1
|
Kumar N, Gurawa A, Yadav A, Kashyap S. Influence of C-4 Axial/Equatorial Configuration and Neighboring Group/Remote Group Participation (NGP/RGP) Driven Conformational Evidence in Chemoselective Activation of Glycals. Org Lett 2024; 26:7072-7077. [PMID: 39116290 DOI: 10.1021/acs.orglett.4c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
We herein reveal the possibility of the C-4 neighboring group/remote group participation (NGP/RGP) facilitating the stabilization of the anomeric center via dioxolenium intermediates in the chemoselective activation of glycal donors. We further realized that the axial/equatorial configuration of the C-4 group in the galacto- and gluco-glycal series enables diverse pathways to give direct 1,2-addition or Ferrier rearrangement, respectively. A proof-of-principle for stereoselective glycosylation was amply illustrated by employing carbohydrates, amino acids, natural products, and bioactive molecules to develop 2-deoxy-glycan analogs.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017, India
| | - Aakanksha Gurawa
- Institut Charles Gerhardt Montpellier, Univ Montpellier, CNRS, 1919, route de Mende, 34294 Cedex 5 Montpellier, France
| | - Ankit Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017, India
| |
Collapse
|
2
|
Kumar N, Yadav M, Kashyap S. Reagent-controlled chemo/stereoselective glycosylation of ʟ-fucal to access rare deoxysugars. Carbohydr Res 2024; 535:108992. [PMID: 38091695 DOI: 10.1016/j.carres.2023.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
2,6-Dideoxy sugars constitute an important class of anticancer antibiotics natural products and serve as essential medicinal tools for carbohydrate-based drug discovery and vaccine development. In particular, 2-deoxy ʟ-fucose or ʟ-oliose is a rare sugar and vital structural motif of several potent antifungal and immunosuppressive bioactive molecules. Herein, we devised a reagent-controlled stereo and chemoselective activation of ʟ-fucal, enabling the distinctive glycosylation pathways to access the rare ʟ-oliose and 2,3-unsaturated ʟ-fucoside. The milder oxo-philic Bi(OTf)3 catalyst induced the direct 1,2-addition predominantly, whereas B(C6F5)3 promoted the allylic Ferrier-rearrangement of the enol-ether moiety in ʟ-fucal glycal donor, distinguishing the competitive mechanisms. The reagent-tunable modular approach is highly advantageous, employing greener catalysts and atom-economical transformations, expensive ligand/additive-free, and probed for a diverse range of substrates comprising monosaccharides, amino-acids, bioactive natural products, and drug scaffolds embedded with susceptible or labile functionalities.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Monika Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India.
| |
Collapse
|
3
|
Visible Light Induced C-H/N-H and C-X Bonds Reactions. REACTIONS 2023. [DOI: 10.3390/reactions4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
Collapse
|
4
|
Hou M, Xiang Y, Gao J, Zhang J, Wang N, Shi H, Huang N, Yao H. Stereoselective Synthesis of 2-Deoxy Glycosides via Iron Catalysis. Org Lett 2023; 25:832-837. [PMID: 36700622 DOI: 10.1021/acs.orglett.2c04379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An Fe-catalyzed 2-deoxy glycosylation method was developed from 3,4-O-carbonate glycals directly at room temperature. This novel approach enabled facile access to alkyl and aryl 2-deoxy glycosides in high yields with exclusive α-stereoselectivity, tolerating various alcohols, phenols, and glycals. The synthetic utility and advantage of this strategy have been demonstrated by the modification of six natural products and the construction of a tetrasaccharide.
