1
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
2
|
Qin Y, Wen J, Zheng L, Yan H, Jiao L, Wang X, Cai X, Wu Y, Chen G, Chen L, Hu L, Gu W, Zhu C. Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. NANO LETTERS 2021; 21:1879-1887. [PMID: 33544604 DOI: 10.1021/acs.nanolett.1c00076] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benefiting from the maximum atom-utilization efficiency and distinct structural features, single-atom catalysts open a new avenue for the design of more functional catalysts, whereas their bioapplications are still in their infancy. Due to the advantages, platinum single atoms supported by cadmium sulfide nanorods (Pt SAs-CdS) are synthesized to build an ultrasensitive photoelectrochemical (PEC) biosensing platform. With the decoration of Pt SAs, the PEC signal of CdS is significantly boosted. Furthermore, theory calculations indicate the positively charged Pt SAs could change the charge distribution and increase the excited carrier density of CdS. Meanwhile, it also suggests that Cu2+ can severely hinder the photoexcitation and electron-hole separation of CdS. As a proof of concept, prostate-specific antigen is chosen as the target analyte to demonstrate the superiority of the Pt SAs-CdS-based PEC sensing system. As a result, the PEC biosensor based on Pt SAs-CdS exhibits outstanding detection sensitivity and promising applicability.
Collapse
Affiliation(s)
- Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jing Wen
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiaosi Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiaoli Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guojuan Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lijuan Chen
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
3
|
|
4
|
Arvand M, Sayyar S, Hemmati S. Visible-light-driven polydopamine/CdS QDs hybrid materials with synergistic photocatalytic activity. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
|
6
|
Xu YT, Yu SY, Zhu YC, Fan GC, Han DM, Qu P, Zhao WW. Cathodic photoelectrochemical bioanalysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Xia L, Zheng Y, Liang W, Li M, Hu T, Yuan R, Chai Y. [Ru(dcbpy)
2
dppz]
2+
/Fullerene Cosensitized PTB7‐Th for Ultrasensitive Photoelectrochemical MicroRNA Assay. Chemistry 2019; 25:4087-4092. [DOI: 10.1002/chem.201806005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/09/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Ling‐Ying Xia
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 P.R. China
| | - Ying‐Ning Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 P.R. China
| | - Wen‐Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 P.R. China
| | - Meng‐Jie Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 P.R. China
| | - Tao Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 P.R. China
| | - Ya‐Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, (Southwest University), Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 P.R. China
| |
Collapse
|
8
|
Ding W, Song C, Li T, Ma H, Yao Y, Yao C. TiO 2 nanowires as an effective sensing platform for rapid fluorescence detection of single-stranded DNA and double-stranded DNA. Talanta 2019; 199:442-448. [PMID: 30952281 DOI: 10.1016/j.talanta.2019.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 11/28/2022]
Abstract
Numerous nanomaterials have been utilized for novel biosensors with sensitivity and selectivity in the last decades due to their intrinsic unique properties. Herein, a facile fluorescence method for nucleic acid detection was developed by employing TiO2 nanowires (NWs) as the sensing platform. The quenching effect of TiO2 NWs to fluorophore-labelled single-stranded DNA (ssDNA) was found to be more significant than that to fluorophore-labelled double-stranded DNA (dsDNA) or triplex DNA probes. More importantly, the whole quenching process was also fast since it just took about ten minutes to reach the equilibrium. Based on the different affinities of TiO2 NWs to ssDNA, dsDNA and triplex DNA probes, the sequence-specific nucleic acids were detected with sensitivity and specificity. Further investigation has demonstrated that the quenching efficiency of TiO2 NWs to long ssDNA was apparently superior than that to short ssDNA. Moreover, the fluorescence from various ssDNA probes labelled with a wide spectrum of fluorescent dyes could also be quenched by TiO2 NWs. These inspiring results reveal that TiO2 NWs could be an excellent universal nanoquencher used in the next-generation biosensors.
