1
|
Voloshkin VA, Villa M, Martynova EA, Beliš M, Van Hecke K, Ceroni P, Nolan SP. Synthesis of cyclobutane-fused chromanones via gold-mediated photocatalysis. Chem Sci 2024; 15:4571-4580. [PMID: 38516071 PMCID: PMC10952090 DOI: 10.1039/d3sc06675d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Energy transfer (EnT) photocatalysis has emerged as a valuable tool for constructing complex organic scaffolds via [2 + 2]-cycloaddition reactions. Herein, we present the use of [Au(SIPr)(Cbz)] as a sensitizer for the [2 + 2]-cycloaddition of coumarins and unactivated alkenes. Widely used in EnT catalysis, iridium and organic sensitizers proved less efficient under the examined catalytic conditions. The developed protocol permits the synthesis of cyclobutane-fused chromanones from readily available starting materials. A wide range of alkenes and substituted coumarins, including naturally occurring compounds, were reacted under mild conditions leading to structurally complex products with good functional group tolerance. Mechanistic studies reveal a previously overlooked reaction pathway for energy transfer catalysis involving coumarins.
Collapse
Affiliation(s)
- Vladislav A Voloshkin
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Marco Villa
- Department of Chemistry "Giacomo Ciamician", Center for Chemical Catalysis-C3, University of Bologna Via Selmi, 2 40126 Bologna Italy
| | - Ekaterina A Martynova
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Marek Beliš
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician", Center for Chemical Catalysis-C3, University of Bologna Via Selmi, 2 40126 Bologna Italy
| | - Steven P Nolan
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| |
Collapse
|
2
|
Chang R, Pang Y, Ye J. Divergent Photosensitizer Controlled Reactions of 4-Hydroxycoumarins and Unactivated Olefins: Hydroarylation and Subsequent [2+2] Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202309897. [PMID: 37749064 DOI: 10.1002/anie.202309897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Herein, we report a photoinduced approach for hydroarylation of unactivated olefins using 4-hydroxycoumarins as the arylating reagent. Key to the success of this reaction is the conversion of nucleophilic 4-hydroxycoumarins into electrophilic carbon radicals via photocatalytic arene oxidation, which not only circumvents the polarity-mismatch issue encountered under ionic conditions but also accommodates a broad substrate scope and inhibits side reactions that were previously observed. Moreover, divergent reactivity was achieved by changing the photocatalyst, enabling a subsequent [2+2] cycloaddition to deliver cyclobutane-fused pentacyclic products that are otherwise challenging to access in high yields and with high diastereoselectivity. Mechanistic studies have elucidated the mechanism of the reactions and the origin of the divergent reactivity.
Collapse
Affiliation(s)
- Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Zhang H, Guo X, Zhou D, Wen J, Tang Y, Wang J, Liu Y, Chen G, Li N. Design, Synthesis of (±)-Millpuline A, and Biological Evaluation for the Lung Cell Protective Effects through SRC. ChemMedChem 2023; 18:e202300219. [PMID: 37704587 DOI: 10.1002/cmdc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
In this study, a visible-light-induced intermolecular [2+2] photocycloaddition reaction based on flavonoids was constructed to address the problems of low yield, poor physicochemical properties, and lack of target definition in total synthesis of (±)-millpuline A whose bioactivity remains unknown. As a result, 20 derivatives were synthesized for bioactivity evaluation. Consequently, lung cell protective effects of (±)-millpuline A and compound B13 a were revealed for the first time and the crucial role of stereoconfiguration of the cyclobutane moiety in their protective effects against NNK in normal lung cells was demonstrated. Moreover, through target prediction and experimental verification in MLE-12 cells, SRC was determined to be the target of (±)-millpuline A regarding its protective effect in NNK-induced lung cell injury. Results from RT-Q-PCR and HTRF experiments verified that (±)-millpuline A could repress SRC activity through a transcriptional mechanism but not acting as an inhibitor to directly bind to and thereby inhibit SRC protein. The results in this paper are informative for the further development of visible light-catalyzed cycloaddition of flavonoids and lay a scientific foundation for understanding the bioactivity and underlying mechanism of (±)-millpuline A and other structurally similar natural skeletons.