Collapse
Affiliation(s)
- Mingyu Hou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Yimin Xiang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingyu Gao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingyu Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Haolin Shi
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| |
Collapse
|
5
|
Luo T, Zhang Q, Guo YF, Pei ZC, Dong H. Efficient Preparation of 2‐SAc‐Glycosyl Donors and Investigation of Their Application in Synthesis of 2‐Deoxyglycosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Luo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| | - Qiang Zhang
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Yang-Fan Guo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Zhi-Chao Pei
- Northwest Agriculture and Forestry University College of Chemistry and Pharmacy CHINA
| | - Hai Dong
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| |
Collapse
|
6
|
Kumar M, Gurawa A, Kumar N, Kashyap S. Bismuth-Catalyzed Stereoselective 2-Deoxyglycosylation of Disarmed/Armed Glycal Donors. Org Lett 2022; 24:575-580. [PMID: 34995079 DOI: 10.1021/acs.orglett.1c04008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bi(OTf)3 promoted direct and highly stereoselective glycosylation of "disarmed" and "armed" glycals to synthesize 2-deoxyglycosides has been reported. The tunable and solvent-controlled chemoselective activation of deactivated glycal donors distinguishing the competitive Ferrier and 1,2-addition pathways was discovered to improve substrate scope. The practical versatility of the method has been amply demonstrated with the oligosaccharide syntheses and 2-deoxyglycosylation of high-value natural products and drugs.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| |
Collapse
|
7
|
Javed, Tiwari A, Azeem Z, Mandal PK. 4,5-Dioxo-imidazolinium Cation-Promoted α-Selective Dehydrative Glycosylation of 2-Deoxy- and 2,6-Dideoxy Sugars. J Org Chem 2022; 87:3718-3729. [DOI: 10.1021/acs.joc.1c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Ashwani Tiwari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Yao W, Wang H, Zeng J, Wan Q. Practical synthesis of 2-deoxy sugars via metal free deiodination reactions. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2021.2015365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Marino C, Bordoni AV. Deoxy sugars. General methods for carbohydrate deoxygenation and glycosidation. Org Biomol Chem 2022; 20:934-962. [PMID: 35014646 DOI: 10.1039/d1ob02001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deoxy sugars represent an important class of carbohydrates, present in a large number of biomolecules involved in multiple biological processes. In various antibiotics, antimicrobials, and therapeutic agents the presence of deoxygenated units has been recognized as responsible for biological roles, such as adhesion or great affinity to receptors, or improved efficacy. The characterization of glycosidases and glycosyltranferases requires substrates, inhibitors and analogous compounds. Deoxygenated sugars are useful for carrying out specific studies for these enzymes. Deoxy sugars, analogs of natural substrates, may behave as substrates or inhibitors, or may not interact with the enzyme. They are also important for glycodiversification studies of bioactive natural products and glycobiological processes, which could contribute to discovering new therapeutic agents with greater efficacy by modification or replacement of sugar units. Deoxygenation of carbohydrates is, thus, of great interest and numerous efforts have been dedicated to the development of methods for the reduction of sugar hydroxyl groups. Given that carbohydrates are the most important renewable chemicals and are more oxidized than fossil raw materials, it is also important to have methods to selectively remove oxygen from certain atoms of these renewable raw materials. The different methods for removal of OH groups of carbohydrates and representative or recent applications of them are presented in this chapter. Glycosidic bonds in general, and 2-deoxy glycosidic linkages, are included. It is not the scope of this survey to cover all reports for each specific technique.
Collapse
Affiliation(s)
- Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química & Instituto de Nanociencia y Nanotecnología - Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| |
Collapse
|
10
|
Wu X, Wu B, Gao CF, Ye XS, Xiong DC. Additive-controlled synthesis of 1- and 2-dexoysugars from thioglycosides. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2015366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Biao Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Fei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Zhao X, Wu B, Shu P, Meng L, Zeng J, Wan Q. Rhenium(V)-catalyzed synthesis of 1,1'-2-deoxy thioglycosides. Carbohydr Res 2021; 508:108415. [PMID: 34358864 DOI: 10.1016/j.carres.2021.108415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
As stable glycomimetics, thioglycosides are important tools for the investigation of biological processes and discovery of new drugs. In this note, we report a ReOCl3(SMe2)(OPPh3) catalyzed coupling reaction between β-glycosyl thiols (1-thio sugars) and glycals for the preparation of 1,1'-α,β-2-deoxy thioglycosides, which are glycomimetics of natural trehalose and 2-deoxy glycosides. Furthermore, an S-linked trisaccharide was successfully obtained by successive employment of the Re(V) catalyzed thioglycosylation protocol.