Collapse
Affiliation(s)
- Wei Ding
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chan Song
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Tianle Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haoran Ma
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuewei Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
9
|
Liu C, Wang F, Zhu S, Xu Y, Liang Q, Chen Z. Controlled charge-dynamics in cobalt-doped TiO2 nanowire photoanodes for enhanced photoelectrochemical water splitting. J Colloid Interface Sci 2018; 530:403-411. [DOI: 10.1016/j.jcis.2018.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
|
10
|
Li H, Li J, Zhu Y, Xie W, Shao R, Yao X, Gao A, Yin Y. Cd 2+-Doped Amorphous TiO 2 Hollow Spheres for Robust and Ultrasensitive Photoelectrochemical Sensing of Hydrogen Sulfide. Anal Chem 2018; 90:5496-5502. [PMID: 29611421 DOI: 10.1021/acs.analchem.8b01178] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide is a highly toxic molecule to human health, but high-performance detection of it remains a challenge. Herein, we report an ultrasensitive photoelectrochemical (PEC) sensor for H2S by modifying indium tin oxide (ITO) electrodes with Cd2+-doped amorphous TiO2 hollow spheres, which are prepared by templating against colloidal silica particles followed by a cadmium-sodium cation exchange reaction. The amorphous TiO2 hollow spheres act as both the probing cation carrier and the photoelectric beacon. Upon exposure to sulfide ions, the photocurrent of the functionalized photoanode proportionately decreases in response to the formation of CdS nanoparticles. The decreased photocurrent could be attributed to the mismatching bandgap between the amorphous TiO2 and CdS nanoparticles: the photoexcited electrons and holes from amorphous TiO2 are transferred to the conduction band and valence band of CdS, respectively, and then recombined. The decrease in photocurrent is linear with the concentration of sulfide ions in the range from 1 to 10 000 pmol L-1 with a detection limit of 0.36 pmol L-1. Enabled by a unique sensitization mechanism, this PEC sensor features excellent performance in a wide linear range, high selectivity and sensitivity, high stability, and low fabrication cost.
Collapse
Affiliation(s)
- Hongbo Li
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China.,Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Jing Li
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China
| | - Yunyun Zhu
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China
| | - Wenyu Xie
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China
| | - Rong Shao
- School of Chemistry and Chemical Engineering , Yancheng Institute of Technology , Yancheng 224051 , PR China
| | - Xiaxi Yao
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Aiqin Gao
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Yadong Yin
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| |
Collapse
|
11
|
Zhang L, Zhu YC, Liang YY, Zhao WW, Xu JJ, Chen HY. Semiconducting CuO Nanotubes: Synthesis, Characterization, and Bifunctional Photocathodic Enzymatic Bioanalysis. Anal Chem 2018; 90:5439-5444. [DOI: 10.1021/acs.analchem.8b00742] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ling Zhang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Material and Chemical Engineering, Bengbu University, Bengbu 233000, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan-Yu Liang
- School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Shi XM, Mei LP, Wang Q, Zhao WW, Xu JJ, Chen HY. Energy Transfer between Semiconducting Polymer Dots and Gold Nanoparticles in a Photoelectrochemical System: A Case Application for Cathodic Bioanalysis. Anal Chem 2018. [DOI: 10.1021/acs.analchem.8b00839] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Ping Mei
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Hao Y, Cui Y, Qu P, Sun W, Liu S, Zhang Y, Li D, Zhang F, Xu M. A novel strategy for the construction of photoelectrochemical sensing platform based on multifunctional photosensitizer. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
15
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
16
|
Mei LP, Liu F, Pan JB, Zhao WW, Xu JJ, Chen HY. Enediol-Ligands-Encapsulated Liposomes Enables Sensitive Immunoassay: A Proof-of-Concept for General Liposomes-Based Photoelectrochemical Bioanalysis. Anal Chem 2017; 89:6300-6304. [DOI: 10.1021/acs.analchem.7b01291] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Li-Ping Mei
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian-Bin Pan
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department
of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Zhao WW, Xu JJ, Chen HY. Photoelectrochemical enzymatic biosensors. Biosens Bioelectron 2017; 92:294-304. [DOI: 10.1016/j.bios.2016.11.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022]
|
18
|
Gao C, Wang Y, Yuan S, Xue J, Cao B, Yu J. Engineering anatase hierarchically cactus-like TiO 2 arrays for photoelectrochemical and visualized sensing platform. Biosens Bioelectron 2017; 90:336-342. [DOI: 10.1016/j.bios.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
|
19
|
Zhang N, Zhang L, Ruan YF, Zhao WW, Xu JJ, Chen HY. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens Bioelectron 2017; 94:207-218. [PMID: 28285198 DOI: 10.1016/j.bios.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed methodology that provides an exquisite route for innovative biomolecular detection. Quantum dots (QDs) are semiconductor nanocrystals with unique photophysical properties that have attracted tremendous attentions among the analytical community. QDs-based PEC bioanalysis comprises an important research hotspot in the field of PEC bioanalysis due to its combined advantages and potentials. Currently, it has ignited increasing interests as demonstrated by increased research papers. This review aims to cover the most recent advances in this field. With the discussion of recent examples of QDs-PEC bioanalysis from the literatures, special emphasis will be placed on work reporting on fundamental advances in the signaling strategies of QDs-based PEC bioanalysis from 2013 to now. Future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