Collapse
Affiliation(s)
- Heng Zhang
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Xiao Guo
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jiatong Wen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yingzhan Tang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Gang Chen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| |
Collapse
|
4
|
Zhen G, Zeng G, Jiang K, Wang F, Cao X, Yin B. Visible-Light-Induced Diradical-Mediated ipso-Cyclization towards Double Dearomative [2+2]-Cycloaddition or Smiles-Type Rearrangement. Chemistry 2023; 29:e202203217. [PMID: 36460618 DOI: 10.1002/chem.202203217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
When mono-radical ipso-cyclization of aryl sulfonamides tend to undergo Smiles-type rearrangement through aromatization-driven C-S bond cleavage, diradical-mediated cyclization must perform in a distinct reaction pathway. It is interesting meanwhile challenging to tune the rate of C-S bond cleavage to achieve a chemically divergent reaction of (hetero) aryl sulfonamides in a visible-light induced energy transfer (EnT) reaction pathway involving diradical species. Herein a chemically divergent reaction based on the designed indole-tethered (hetero)arylsulfonamides is reported which involves a diradical-mediated ipso-cyclization and a controllable cleavage of an inherent C-S bond. The combined experimental and computational results have revealed that the cleavage of the C-S bond in these substrates can be controlled by tuning the heteroaryl moieties: a) If the (hetero)aryl is thienyl, furyl, phenanthryl, etc., the radical coupling of double dearomative diradicals (DDDR) precedes over C-S bond cleavage to afford cyclobutene fused indolines by double dearomative [2+2]-cycloaddition; b) if the (hetero)aryl is phenyl, naphthyl, pyridyl, indolyl etc., the cleavage of C-S bond in DDDR is favored over radical coupling to afford biaryl products.
Collapse
Affiliation(s)
- Guangjin Zhen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Furong Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
5
|
Li L, Matsuo B, Levitre G, McClain EJ, Voight EA, Crane EA, Molander GA. Dearomative intermolecular [2 + 2] photocycloaddition for construction of C(sp 3)-rich heterospirocycles on-DNA. Chem Sci 2023; 14:2713-2720. [PMID: 36908969 PMCID: PMC9993886 DOI: 10.1039/d3sc00144j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
DNA-encoded library (DEL) screens have significantly impacted new lead compound identification efforts within drug discovery. An advantage of DELs compared to traditional screening methods is that an exponentially broader chemical space can be effectively screened using only nmol quantities of billions of DNA-tagged, drug-like molecules. The synthesis of DELs containing diverse, sp3-rich spirocycles, an important class of molecules in drug discovery, has not been previously reported. Herein, we demonstrate the synthesis of complex and novel spirocyclic cores via an on-DNA, visible light-mediated intermolecular [2 + 2] cycloaddition of olefins with heterocycles, including indoles, azaindoles, benzofurans, and coumarins. The DNA-tagged exo-methylenecyclobutane substrates were prepared from easily accessible alkyl iodides and styrene derivatives. Broad reactivity with many other DNA-conjugated alkene substrates was observed, including unactivated and activated alkenes, and the process is tolerant of various heterocycles. The cycloaddition was successfully scaled from 10 to 100 nmol without diminished yield, indicative of this reaction's suitability for DNA-encoded library production. Evaluation of DNA compatibility with the developed reaction in a mock-library format showed that the DNA barcode was maintained with high fidelity, with <1% mutated sequences and >99% amplifiable DNA from quantitative polymerase chain reaction (PCR) and next generation sequencing (NGS).