Collapse
Affiliation(s)
- Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Bin Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Penghua Shu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
12
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Wang C, Liang H, Hang Z, Wang ZY, Xie Q, Xue W. Lewis acid/base pair as a catalytic system for α-stereoselective synthesis of 2-deoxyglycosides through the addition of alcohols to glycals. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Synthesis and structure of novel iodinated N-glycosyl-sulfonamides through Aza-Ferrier reaction of 2-substituted glycals. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Kumar M, Reddy TR, Gurawa A, Kashyap S. Copper(ii)-catalyzed stereoselective 1,2-addition vs. Ferrier glycosylation of "armed" and "disarmed" glycal donors. Org Biomol Chem 2020; 18:4848-4862. [PMID: 32608448 DOI: 10.1039/d0ob01042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective activation of "armed' and ''disarmed" glycal donors enabling the stereo-controlled glycosylations by employing Cu(ii)-catalyst as the promoter has been realized. The distinctive stereochemical outcome in the process is mainly influenced by the presence of diverse protecting groups on the donor and the solvent system employed. The protocol is compatible with a variety of aglycones including carbohydrates, amino acids, and natural products to access deoxy-glycosides and glycoconjugates with high α-anomeric selectivity. Notably, the synthetic practicality of the method is amply verified for the stereoselective assembling of trisaccharides comprising 2-deoxy components. Mechanistic studies involving deuterated experiments validate the syn-diastereoselective 1,2-addition of acceptors on the double bond of armed donors.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Thurpu Raghavender Reddy
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| |
Collapse
|
16
|
Romeo JR, McDermott L, Bennett CS. Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy Sugars: Construction of the Arugomycin Tetrasaccharide. Org Lett 2020; 22:3649-3654. [PMID: 32281384 PMCID: PMC7239334 DOI: 10.1021/acs.orglett.0c01153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first synthesis of the tetrasaccharide fragment of the anthracycline natural product Arugomycin is described. A reagent controlled dehydrative glycosylation method involving cyclopropenium activation was utilized to synthesize the α-linkages with complete anomeric selectivity. The synthesis was completed in 20 total steps, and in 2.5% overall yield with a longest linear sequence of 15 steps.
Collapse
Affiliation(s)
- Joseph R Romeo
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Luca McDermott
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
17
|
Palo-Nieto C, Sau A, Jeanneret R, Payard PA, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Copper Reactivity Can Be Tuned to Catalyze the Stereoselective Synthesis of 2-Deoxyglycosides from Glycals. Org Lett 2020; 22:1991-1996. [DOI: 10.1021/acs.orglett.9b04525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Robin Jeanneret
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Pierre-Adrien Payard
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Aude Salamé
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Maristela Braga Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| |
Collapse
|
18
|
C1 Oxidation/C2 Reduction Isomerization of Unprotected Aldoses Induced by Light/Ketone. Angew Chem Int Ed Engl 2020; 59:2755-2759. [DOI: 10.1002/anie.201914242] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 01/17/2023]
|
19
|
Masuda Y, Tsuda H, Murakami M. C1 Oxidation/C2 Reduction Isomerization of Unprotected Aldoses Induced by Light/Ketone. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yusuke Masuda
- Department of Synthetic Chemistry and Biological ChemistryKyoto University, Katsura Kyoto 615-8510 Japan
| | - Hiromu Tsuda
- Department of Synthetic Chemistry and Biological ChemistryKyoto University, Katsura Kyoto 615-8510 Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological ChemistryKyoto University, Katsura Kyoto 615-8510 Japan
| |
Collapse
|
20
|
Li BH, Yao W, Yang H, Wu C, Xiong DC, Yin Y, Ye XS. Total synthesis of tumor-associated KH-1 antigen core nonasaccharideviaphoto-induced glycosylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00314j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
KH-1 antigen core nonasaccharide was efficiently assembled by photo-induced glycosylation.
