1
|
Helmers I, Bäumer N, Fernández G. Hydrophobic domain flexibility enables morphology control of amphiphilic systems in aqueous media. Chem Commun (Camb) 2020; 56:13808-13811. [DOI: 10.1039/d0cc06173e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, we unravel the impact of hydrophobic domain flexibility on the self-assembly pathways and aggregate morphology of amphiphilic systems in aqueous media.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Nils Bäumer
- Organisch-Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
2
|
Yang Y, Zhong K, Chen T, Jin LY. Morphological Control of Coil-Rod-Coil Molecules Containing m-Terphenyl Group: Construction of Helical Fibers and Helical Nanorings in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10613-10621. [PMID: 30107734 DOI: 10.1021/acs.langmuir.8b01904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rod-coil molecules, composed of rigid segments and flexible coil chains, have a strong intrinsic ability to self-assemble into diverse supramolecular nanostructures. Herein, we report the synthesis and the morphological control of a new series of amphiphilic coil-rod-coil molecular isomers 1-2 containing flexible oligoether chains. These molecules are comprised of m-terphenyl and biphenyl groups, along with triple bonds, and possess lateral methyl or butyl groups at the coil or rod segments. The results of this study suggest that the morphology of supramolecular aggregates is significantly influenced by the lateral alkyl groups and by the sequence of the rigid fragments in the bulk and in aqueous solution. The molecules with different coils self-assemble into lamellar or oblique columnar structures in the bulk state. In aqueous solution, molecule 1a, with a lack of lateral groups, self-assembled into large strips of sheets, whereas exquisite nanostructures of helical fibers were obtained from molecule 1b, which incorporated lateral methyl groups between the rod and coil segments. Interestingly, molecule 1c with lateral butyl and methyl groups exhibited a strong self-organizing capacity to form helical nanorings. Nanoribbons, helical fibers, and small nanorings were simultaneously formed from the 2a-2c, which are structural isomers of 1a, 1b, and 1c. Accurate control of these supramolecular nanostructures can be achieved by tuning the synergistic interactions of the noncovalent driving force with hydrophilic-hydrophobic interactions in aqueous solution.
Collapse
Affiliation(s)
- Yuntian Yang
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science , Yanbian University , Yanji 133002 , China
| | - Keli Zhong
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University , Jinzhou 121013 , China
| | - Tie Chen
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science , Yanbian University , Yanji 133002 , China
| | - Long Yi Jin
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science , Yanbian University , Yanji 133002 , China
| |
Collapse
|
3
|
You S, Zhong K, Jin LY. Control of supramolecular nanoassemblies by tuning the interactions of bent-shaped rod-coil molecules. SOFT MATTER 2017; 13:3334-3340. [PMID: 28421215 DOI: 10.1039/c7sm00615b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rod-coil molecules 1a, 1b and 2a, 2b, consisting of biphenyl and phenyl units connected by an acetylene bond as the rod segment and oligo(ethylene glycol) (OEG) as the coil segment, were synthesized and characterized. Molecules 1a and 1b incorporate a butoxy group at the apex of their bent-shaped rigid building blocks, while both 1b and 2b contain a lateral methyl group between the rod and coil segments. The self-assembling behavior of these molecules was investigated using DSC, SAXS, CD, AFM, and TEM in bulk and aqueous solutions. In the bulk state, 1a self-assembles into oblique columnar structures, whereas 1b, incorporating butoxy and lateral methyl groups, self-assembles into three-dimensional body-centered tetragonal structures. Molecules 2a and 2b with no butoxy groups, and 2b incorporating a lateral methyl group, self-assemble into hexagonal perforated lamellar and oblique columnar structures, respectively. In dilute aqueous solutions, 1a assembles into tubular nanoassemblies, while 1b self-organizes into micelles and nanoparticles. On the other hand, 2a and 2b spontaneously aggregate into nanoribbons and nanofibers. Furthermore, CD experiments together with AFM investigations of 2b indicate the creation of self-organized helical fibers, implying that the lateral methyl group induces the helical stacking of the rod building block. These results reveal that the butoxy and lateral methyl groups between the rod and coil segments dramatically influence the creation of supramolecular nanostructures and morphologies.
Collapse
Affiliation(s)
- Shengnan You
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science, Yanbian University, Yanji 133002, China.
| | | | | |
Collapse
|
4
|
Chen X, Wang Y, Wang H, Kim Y, Lee M. α-Helical peptide vesicles with chiral membranes as enantioselective nanoreactors. Chem Commun (Camb) 2017; 53:10958-10961. [DOI: 10.1039/c7cc05869a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report peptide vesicles with chiral membranes as enantioselective nanoreactors.
Collapse
Affiliation(s)
- Xi Chen
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yanqiu Wang
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Huaxin Wang
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yongju Kim
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Myongsoo Lee
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
5
|
Yang Y, Cui J, Li Z, Zhong K, Jin LY, Lee M. Self-Assembly of n-Shaped Rod–Coil Molecules into Thermoresponsive Nanoassemblies: Construction of Reversible Helical Nanofibers in Aqueous Environment. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuntian Yang
- Key
Laboratory for Organism Resources of the Changbai Mountain and Functional
Molecules, Ministry of Education, and Department of Chemistry, College
of Science, Yanbian University, Yanji 133002, China
| | - Junjie Cui
- Center
for Supramolecular Optoelectronic
Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
| | - Zhaohua Li
- Key
Laboratory for Organism Resources of the Changbai Mountain and Functional
Molecules, Ministry of Education, and Department of Chemistry, College
of Science, Yanbian University, Yanji 133002, China
| | - Keli Zhong
- College
of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou 121013, China
| | - Long Yi Jin
- Key
Laboratory for Organism Resources of the Changbai Mountain and Functional
Molecules, Ministry of Education, and Department of Chemistry, College
of Science, Yanbian University, Yanji 133002, China
| | - Myongsoo Lee
- State
Key Lab of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Li Z, Yang Y, Wang Y, Chen T, Jin LY, Lee M. Construction of Supramolecular Assemblies from Self-Organization of Amphiphilic Molecular Isomers. Chem Asian J 2016; 11:2265-70. [PMID: 27348276 DOI: 10.1002/asia.201600683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 12/23/2022]
Abstract
Amphiphilic coil-rod-coil molecules, incorporating flexible and rigid blocks, have a strong affinity to self-organize into various supramolecular aggregates in bulk and in aqueous solutions. In this paper, we report the self-assembling behavior of amphiphilic coil-rod-coil molecular isomers. These molecules consist of biphenyl and phenyl units connected by ether bonds as the rod segment, and poly(ethylene oxide) (PEO) with a degree of polymerization of 7 and 12 as the flexible chains. Their aggregation behavior was investigated by differential scanning calorimetry, thermal optical polarized microscopy, small-angle X-ray scattering spectroscopy, and transmission electron microscopy. The results imply that the molecular structure of the rod building block and the length of the PEO chains dramatically influence the creation of supramolecular aggregates in bulk and in aqueous solutions. In the bulk state, these molecules self-organize into a hexagonal perforated lamellar and an oblique columnar structure, respectively, depending on the sequence of the rod building block. In aqueous solution, the molecule with a linear rod segment self-assembles into sheet-like nanoribbons. In contrast, its isomer, with a rod building block substituted at the meta-position of the aryl group, self-organizes into nanofibers. This is achieved through the control of the non-covalent interactions of the rod building blocks.
Collapse
Affiliation(s)
- Zhaohua Li
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Yuntian Yang
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Yanqiu Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tie Chen
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Long Yi Jin
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji, 133002, China.
| | - Myongsoo Lee
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|