20
|
Zhu YC, Xu F, Zhang N, Zhao WW, Xu JJ, Chen HY. DNA sequence functionalized with heterogeneous core-satellite nanoassembly for novel energy-transfer-based photoelectrochemical bioanalysis. Biosens Bioelectron 2016; 91:293-298. [PMID: 28033558 DOI: 10.1016/j.bios.2016.12.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 01/01/2023]
Abstract
This work reports the use of compositionally heterogeneous asymmetric Ag@Au core-satellite nanoassembly functionalized with DNA sequence as unique signaling nanoprobes for the realization of new energy-transfer-based photoelectrochemical (PEC) immunoassay of prostate- specific antigen (PSA). Specifically, the Ag@Au asymmetric core-satellite nanoassemblies (Ag@Au ACS) were fabricated on a two-dimensional glass substrate by a modified controlled assembly technique, and then functionalized with DNA sequences containing PSA aptamers as signaling nanoprobes. Then, the sandwich complexing between the PSA, its antibodies, and the signaling nanoprobes was performed on a CdS QDs modified indium tin oxide (ITO) electrode. The single stranded DNA can server as a facile mediator that place the Ag@Au ACS in proximity of CdS QDs, stimulating the interparticle exciton-plasmon interactions between Ag@Au ACS and CdS QDs and thus quenching the excitonic states in the latter. Since the damping effect is closely related to the target concentration, a novel energy-transfer-based PEC bioanalysis could be achieved for the sensitive and specific PSA assay. The developed biosensor displayed a linear range from 1.0×10-11gmL-1 to 1.0×10-7gmL-1 and the detection limit was experimentally found to be of 0.3×10-13gmL-1. This strategy used the Ag@Au ACS-DNA signaling nanoprobes and overcame the deficiency of short operating distance of the energy transfer process for feasible PEC immunoassay. More significantly, it provided a way to couple the plasmonic properties of the Ag NPs and Au NPs in a single PEC bioanalytical system. We expected this work could inspire more interests and further investigations on the advanced engineering of the core-satellite or other judiciously designed nanostructures for new PEC bioanalytical uses with novel properties.
Collapse
Affiliation(s)
- Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Ding L, Ma C, Li L, Zhang L, Yu J. A photoelectrochemical sensor for hydrogen sulfide in cancer cells based on the covalently and in situ grafting of CdS nanoparticles onto TiO2 nanotubes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Zhang L, Sun Y, Liang YY, He JP, Zhao WW, Xu JJ, Chen HY. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical bioanalysis. Biosens Bioelectron 2016; 85:930-934. [DOI: 10.1016/j.bios.2016.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/26/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
|
23
|
Zhao WW, Yu XD, Xu JJ, Chen HY. Recent advances in the use of quantum dots for photoelectrochemical bioanalysis. NANOSCALE 2016; 8:17407-17414. [PMID: 27738694 DOI: 10.1039/c6nr05011e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed technique for innovative biomolecular detection. Quantum dots (QDs) with unique photophysical properties are key components in realization of various exquisite PEC bioanalyses. Particularly, significant progress has been made in the QD-based PEC bioanalysis. In this work, we briefly summarize the most recent and important developments in the use of traditional and newly emerging QDs for novel PEC bioanalytical applications. The future prospects in this dynamic field are also highlighted.
Collapse
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| |
Collapse
|
24
|
|
25
|
Li J, Wang Y, Zheng G. Carbon-coated nanoparticle superlattices for energy applications. NANOSCALE 2016; 8:14359-14368. [PMID: 27432112 DOI: 10.1039/c6nr03243e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoparticle (NP) superlattices represent a unique material architecture for energy conversion and storage. Recent reports on carbon-coated NP superlattices have shown exciting electrochemical properties attributed to their rationally designed compositions and structures, fast electron transport, short diffusion length, and abundant reactive sites via enhanced coupling between close-packed NPs, which are distinctive from their isolated or disordered NP or bulk counterparts. In this minireview, we summarize the recent developments of highly-ordered and interconnected carbon-coated NP superlattices featuring high surface area, tailorable and uniform doping, high conductivity, and structure stability. We then introduce the precisely-engineered NP superlattices by tuning/studying specific aspects, including intermetallic structures, long-range ordering control, and carbon coating methods. In addition, these carbon-coated NP superlattices exhibit promising characteristics in energy-oriented applications, in particular, in the fields of lithium-ion batteries, fuel cells, and electrocatalysis. Finally, the challenges and perspectives are discussed to further explore the carbon-coated NP superlattices for optimized electrochemical performances.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
26
|
Abstract
Depending on the situation, metal ions may either play beneficial roles or be harmful to human health and ecosystems. Sensitive and accurate detection of metal ions is thus a critical issue in the field of analytical sciences and great efforts have been devoted to the development of various metal ion sensors. Photoelectrochemical (PEC) detection is an emerging technique for the bio/chemical detection of metal ions, and features a fast response, low cost and high sensitivity. Using representative examples, this review will first introduce the fundamentals and summarize recent progress in the PEC detection of metal ions. In addition, interesting strategies for the design of particular PEC metal ion sensors are discussed. Challenges and opportunities in this field are also presented.