Collapse
Affiliation(s)
- Bo-Han Li
- Institute of Systems Biomedicine
- Department of Pathology
- Beijing Key Laboratory of Tumor Systems Biology
- School of Basic Medical Sciences
- Peking University Health Science Center
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Hong Yang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Congying Wu
- Institute of Systems Biomedicine
- Department of Pathology
- Beijing Key Laboratory of Tumor Systems Biology
- School of Basic Medical Sciences
- Peking University Health Science Center
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yuxin Yin
- Institute of Systems Biomedicine
- Department of Pathology
- Beijing Key Laboratory of Tumor Systems Biology
- School of Basic Medical Sciences
- Peking University Health Science Center
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
21
|
Synthesis of glycoconjugate mimics by ‘click chemistry’. Carbohydr Res 2019; 484:107775. [DOI: 10.1016/j.carres.2019.107775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
|
22
|
Ge JT, Zhou L, Luo T, Lv J, Dong H. A One-Pot Method for Removal of Thioacetyl Group via Desulfurization under Ultraviolet Light To Synthesize Deoxyglycosides. Org Lett 2019; 21:5903-5906. [PMID: 31310551 DOI: 10.1021/acs.orglett.9b02033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We herein developed an efficient method for removing thioacetyl to synthesize acylated deoxy glycosides in a one-pot reaction, where the thioacetyl was selectively deacetylated by hydrazine hydrate in DMF within 2-5 min at room temperature, followed by desulfurization under UV light for 1-2 h in the presence of TCEP·HCl. The method was then used to synthesize 2-deoxy glycosides with absolute α/β-configuration via stereoselective control of C-2 thioacetate in glycosylation.
Collapse
Affiliation(s)
- Jian-Tao Ge
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China.,School of Chemistry and Chemical Engineering , Hubei Polytechnic University , Guilinbei Road 16 , Huangshi , 435003 , P. R. China
| | - Lang Zhou
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| | - Tao Luo
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| | - Jian Lv
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry & Chemical Engineering , Huazhong University of Science & Technology , Luoyu Road 1037 , Wuhan , 430074 , P. R. China
| |
Collapse
|
23
|
Sau A, Palo-Nieto C, Galan MC. Substrate-Controlled Direct α-Stereoselective Synthesis of Deoxyglycosides from Glycals Using B(C 6F 5) 3 as Catalyst. J Org Chem 2019; 84:2415-2424. [PMID: 30706711 PMCID: PMC6466476 DOI: 10.1021/acs.joc.8b02613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
B(C6F5)3 enables the metal-free
unprecedented substrate-controlled direct α-stereoselective
synthesis of deoxyglycosides from glycals. 2,3-Unsaturated α-O-glycoside products are obtained with deactivated glycals
at 75 °C in the presence of the catalyst, while 2-deoxyglycosides
are formed using activated glycals that bear no leaving group at C-3
at lower temperatures. The reaction proceeds in good to excellent
yields via concomitant borane activation of glycal donor and nucleophile
acceptor. The method is exemplified with the synthesis of a series
of rare and biologically relevant glycoside analogues.
Collapse
Affiliation(s)
- Abhijit Sau
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Carlos Palo-Nieto
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - M Carmen Galan
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| |
Collapse
|
24
|
Bradshaw GA, Colgan AC, Allen NP, Pongener I, Boland MB, Ortin Y, McGarrigle EM. Stereoselective organocatalyzed glycosylations - thiouracil, thioureas and monothiophthalimide act as Brønsted acid catalysts at low loadings. Chem Sci 2019; 10:508-514. [PMID: 30713648 PMCID: PMC6334493 DOI: 10.1039/c8sc02788a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023] Open
Abstract
Thiouracil catalyzes stereoselective glycosylations with galactals in loadings as low as 0.1 mol%. It is proposed that in these glycosylations thiouracil, monothiophthalimide, and the previously reported catalyst, Schreiner's thiourea, do not operate via a double H-bonding mechanism but rather by Brønsted acid/base catalysis. In addition to the synthesis of 2-deoxyglycosides and glycoconjugates, we report the first organocatalytic synthesis of 1,1'-linked trehalose-type sugars.