Collapse
Affiliation(s)
- Longbo Li
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Guillaume Levitre
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Edward J McClain
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA.,Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Eric A Voight
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA
| | - Erika A Crane
- Drug Hunter, Inc. 13203 SE 172nd Ave, Suite 166 PMB 2019 Happy Valley Oregon 97086 USA
| | - Gary A Molander
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
6
|
Reaction of 3-Acetylcoumarin: From Methods to Mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Das A. LED Light Sources in Organic Synthesis: An Entry to a Novel Approach. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210916164132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally
friendly, and sustainable technology. Compared to other light sources in photochemical reaction,
LEDs have advantages in terms of efficiency, power, compatibility, and environmentally friendly
nature. This review highlights the most recent advances in LED-induced photochemical reactions. The
effect of white and blue LEDs in reactions such as oxidation, reduction, cycloaddition, isomerization,
and sensitization is discussed in detail. No other reviews have been published on the importance of
white and blue LED sources in the photocatalysis of organic compounds. Considering all the facts, this
review is highly significant and timely.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin
Fahd University, Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Jung H, Hong M, Marchini M, Villa M, Steinlandt PS, Huang X, Hemming M, Meggers E, Ceroni P, Park J, Baik MH. Understanding the mechanism of direct visible-light-activated [2 + 2] cycloadditions mediated by Rh and Ir photocatalysts: combined computational and spectroscopic studies. Chem Sci 2021; 12:9673-9681. [PMID: 34349938 PMCID: PMC8293808 DOI: 10.1039/d1sc02745j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023] Open
Abstract
The mechanism of [2 + 2] cycloadditions activated by visible light and catalyzed by bis-cyclometalated Rh(iii) and Ir(iii) photocatalysts was investigated, combining density functional theory calculations and spectroscopic techniques. Experimental observations show that the Rh-based photocatalyst produces excellent yield and enantioselectivity whereas the Ir-photocatalyst yields racemates. Two different mechanistic features were found to compete with each other, namely the direct photoactivation of the catalyst-substrate complex and outer-sphere triplet energy transfer. Our integrated analysis suggests that the direct photocatalysis is the inner working of the Rh-catalyzed reaction, whereas the Ir catalyst serves as a triplet sensitizer that activates cycloaddition via an outer-sphere triplet excited state energy transfer mechanism.
Collapse
Affiliation(s)
- Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Marianna Marchini
- Department of Chemistry "Giacomo Ciamician", University of Bologna via Selmi 2 40126 Bologna Italy
| | - Marco Villa
- Department of Chemistry "Giacomo Ciamician", University of Bologna via Selmi 2 40126 Bologna Italy
| | - Philipp S Steinlandt
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Xiaoqiang Huang
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Marcel Hemming
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna via Selmi 2 40126 Bologna Italy
| | - Jiyong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
9
|
Mu X, Li Y, Zheng N, Long J, Chen S, Liu B, Zhao C, Yang Z. Stereoselective Synthesis of Cyclohepta[
b
]indoles by Visible‐Light‐Induced [2+2]‐Cycloaddition/retro‐Mannich‐type Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin‐Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuan‐He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Jian‐Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Si‐Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Bing‐Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Chun‐Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| |
Collapse
|
10
|
Mu XP, Li YH, Zheng N, Long JY, Chen SJ, Liu BY, Zhao CB, Yang Z. Stereoselective Synthesis of Cyclohepta[b]indoles by Visible-Light-Induced [2+2]-Cycloaddition/retro-Mannich-type Reactions. Angew Chem Int Ed Engl 2021; 60:11211-11216. [PMID: 33683807 DOI: 10.1002/anie.202101104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Indexed: 12/12/2022]
Abstract
A novel method for the concise synthesis of cyclohepta[b]indoles in high yields was developed. The method involves a visible-light-induced, photocatalyzed [2+2]-cycloaddition/ retro-Mannich-type reaction of enaminones. Experimental and computational studies suggested that the reaction is a photoredox process initiated by single-electron oxidation of an enaminone moiety, which undergoes subsequent cyclobutane formation and rapidly fragmentation in a radical-cation state to form cyclohepta[b]indoles.
Collapse
Affiliation(s)
- Xin-Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jian-Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Si-Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Bing-Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chun-Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China.,Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| |
Collapse
|
11
|
Heteroleptic copper(I) complexes as energy transfer photocatalysts for the intermolecular [2 + 2] photodimerization of chalcones, cinnamates and cinnamamides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
13
|
Liu Q, He J. Highly Efficient Visible-Light-Driven [2+2] Cycloaddition of Maleimides to Alkenes and Alkynes for the Synthesis of 3-Azabicyclo[3.2.0]heptane-Fused Scaffolds. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1480-3215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA highly efficient [2+2] cycloaddition between maleimides and unsaturated moieties, utilizing a visible-light triplet sensitization mode, has been developed for the direct synthesis of multifunctional 3-azabicyclo[3.2.0]heptane derivatives. This reaction relies on selective activation of the maleimide functionality upon energy transfer from a new photosensitizer that outperforms diverse well-established photosensitizers. The strategy developed herein overcomes previous obstacles such as limited substrate scope and undesired reaction pathways under harsh UV irradiation.