Collapse
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | | | | |
Collapse
|
27
|
Ma ZY, Xu F, Qin Y, Zhao WW, Xu JJ, Chen HY. Invoking Direct Exciton–Plasmon Interactions by Catalytic Ag Deposition on Au Nanoparticles: Photoelectrochemical Bioanalysis with High Efficiency. Anal Chem 2016; 88:4183-7. [DOI: 10.1021/acs.analchem.6b00503] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng-Yuan Ma
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fei Xu
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu Qin
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei-Wei Zhao
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing-Juan Xu
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong-Yuan Chen
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
28
|
Tang J, Quan Y, Zhang Y, Jiang M, Al-Enizi AM, Kong B, An T, Wang W, Xia L, Gong X, Zheng G. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling. NANOSCALE 2016; 8:5786-5792. [PMID: 26909564 DOI: 10.1039/c5nr09236a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.
Collapse
Affiliation(s)
- Jing Tang
- Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Yingzhou Quan
- Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Yueyu Zhang
- Key Laboratory of Computational Physical Sciences, Ministry of Education, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Min Jiang
- Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Biao Kong
- Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Tiance An
- Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Wenshuo Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Limin Xia
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xingao Gong
- Key Laboratory of Computational Physical Sciences, Ministry of Education, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
29
|
Zhang N, Ma ZY, Ruan YF, Zhao WW, Xu JJ, Chen HY. Simultaneous Photoelectrochemical Immunoassay of Dual Cardiac Markers Using Specific Enzyme Tags: A Proof of Principle for Multiplexed Bioanalysis. Anal Chem 2016; 88:1990-4. [DOI: 10.1021/acs.analchem.5b04579] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nan Zhang
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zheng-Yuan Ma
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yi-Fan Ruan
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei-Wei Zhao
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing-Juan Xu
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong-Yuan Chen
- State Key
Laboratory of Analytical
Chemistry for Life Science and Collaborative Innovation Center of
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
30
|
Devadoss A, Kuragano A, Terashima C, Sudhagar P, Nakata K, Kondo T, Yuasa M, Fujishima A. Single-step electrospun TiO2–Au hybrid electrodes for high selectivity photoelectrocatalytic glutathione bioanalysis. J Mater Chem B 2016; 4:220-228. [DOI: 10.1039/c5tb01740h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-step electrospun Au nanoparticle decorated TiO2 nanofiber membrane served as effective photoanode for highly selective glutathione analysis with a photoelectrocatalytic oxidation process.
Collapse
Affiliation(s)
- Anitha Devadoss
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Asako Kuragano
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Chiaki Terashima
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - P. Sudhagar
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Kazuya Nakata
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Takeshi Kondo
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Makoto Yuasa
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| | - Akira Fujishima
- Photocatalysis International Research Center
- Research Institute for Science & Technology
- Tokyo University of Science
- Noda
- Japan
| |
Collapse
|
31
|
Li Y, Dai H, Zhang Q, Zhang S, Chen S, Hong Z, Lin Y. In situ generation of electron acceptor to amplify the photoelectrochemical signal from poly(dopamine)-sensitized TiO2 signal crystal for immunoassay. J Mater Chem B 2016; 4:2591-2597. [DOI: 10.1039/c5tb02525g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoelectrochemical protocol was designed for quantitative monitoring of tumor markers by utilizing poly(dopamine)-sensitized TiO2 signal crystal.
Collapse
Affiliation(s)
- Yilin Li
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Hong Dai
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Qingrong Zhang
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Shupei Zhang
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Sihong Chen
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| | - Zhensheng Hong
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials
- College of Physics and Energy
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Yanyu Lin
- College of Chemistry and Chemical Engineering
- Fujian Normal University
- Fuzhou
- China
| |
Collapse
|
32
|
Visible LED light photoelectrochemical sensor for detection of L-Dopa based on oxygen reduction on TiO 2 sensitized with iron phthalocyanine. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2015.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|