Collapse
Affiliation(s)
- G A Bradshaw
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - A C Colgan
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - N P Allen
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - I Pongener
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - M B Boland
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - Y Ortin
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| | - E M McGarrigle
- Centre for Synthesis & Chemical Biology , UCD School of Chemistry , University College Dublin , Belfield , Dublin 4 , Ireland .
| |
Collapse
|
25
|
Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Visible light-driven organic photochemical synthesis in China. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9399-2] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Abstract
Deoxy-sugars often play a critical role in modulating the potency of many bioactive natural products. Accordingly, there has been sustained interest in methods for their synthesis over the past several decades. The focus of much of this work has been on developing new glycosylation reactions that permit the mild and selective construction of deoxyglycosides. This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter. Where relevant, the application of this chemistry to natural product synthesis will also be described.
Collapse
Affiliation(s)
- Clay S. Bennett
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
27
|
Mestre J, Collado D, Benito-Alifonso D, Rodríguez MA, Matheu MI, Díaz Y, Castillón S, Boutureira O. Highly reactive 2-deoxy-2-iodo-d- allo and d- gulo pyranosyl sulfoxide donors ensure β-stereoselective glycosylations with steroidal aglycones. RSC Adv 2018; 8:30076-30079. [PMID: 35546863 PMCID: PMC9085402 DOI: 10.1039/c8ra06619a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/11/2018] [Indexed: 12/31/2022] Open
Abstract
The preparation of well-defined d-xylo and d-ribo glycosides represents a synthetic challenge due to the limited configurational availability of starting materials and the laborious synthesis of homogeneous 2-deoxy-β-glycosidic linkages, in particular that of the sugar-steroid motif, which represents the "stereoselective determining step" of the overall synthesis. Herein we describe the use of 2-deoxy-2-iodo-glycopyranosyl sulfoxides accessible from widely available d-xylose and d-ribose monosaccharides as privileged glycosyl donors that permit activation at very low temperature. This ensures a precise kinetic control for a complete 1,2-trans stereoselective glycosylation of particularly challenging steroidal aglycones.
Collapse
Affiliation(s)
- Jordi Mestre
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - David Collado
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - David Benito-Alifonso
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Miguel A Rodríguez
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - M Isabel Matheu
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Yolanda Díaz
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/Marcel·lí Domingo 1 43007 Tarragona Spain
| |
Collapse
|
28
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800909] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
29
|
Zhao G, Wang T. Stereoselective Synthesis of 2‐Deoxyglycosides from Glycals by Visible‐Light‐Induced Photoacid Catalysis. Angew Chem Int Ed Engl 2018; 57:6120-6124. [DOI: 10.1002/anie.201800909] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| | - Ting Wang
- Department of Chemistry University at Albany, State University of New York 1400 Washington Avenue Albany NY 12222 USA
| |
Collapse
|
30
|
Gupta MR, Thakur K, Khare NK. L-Proline/CeCl 3·7H 2O-NaI mediated stereoselective synthesis of α-2-deoxy glycosides from glucal. Carbohydr Res 2018; 457:51-55. [PMID: 29422121 DOI: 10.1016/j.carres.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/13/2018] [Accepted: 01/13/2018] [Indexed: 12/30/2022]
Abstract
Glucal with different alcohols can be converted into the corresponding 2-deoxy glycosides without Ferrier rearrangement in high yield by treatment with eco friendly transition metal based catalysts [CuCl3·2H2O-NaI (A) or CeCl3·7H2O-NaI (B)] and chiral amine ligand L-proline at various reaction conditions which were optimized for stereoselectivity. The catalyst CeCl3·7H2O-NaI (B) and ligand L-proline in toluene, was found to be much more efficient and high atom economic for the stereoselective glycosidation of propargyl alcohol with glucal, afforded exclusively α-2-deoxy propargyl glycoside in 98% optimized yield. The ligand L-proline was used for the first time in stereoselective glycosidation of α-2-deoxy glycosides involving glucal and alcohols.