Collapse
|
14
|
Liu J, Wei Y, Shi M. Mechanistic Studies on Propargyl
Alcohol‐Tethered
Alkylidenecyclopropane with Aryldiazonium Salt Initiated by Visible Light. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen Guangdong 518000 China
| |
Collapse
|
15
|
Fu J, Tsapy Takia IR, Chen P, Liu W, Jiang C, Yao W, Zeng X, Wang Y, Han X. Synthesis of 2-chromanone-fused [3.2.0] bicycles through a phosphine-mediated tandem [3 + 2] cyclization/intramolecular Wittig reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01013a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A phosphine-mediated tandem [3 + 2] cyclization/intramolecular Wittig reaction of alkynone is described. 2-Chromanone-fused bicyclo[3.2.0]heptenones were synthesized in moderate to high yields with remarkably high regio- and diastereoselectivities.
Collapse
Affiliation(s)
- Junfeng Fu
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Ingrid Rakielle Tsapy Takia
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Peng Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Wei Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Chengjun Jiang
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yongjiang Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| | - Xiaoyu Han
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Liuhe Road 318, Hangzhou, 310023, P. R. China
| |
Collapse
|
16
|
Yuan PF, Huang T, He J, Huang XT, Jin XL, Sun C, Wu LZ, Liu Q. Controllable Z/ E-selective synthesis of α-amino-ketoximes from N-nitrososulfonamides and aryl alkenes under neutral conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo01101d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An amidoximation of alkenes with N-nitrososulfonamides enabled by triplet energy transfer under neutral conditions is presented. Both (Z)- and (E)-α-amino-ketoximes are selectively accessible depending on the triplet energy of the photosensitizer.
Collapse
Affiliation(s)
- Pan-Feng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jian He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xie-Tian Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Gu X, Wei Y, Shi M. Construction of polysubstituted spiro[2.3] or [3.3] cyclic frameworks fused with a tosylated pyrrolidine promoted by visible-light-induced photosensitization. Org Chem Front 2021. [DOI: 10.1039/d1qo01373d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel visible-light-induced intramolecular [2 + 2] cycloaddition of methylenecyclopropanes (MCPs) for the rapid construction of polysubstituted spiro[2.3] or [3.3] cyclic frameworks fused with a tosylated pyrrolidine.
Collapse
Affiliation(s)
- Xintao Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Affiliation(s)
- Tong Zhang
- ORSY Division Department of Chemistry University of Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Yu Zhang
- ORSY Division Department of Chemistry University of Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Shoubhik Das
- ORSY Division Department of Chemistry University of Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium
| |
Collapse
|
19
|
Yang L, Zhu J, Xie F, Peng X, Lin B, Liu Y, Cheng M. Solvent-Free FeCl3-Assisted Electrophilic Fluorine-Catalyzed Knoevenagel Condensation to Yield α,β-Unsaturated Dicarbonyl Compounds and Coumarins. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019070236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Fan X, Lei T, Chen B, Tung CH, Wu LZ. Photocatalytic C–C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. Org Lett 2019; 21:4153-4158. [DOI: 10.1021/acs.orglett.9b01338] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiuwei Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
21
|
Zhu M, Zheng C, Zhang X, You SL. Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives. J Am Chem Soc 2019; 141:2636-2644. [PMID: 30653315 DOI: 10.1021/jacs.8b12965] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An intramolecular dearomatization of indole derivatives based on visible-light-promoted [2+2] cycloaddition was achieved via energy transfer mechanism. The highly strained cyclobutane-fused angular tetracyclic spiroindolines, which were typically unattainable under thermal conditions, could be directly accessed in high yields (up to 99%) with excellent diastereoselectivity (>20:1 dr) under mild conditions. The method was also compatible with diverse functional groups and amenable to flexible transformations. In addition, DFT calculations provided guidance on the rational design of substrates and deep understanding of the reaction pathways. This process constituted a rare example of indole functionalization by exploiting visible-light-induced reactivity at the excited states.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,School of Physical Science and Technology , ShanghaiTech University , 100 Haike Road , Shanghai 201210 , China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,School of Physical Science and Technology , ShanghaiTech University , 100 Haike Road , Shanghai 201210 , China
| |
Collapse
|
22
|
Zhang K, Han H, Wang L, Zhang Z, Wang Q, Zhang W, Bu Z. An unexpected cascade reaction of 3-hydroxyoxindoles with coumarin-3-carboxylates to construct 2,3-dihydrobenzofuran spirooxindoles. Chem Commun (Camb) 2019; 55:13681-13684. [DOI: 10.1039/c9cc07114h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An unexpected Michael addition-inspired ring-opening/closure cascade reaction of 3-hydroxyoxindoles with coumarin-3-carboxylates was developed.
