1
|
Gholami F, Navaee A, Salimi A, Ahmadi R, Korani A, Hallaj R. Direct Enzymatic Glucose/O 2 Biofuel Cell based on Poly-Thiophene Carboxylic Acid alongside Gold Nanostructures Substrates Derived through Bipolar Electrochemistry. Sci Rep 2018; 8:15103. [PMID: 30305656 PMCID: PMC6180125 DOI: 10.1038/s41598-018-32893-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Bipolar electrochemistry (BPE) has been lately explored as a simple, reliable and novel electrochemical technique for the adjustment of various conductive substrates. Herein, BPE is performed to derive both of cathode and anode electrodes for the development of mediatorless/membraneless biofuel cell (BFC). On one hand, a preferable substrate for immobilization of bilirubin oxidase enzyme is prepared based on the electropolymerization of thiophene-3-carboxcylic acid (TCA) on an Au microfilm as a bipolar electrode. The resulted biocathode as novel bioelectrocatalyst offers a high electrocatalytic activity toward direct oxygen reduction reaction (ORR) with onset potential and current density of 0.55 V (vs. Ag/AgCl) and 867 μA cm-2, respectively. On the other hand, another analogous Au bipolar electrode is electroplated through BPE to derive Au nanostructures (AuNSs). This modified Au electrode is utilized as an anodic platform for immobilization of flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) enzyme aimed at electrocatalytic glucose oxidation. The prepared bioanode displays a current density of 2.7 mA cm-2 with onset potential of -0.03 V. Finally, the proposed bioanode and biocacthode in an assembled membraneless glucose/O2 BFC offers a power output of 146 μW cm-2 with open circuit voltage of 0.54 V. This novel BPE method provides disposable electrochemical platforms for design of novel sensors, biosensors or other devices.
Collapse
Affiliation(s)
- Fereshte Gholami
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Aso Navaee
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran. .,Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Rezgar Ahmadi
- Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Azam Korani
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.,Vice chancellor for Food and Drug, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.,Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| |
Collapse
|
2
|
Yang S, Liu J, Quan X, Zhou J. Bilirubin Oxidase Adsorption onto Charged Self-Assembled Monolayers: Insights from Multiscale Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9818-9828. [PMID: 30044918 DOI: 10.1021/acs.langmuir.8b01974] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficient immobilization and orientation of bilirubin oxidase (BOx) on different solid substrates are essential for its application in biotechnology. The T1 copper site within BOx is responsible for the electron transfer. In order to obtain quick direct electron transfer (DET), it is important to keep the distance between the T1 copper site and electrode surface small and to maintain the natural structure of BOx at the same time. In this work, the combined parallel tempering Monte Carlo simulation with the all-atom molecular dynamics simulation approach was adopted to reveal the adsorption mechanism, orientation, and conformational changes of BOx from Myrothecium verrucaria (MvBOx) adsorbed on charged self-assembled monolayers (SAMs), including COOH-SAM and NH2-SAM with different surface charge densities (±0.05 and ±0.19 C·m-2). The results show that MvBOx adsorbs on negatively charged surfaces with a "back-on" orientation, whereas on positively charged surfaces, MvBOx binds with a "lying-on" orientation. The locations of the T1 copper site are closer to negatively charged surfaces. Furthermore, for negatively charged surfaces, the T1 copper site prefers to orient closer to the surface with lower surface charge density. Therefore, the negatively charged surface with low surface charge density is more suitable for the DET of MvBOx on electrodes. Besides, the structural changes primarily take place on the relatively flexible turns, coils, and α-helix. The native structure of MvBOx is well preserved when it adsorbs on both charged surfaces. This work sheds light on the controlling orientation and conformational information on MvBOx on charged surfaces at the atomistic level. This understanding would certainly promote our understanding of the mechanism of MvBOx immobilization and provide theoretical support for BOx-based bioelectrode design.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430073 , P. R. China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
3
|
Navaee A, Salimi A. FAD-based glucose dehydrogenase immobilized on thionine/AuNPs frameworks grafted on amino-CNTs: Development of high power glucose biofuel cell and biosensor. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
5
|
Korani A, Salimi A, Karimi B. Guanine/Ionic Liquid Derived Ordered Mesoporous Carbon Decorated with AuNPs as Efficient NADH Biosensor and Suitable Platform for Enzymes Immobilization and Biofuel Cell Design. ELECTROANAL 2017. [DOI: 10.1002/elan.201700466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aazam Korani
- Department of Chemistry; University of Kurdistan; 66177-15175 Sanandaj Iran
- Vice chancellor for Food and Drug; Kurdistan University of Medical Sciences; Sanandaj Iran
| | - Abdollah Salimi
- Department of Chemistry; University of Kurdistan; 66177-15175 Sanandaj Iran