Collapse
Affiliation(s)
- Mukul R Gupta
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Kratima Thakur
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Naveen K Khare
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
31
|
Bandi R, Chalapala S, Chandrasekaran S. 2-Deoxyglycosyl 3-benzoylpropionates as novel donors for the direct and stereoselective synthesis of 2-deoxy-glycosides. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00216a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lewis acid mediated stereoselective synthesis of 2-deoxy-O-glycosides has been demonstrated using 2-deoxyglycosyl 3-benzoylpropionates as novel glycosyl donors.
Collapse
Affiliation(s)
- Ramakrishna Bandi
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | - Sudharani Chalapala
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| | | |
Collapse
|
32
|
Zeng J, Wang R, Yao W, Zhang S, Sun G, Liao Z, Meng L, Wan Q. Diversified synthesis and α-selective glycosylation of 3-amino-2,3,6-trideoxy sugars. Org Chem Front 2018. [DOI: 10.1039/c8qo00948a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quick access to various unnatural 3-amino-2,3,6-trideoxy sugars was achieved by sequential functionalization of a glycal intermediate. This strategy and the further glycosylation method allowed the efficient late-stage modification of bioactive natural products and drugs.
Collapse
Affiliation(s)
- Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Ruobin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Wang Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Guangfei Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhiwen Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy; Huazhong University of Science and Technology
- Wuhan
- China
- Institute of Brain Research
| |
Collapse
|
33
|
Thiem J, Schöttmer B. Formation of aureolic acid oligodeoxy mono-, di-, and trisaccharides employing the dibromomethyl methyl ether reaction. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1397682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Joachim Thiem
- University of Hamburg, Faculty of Science, Department of Chemistry, Martin-Luther-King-Platz 6, Hamburg, Germany
| | - Bernhard Schöttmer
- University of Hamburg, Faculty of Science, Department of Chemistry, Martin-Luther-King-Platz 6, Hamburg, Germany
| |
Collapse
|
34
|
Palo-Nieto C, Sau A, Galan MC. Gold(I)-Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. J Am Chem Soc 2017; 139:14041-14044. [PMID: 28934850 PMCID: PMC5951607 DOI: 10.1021/jacs.7b08898] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Au(I) in combination
with AgOTf enables the unprecedented direct
and α-stereoselective catalytic synthesis of deoxyglycosides
from glycals. Mechanistic investigations suggest that the reaction
proceeds via Au(I)-catalyzed hydrofunctionalization of the enol ether
glycoside. The room temperature reaction is high yielding and amenable
to a wide range of glycal donors and OH nucleophiles.
Collapse
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
35
|
Ge JT, Li YY, Tian J, Liao RZ, Dong H. Synthesis of Deoxyglycosides by Desulfurization under UV Light. J Org Chem 2017; 82:7008-7014. [DOI: 10.1021/acs.joc.7b00896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jian-Tao Ge
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| | - Jun Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| |
Collapse
|
36
|
Zeng J, Xu Y, Wang H, Meng L, Wan Q. Recent progress on the synthesis of 2-deoxy glycosides. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9010-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Sau A, Williams R, Palo‐Nieto C, Franconetti A, Medina S, Galan MC. Palladium-Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. Angew Chem Int Ed Engl 2017; 56:3640-3644. [PMID: 28211228 PMCID: PMC5484376 DOI: 10.1002/anie.201612071] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/26/2017] [Indexed: 02/06/2023]
Abstract
Palladium(II) in combination with a monodentate phosphine ligand enables the unprecedented direct and α-stereoselective catalytic synthesis of deoxyglycosides from glycals. Initial mechanistic studies suggest that in the presence of N-phenyl-2-(di-tert-butylphosphino)pyrrole as the ligand, the reaction proceeds via an alkoxy palladium intermediate that increases the proton acidity and oxygen nucleophilicity of the alcohol. The method is demonstrated with a wide range of glycal donors and acceptors, including substrates bearing alkene functionalities.