Collapse
Affiliation(s)
- Kuan Zhang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Huabin Han
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Lele Wang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Ziying Zhang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Qilin Wang
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| |
Collapse
|
23
|
Zhou Q, Zou Y, Lu L, Xiao W. Mit sichtbarem Licht induzierte, organische photochemische Reaktionen über Energietransferrouten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803102] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Quan‐Quan Zhou
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - You‐Quan Zou
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| |
Collapse
|
24
|
Zhou QQ, Zou YQ, Lu LQ, Xiao WJ. Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways. Angew Chem Int Ed Engl 2018; 58:1586-1604. [PMID: 29774651 DOI: 10.1002/anie.201803102] [Citation(s) in RCA: 592] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Indexed: 12/25/2022]
Abstract
Visible-light photocatalysis is a rapidly developing and powerful strategy to initiate organic transformations, as it closely adheres to the tenants of green and sustainable chemistry. Generally, most visible-light-induced photochemical reactions occur through single-electron transfer (SET) pathways. Recently, visible-light-induced energy-transfer (EnT) reactions have received considerable attentions from the synthetic community as this strategy provides a distinct reaction pathway, and remarkable achievements have been made in this field. In this Review, we highlight the most recent advances in visible-light-induced EnT reactions.
Collapse
Affiliation(s)
- Quan-Quan Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - You-Quan Zou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| |
Collapse
|
25
|
Nagahara S, Wakamatsu H, Okada Y, Chiba K. Photocatalytic Cycloadditions Enabled by a Lithium Perchlorate/Nitromethane Electrolyte Solution. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shingo Nagahara
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu 183-8509 Tokyo Japan
| | - Hiroki Wakamatsu
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu 183-8509 Tokyo Japan
| | - Yohei Okada
- Department of Chemical Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Naka-cho, Koganei 184-8588 Tokyo Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science; Tokyo University of Agriculture and Technology; 3-5-8 Saiwai-cho, Fuchu 183-8509 Tokyo Japan
| |
Collapse
|
26
|
Zhou C, Lei T, Wei XZ, Liu Z, Chen B, Ramamurthy V, Tung CH, Wu LZ. Chemo- and Regioselective Synthesis of Alkynyl Cyclobutanes by Visible Light Photocatalysis. Org Lett 2018; 20:6808-6811. [PMID: 30339405 DOI: 10.1021/acs.orglett.8b02934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here is the first visible light catalytic intermolecular cross [2 + 2] cycloaddition of enynes with alkenes to alkynyl cyclobutanes established with good functional group tolerance and high reaction efficiency and selectivity. Detailed studies reveal that enynes, including nonaromatic ones, can be sensitized by fac-Ir(ppy)3 via an energy transfer pathway. Addition of the Lewis acid PPh3AuNTf2 enables the cross photo[2 + 2] cycloaddition reaction to take place under both direct visible light irradiation or sensitization by Ru(bpy)3(PF6)2.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiang-Zhu Wei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zan Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , The Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
27
|
Stegbauer S, Jandl C, Bach T. Enantioselective Lewis Acid Catalyzed ortho Photocycloaddition of Olefins to Phenanthrene-9-carboxaldehydes. Angew Chem Int Ed Engl 2018; 57:14593-14596. [PMID: 30225921 PMCID: PMC6220838 DOI: 10.1002/anie.201808919] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Indexed: 11/21/2022]
Abstract
Visible-light irradiation (λ=457 nm) enabled the enantioselective ortho photocycloaddition of olefins to phenanthrene-9-carboxaldehydes (15 examples, 46-93 % yield, 82-98 % ee). A chiral oxazaborolidine Lewis acid (20 mol %) was employed as the catalyst. It operates by coordination to the aldehyde inducing a bathochromic absorption shift beyond the nπ* absorption of the uncomplexed aldehyde. At long wavelengths the Lewis acid complex is exclusively excited; within the complex, one enantiotopic face of the aromatic aldehyde is efficiently shielded. Lewis acid coordination also alters the type selectivity and the simple diastereoselectivity of the photocycloaddition.
