloisomerization of oxygen-tethered 1,6-enynes is described. Under Pt(II) and/or Ir(I) catalysis, cyclic and acylic alkyl groups were found to undergo 1,2-shifts into metal carbenoid intermediates. Interestingly, this process does not appear to be driven by the release of ring strain, and thus provides access to large carbocyclic frameworks. The beneficial effect of CO on the Pt(II) and Ir(I) catalytic systems is also evaluated.
Collapse
Affiliation(s)
- Susan M Stevenson
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)
| | | | - Eric M Ferreira
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)
| |
Collapse
|
18
|
Rao W, Boyle JW, Chan PWH. Gold‐Catalyzed Sequential Cyclization of 1‐En‐3,9‐Diyne Esters to Partially Hydrogenated 3
H
‐Dicyclopenta[
a
,
b
]naphthalenes. Chemistry 2016; 22:6532-6. [DOI: 10.1002/chem.201600915] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 P. R. China
| | | | - Philip Wai Hong Chan
- School of Chemistry Monash University, Clayton Victoria 3800 Australia
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
19
|
Qiu Y, Zhou J, Li J, Fu C, Guo Y, Wang H, Ma S. Asymmetric Construction of Six-Membered Rings by Cyclization of Allenes with Dinuclear Gold Catalysis. Chemistry 2015; 21:15939-43. [PMID: 26388540 DOI: 10.1002/chem.201503179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022]
Abstract
A simple and efficient method for the synthesis of 1,4-dihydroarenes by gold-catalyzed 6-endo cyclization of benzylic allenes has been developed. Furthermore, asymmetric hydroarylation of enantioenriched allenes has been realized to offer a practical and convergent approach to aromatic ring-fused six-membered cycles containing a chiral stereocenter such as 1,4-dihydronaphthalenes, 1,4-dihydrodibenzo[b,d]thiophenes, and 4,7-dihydrobenzo[b]thiophenes by applying dinuclear [(dppm)Au2 Cl2 ] [dppm=methylenebis(diphenylphosphane)] combined with AgOTf as the catalyst to ensure the high efficiency of chirality transfer. ESI-MS has been applied to characterize some of the key reactive dinuclear gold intermediates successfully.
Collapse
Affiliation(s)
- Youai Qiu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (P. R. China)
| | - Jing Zhou
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (P. R. China)
| | - Junzhao Li
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (P. R. China)
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (P. R. China)
| | - Yinlong Guo
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai (P. R. China)
| | - Haoyang Wang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai (P. R. China).
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (P. R. China). .,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai (P. R. China).
| |
Collapse
|
20
|
Ranieri B, Escofet I, Echavarren AM. Anatomy of gold catalysts: facts and myths. Org Biomol Chem 2015; 13:7103-18. [PMID: 26055272 PMCID: PMC4479959 DOI: 10.1039/c5ob00736d] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 12/23/2022]
Abstract
This review article covers the main types of gold(i) complexes used as precatalysts under homogeneous conditions in organic synthesis and discusses the different ways of catalyst activation as well as ligand, silver, and anion effects.
Collapse
Affiliation(s)
- Beatrice Ranieri
- Institute of Chemical Research of Catalonia (ICIQ) , Av. Països Catalans 16 , 43007 Tarragona , Spain .
| | - Imma Escofet
- Institute of Chemical Research of Catalonia (ICIQ) , Av. Països Catalans 16 , 43007 Tarragona , Spain .
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) , Av. Països Catalans 16 , 43007 Tarragona , Spain .
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili , C/Marcel·li Domingo s/n , 43007 Tarragona , Spain
| |
Collapse
|
21
|
Vikse KL, Zavras A, Thomas TH, Ariafard A, Khairallah GN, Canty AJ, Yates BF, O’Hair RAJ. Prying open a Reactive Site for Allylic Arylation by Phosphine-Ligated Geminally Diaurated Aryl Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Krista L. Vikse
- ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Athanasios Zavras
- ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Tudor H. Thomas
- ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Alireza Ariafard
- School
of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
- Department
of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran, Iran
| | - George N. Khairallah
- ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Allan J. Canty
- School
of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Brian F. Yates
- School
of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Richard A. J. O’Hair
- ARC Centre of Excellence
for Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|