Collapse
Affiliation(s)
- Abhijit Sau
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Ryan Williams
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Carlos Palo‐Nieto
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Sandra Medina
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
38
|
Sau A, Williams R, Palo‐Nieto C, Franconetti A, Medina S, Galan MC. Palladium‐Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abhijit Sau
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Ryan Williams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Carlos Palo‐Nieto
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Antonio Franconetti
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Sandra Medina
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - M. Carmen Galan
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
39
|
Sangwan R, Mandal PK. Recent advances in photoinduced glycosylation: oligosaccharides, glycoconjugates and their synthetic applications. RSC Adv 2017. [DOI: 10.1039/c7ra01858d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carbohydrates have been demonstrated to perform imperative act in biological processes. This review highlights recent uses of photoinduced glycosylation in carbohydrate chemistry for the synthesis of oligosaccharides, thiosugars, glycoconjugates and glycoprotein.
Collapse
Affiliation(s)
- Rekha Sangwan
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
40
|
Palo-Nieto C, Sau A, Williams R, Galan MC. Cooperative Brønsted Acid-Type Organocatalysis for the Stereoselective Synthesis of Deoxyglycosides. J Org Chem 2016; 82:407-414. [PMID: 28004941 PMCID: PMC5309864 DOI: 10.1021/acs.joc.6b02498] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A practical approach for the α-stereoselective synthesis of deoxyglycosides using cooperative Brønsted acid-type organocatalysis has been developed. The method is tolerant of a wide range of glycoside donors and acceptors, and its versatility is exemplified in the one-pot synthesis of a trisaccharide. Mechanistic studies suggest that thiourea-induced acid amplification of the chiral acid via H-bonding is key for the enhancement in reaction rate and yield, while stereocontrol is dependent on the chirality of the acid.
Collapse
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Ryan Williams
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
41
|
Nogueira JM, Bylsma M, Bright DK, Bennett CS. Reagent‐Controlled α‐Selective Dehydrative Glycosylation of 2,6‐Dideoxy‐ and 2,3,6‐Trideoxy Sugars. Angew Chem Int Ed Engl 2016; 55:10088-92. [DOI: 10.1002/anie.201605091] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Jason M. Nogueira
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Marissa Bylsma
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Danielle K. Bright
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Clay S. Bennett
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| |
Collapse
|
42
|
Nogueira JM, Bylsma M, Bright DK, Bennett CS. Reagent‐Controlled α‐Selective Dehydrative Glycosylation of 2,6‐Dideoxy‐ and 2,3,6‐Trideoxy Sugars. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jason M. Nogueira
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Marissa Bylsma
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Danielle K. Bright
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| | - Clay S. Bennett
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
| |
Collapse
|
43
|
Battina SK, Kashyap S. Copper mediated iodoacetoxylation and glycosylation: effective and convenient approaches for the stereoselective synthesis of 2-deoxy-2-iodo glycosides. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Zhang H, Liu PF, Chen Q, Wu QY, Seville A, Gu YC, Clough J, Zhou SL, Yang GF. Synthesis and absolute configuration assignment of albucidin: a late-stage reductive deiodination by visible light photocatalysis. Org Biomol Chem 2016; 14:3482-5. [DOI: 10.1039/c6ob00371k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total synthesis and absolute configuration assignment of albucidin might pave the way for synthetic and medicinal chemists for further research on this type of bioactive molecule.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education College of Chemistry
- Central China Normal University
- Wuhan
- China
| | - Peng-Fei Liu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education College of Chemistry