Collapse
Affiliation(s)
- Simone Stegbauer
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstr. 485747GarchingGermany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstr. 485747GarchingGermany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstr. 485747GarchingGermany
| |
Collapse
|
28
|
Stegbauer S, Jandl C, Bach T. Enantioselektive Lewis-Säure-katalysierte ortho
-Photocycloaddition von Phenanthren-9-carbaldehyden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simone Stegbauer
- Department Chemie und Catalysis Research Center (CRC); Technische Universität München; Lichtenbergstr. 4 85747 Garching Deutschland
| | - Christian Jandl
- Department Chemie und Catalysis Research Center (CRC); Technische Universität München; Lichtenbergstr. 4 85747 Garching Deutschland
| | - Thorsten Bach
- Department Chemie und Catalysis Research Center (CRC); Technische Universität München; Lichtenbergstr. 4 85747 Garching Deutschland
| |
Collapse
|
29
|
Jiao M, Ju YW, Chen BZ. Energy transfer or electron transfer?—DFT study on the mechanism of [2+2] cycloadditions induced by visible light photocatalysts. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Corrigan N, Shanmugam S, Xu J, Boyer C. Photocatalysis in organic and polymer synthesis. Chem Soc Rev 2018; 45:6165-6212. [PMID: 27819094 DOI: 10.1039/c6cs00185h] [Citation(s) in RCA: 466] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review, with over 600 references, summarizes the recent applications of photoredox catalysis for organic transformation and polymer synthesis. Photoredox catalysts are metallo- or organo-compounds capable of absorbing visible light, resulting in an excited state species. This excited state species can donate or accept an electron from other substrates to mediate redox reactions at ambient temperature with high atom efficiency. These catalysts have been successfully implemented for the discovery of novel organic reactions and synthesis of added-value chemicals with an excellent control of selectivity and stereo-regularity. More recently, such catalysts have been implemented by polymer chemists to post-modify polymers in high yields, as well as to effectively catalyze reversible deactivation radical polymerizations and living polymerizations. These catalysts create new approaches for advanced organic transformation and polymer synthesis. The objective of this review is to give an overview of this emerging field to organic and polymer chemists as well as materials scientists.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia. and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
31
|
Hörmann FM, Chung TS, Rodriguez E, Jakob M, Bach T. Evidence for Triplet Sensitization in the Visible-Light-Induced [2+2] Photocycloaddition of Eniminium Ions. Angew Chem Int Ed Engl 2017; 57:827-831. [PMID: 29178574 PMCID: PMC5768022 DOI: 10.1002/anie.201710441] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/08/2022]
Abstract
Εniminium ions were prepared from the corresponding α,β-unsaturated carbonyl compounds (enones and enals), and were found to be promoted to their respective triplet states by energy transfer. The photoexcited intermediates underwent intra- or intermolecular [2+2] photocycloaddition in good yields (50-78 %) upon irradiation at λ=433 nm or λ=457 nm. Iridium or ruthenium complexes with a sufficiently high triplet energy were identified as efficient catalysts (2.5 mol % catalyst loading) for the reaction. The intermolecular [2+2] photocycloaddition of an eniminium ion derived from a chiral secondary amine proceeded with high enantioselectivity (88 % ee).