- Research Center for Nanotechnology; University of Kurdistan; 66177-15175 Sanandaj Iran
| | - Babak Karimi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences; 45137-66731 Zanjan-Iran
| |
Collapse
|
6
|
Botta L, Bizzarri BM, Crucianelli M, Saladino R. Advances in biotechnological synthetic applications of carbon nanostructured systems. J Mater Chem B 2017; 5:6490-6510. [PMID: 32264413 DOI: 10.1039/c7tb00764g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the last few years carbon nanostructures have been applied for the immobilization of enzymes and biomimetic organo-metallic species useful for biotechnological applications. The nature of the support and the method of immobilization are responsible for the stability, reactivity and selectivity of the system. In this review, we focus on the recent advances in the use of carbon nanostructures, carbon nanotubes, carbon nanorods, fullerene and graphene for the preparation of biocatalytic and biomimetic systems and for their application in the development of green chemical processes.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| | | | | | | |
Collapse
|
7
|
Le TXH, Flaud V, Bechelany M, Cretin M, Tingry S. Optimal direct electron transfer between MWCNTs@COOH/BOD/chitosan layer and porous carbon felt for dioxygen reduction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Mazurenko I, Monsalve K, Rouhana J, Parent P, Laffon C, Goff AL, Szunerits S, Boukherroub R, Giudici-Orticoni MT, Mano N, Lojou E. How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23074-23085. [PMID: 27533778 DOI: 10.1021/acsami.6b07355] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to the lack of a valid approach in the design of electrochemical interfaces modified with enzymes for efficient catalysis, many oxidoreductases are still not addressed by electrochemistry. We report in this work an in-depth study of the interactions between two different bilirubin oxidases, (from the fungus Myrothecium verrucaria and from the bacterium Bacillus pumilus), catalysts of oxygen reduction, and carbon nanotubes bearing various surface charges (pristine, carboxylic-, and pyrene-methylamine-functionalized). The surface charges and dipole moment of the enzymes as well as the surface state of the nanomaterials are characterized as a function of pH. An original electrochemical approach allows determination of the best interface for direct or mediated electron transfer processes as a function of enzyme, nanomaterial type, and adsorption conditions. We correlate these experimental results to theoric voltammetric curves. Such an integrative study suggests strategies for designing efficient bioelectrochemical interfaces toward the elaboration of biodevices such as enzymatic fuel cells for sustainable electricity production.
Collapse
Affiliation(s)
- Ievgen Mazurenko
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Karen Monsalve
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Jad Rouhana
- Centre de Recherche Paul Pascal, UPR 8641, CNRS, Bordeaux University , 33600 Pessac, France
| | - Philippe Parent
- Aix Marseille Université, CNRS , CINaM UMR 7325, 13288 Marseille, France
| | - Carine Laffon
- Aix Marseille Université, CNRS , CINaM UMR 7325, 13288 Marseille, France
| | - Alan Le Goff
- Université Grenoble Alpes , DCM UMR 5250, 38000 Grenoble, France
| | - Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR CNRS 8520) , , Université Lille 1, Cité Scientifique Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR CNRS 8520) , , Université Lille 1, Cité Scientifique Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Marie-Thérèse Giudici-Orticoni
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal, UPR 8641, CNRS, Bordeaux University , 33600 Pessac, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| |
Collapse
|
9
|
Navaee A, Narimani M, Korani A, Ahmadi R, Salimi A, Soltanian S. Bimetallic Fe 15 Pt 85 nanoparticles as an effective anodic electrocatalyst for non-enzymatic glucose/oxygen biofuel cell. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. Biosens Bioelectron 2016; 89:384-389. [PMID: 27297188 DOI: 10.1016/j.bios.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/16/2023]
Abstract
Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (kS) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm-2 and the highest Γ of (23.6±0.9)pmolcm-2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest kS of (79.4±4.6)s-1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells.
Collapse
|
11
|
Wang M, Zhang S, Ye Z, Peng D, He L, Yan F, Yang Y, Zhang H, Zhang Z. A gold electrode modified with amino-modified reduced graphene oxide, ion specific DNA and DNAzyme for dual electrochemical determination of Pb(II) and Hg(II). Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1569-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Navaee A, Salimi A. Efficient amine functionalization of graphene oxide through the Bucherer reaction: an extraordinary metal-free electrocatalyst for the oxygen reduction reaction. RSC Adv 2015. [DOI: 10.1039/c5ra07892j] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A simple and reliable method based on the Bucherer reaction is proposed for the functionalization of graphene oxide (GO) with amine (–NH2) groups.
Collapse
Affiliation(s)
- Aso Navaee
- Department of Chemistry
- University of Kurdistan
- Sanandaj
- Iran
| | - Abdollah Salimi
- Department of Chemistry
- University of Kurdistan
- Sanandaj
- Iran
- Research Centre for Nanotechnology
| |
Collapse
|