- Central China Normal University
- Wuhan
- China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education College of Chemistry
- Central China Normal University
- Wuhan
- China
| | - Qiong-You Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education College of Chemistry
- Central China Normal University
- Wuhan
- China
| | - Anne Seville
- Syngenta Jealott's Hill International Research Centre
- Bracknell
- UK
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre
- Bracknell
- UK
| | - John Clough
- Syngenta Jealott's Hill International Research Centre
- Bracknell
- UK
| | - Shao-Lin Zhou
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education College of Chemistry
- Central China Normal University
- Wuhan
- China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education College of Chemistry
- Central China Normal University
- Wuhan
- China
| |
Collapse
|
45
|
Kundoor G, Rao DS, Kashyap S. Regioselective Direct Difunctionalization of Glycals: Convenient Access to 2-Deoxyglycoconjugates Mediated by Tetra-n-butylammonium Iodide/Sodium Periodate. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Govindareddy Kundoor
- Discovery Laboratory, Organic and Biomolecular Chemistry Division; Indian Institute of Chemical Technology (CSIR), Tarnaka; Uppal Road Hyderabad- 500007 India
| | - Dodla Sivanageswara Rao
- Discovery Laboratory, Organic and Biomolecular Chemistry Division; Indian Institute of Chemical Technology (CSIR), Tarnaka; Uppal Road Hyderabad- 500007 India
| | - Sudhir Kashyap
- Discovery Laboratory, Organic and Biomolecular Chemistry Division; Indian Institute of Chemical Technology (CSIR), Tarnaka; Uppal Road Hyderabad- 500007 India
- Academy of Scientific and Innovative Research; Indian Institute of Chemical Technology (CSIR); Hyderabad- 500 007 India
| |
Collapse
|
46
|
Kimura T, Takahashi D, Toshima K. Glycosylations of Glycals using N-Iodosuccinimide (NIS) and Phosphorus Compounds for Syntheses of 2-Iodo- and 2-Deoxyglycosides. J Org Chem 2015; 80:9552-62. [PMID: 26375399 DOI: 10.1021/acs.joc.5b01542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The glycosylations of glycals and alcohols using N-iodosuccinimide (NIS) and a catalytic amount of PPh3 effectively proceeded under mild conditions to provide the corresponding 2-deoxy-2-iodoglycosides in high yields. The reactivity of the iodoglycosylations with PPh3 significantly increased in comparison to that using NIS alone as an activator. In addition, the glycosylations of glycals and alcohols using catalytic amounts of NIS and P(OPh)3 were effectively realized to give the corresponding 2-deoxyglycosides in high yields.
Collapse
Affiliation(s)
- Tomoya Kimura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
47
|
Angnes RA, Li Z, Correia CRD, Hammond GB. Recent synthetic additions to the visible light photoredox catalysis toolbox. Org Biomol Chem 2015; 13:9152-67. [PMID: 26242759 DOI: 10.1039/c5ob01349f] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The boom in visible light photoredox catalysis (VLPC) research has demonstrated that this novel synthetic approach is here to stay. VLPC enables reactive radical intermediates to be catalytically generated at ambient temperature, a feat not generally allowed through traditional pyrolysis- or radical initiator-based methodologies. VLPC has vastly extended the range of substrates and reaction schemes that have been traditionally the domain of radical reactions. In this review the photophysics background of VLPC will be briefly discussed, followed by a report on recent inroads of VLPC into decarboxylative couplings and radical C-H functionalization of aromatic compounds. The bulk of the review will be dedicated to advances in synergistic catalysis involving VLPC, namely the combination of photoredox catalysis with organocatalysis, including β-functionalization of carbonyl groups, functionalization of weak aliphatic C-H bonds, and anti-Markovnikov hydrofunctionalization of alkenes; dual catalysis with gold or with nickel, photoredox catalysis as an oxidation promoter in transition metal catalysis, and acid-catalyzed enantioselective radical addition to π systems.
Collapse
Affiliation(s)
- Ricardo A Angnes
- Chemistry Institute, State University of Campinas - Unicamp C.P. 6154, CEP. 13083-970, Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|