Collapse
Affiliation(s)
- Fabian M Hörmann
- Department Chemie und Catalysis Research Center, CRC, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Tim S Chung
- Department Chemie und Catalysis Research Center, CRC, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Elsa Rodriguez
- Department Chemie und Catalysis Research Center, CRC, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Matthias Jakob
- Department Chemie und Catalysis Research Center, CRC, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Thorsten Bach
- Department Chemie und Catalysis Research Center, CRC, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
32
|
Hörmann FM, Chung TS, Rodriguez E, Jakob M, Bach T. Hinweise auf eine Triplett‐Sensibilisierung in der [2+2]‐Photocycloaddition von Eniminiumionen mit sichtbarem Licht. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710441] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabian M. Hörmann
- Department Chemie und Catalysis Research Center, CRCTechnische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Tim S. Chung
- Department Chemie und Catalysis Research Center, CRCTechnische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Elsa Rodriguez
- Department Chemie und Catalysis Research Center, CRCTechnische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Matthias Jakob
- Department Chemie und Catalysis Research Center, CRCTechnische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Thorsten Bach
- Department Chemie und Catalysis Research Center, CRCTechnische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
33
|
Lei T, Zhou C, Huang MY, Zhao LM, Yang B, Ye C, Xiao H, Meng QY, Ramamurthy V, Tung CH, Wu LZ. General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible-Light Catalysis. Angew Chem Int Ed Engl 2017; 56:15407-15410. [PMID: 28994229 DOI: 10.1002/anie.201708559] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Indexed: 01/26/2023]
Abstract
[2+2] Photocycloaddition, for example, the dimerization of chalcones and cinnamic acid derivatives, is a unique strategy to construct cyclobutanes, which are building blocks for a variety of biologically active molecules and natural products. However, most attempts at the above [2+2] addition have focused on solid-state, molten-state, or host-guest systems under ultraviolet-light irradiation in order to overcome the competition of facile geometric isomerization of nonrigid olefins. We report a general and simple method to realize the intermolecular [2+2] dimerization reaction of these acyclic olefins to construct cyclobutanes in a highly regio- and diastereoselective manner in solution under visible light, which provides an efficient solution to a long-standing problem.
Collapse
Affiliation(s)
- Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mao-Yong Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei-Min Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qing-Yuan Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | | | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
34
|
Lei T, Zhou C, Huang M, Zhao L, Yang B, Ye C, Xiao H, Meng Q, Ramamurthy V, Tung C, Wu L. General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible‐Light Catalysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708559] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Mao‐Yong Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei‐Min Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qing‐Yuan Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| | | | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences The Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
35
|
Jiao M, Han D, Zhang B, Chen BZ, Ju YW. A theoretical study on [2+2] cycloaddition reactions under visible light irradiation induced by energy transfer. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Zhao J, Brosmer JL, Tang Q, Yang Z, Houk KN, Diaconescu PL, Kwon O. Intramolecular Crossed [2+2] Photocycloaddition through Visible Light-Induced Energy Transfer. J Am Chem Soc 2017; 139:9807-9810. [PMID: 28683547 DOI: 10.1021/jacs.7b05277] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, we present the intramolecular [2+2] cycloadditions of dienones promoted through sensitization, using a polypyridyl iridium(III) catalyst, to form bridged cyclobutanes. In contrast to previous examples of straight [2+2] cycloadditions, these efficient crossed additions were achieved under irradiation with visible light. The reactions delivered desired bridged benzobicycloheptanone products with excellent regioselectivity in high yields (up to 96%). This process is superior to previous syntheses of benzobicyclo[3.1.1]heptanones, which are readily converted to B-norbenzomorphan analogues of biological significance. Electrochemical, computational, and spectroscopic studies substantiated the mechanism of triplet energy transfer and explained the unusual regiocontrol.
Collapse
Affiliation(s)
- Jiannan Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | - Jonathan L Brosmer
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | - Qingxuan Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | - Zhongyue Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles , Los Angeles, California 90095-1569, United States
| |
Collapse
|
37
|
Abstract
Abstract
In recent years, visible-light-driven organic reactions have been experiencing a significant renaissance in response to topical interest in environmentally friendly green chemical synthesis. The transformations using inexpensive, readily available visible-light sources have come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In this review, we focus on recent advances in the development of visible-light-driven organic reactions, including aerobic oxidation, hydrogen-evolution reactions, energy-transfer reactions and asymmetric reactions. These key research topics represent a promising strategy towards the development of practical, scalable industrial processes with great environmental benefits.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
38
|
Srikanth PS, Nayak VL, Suresh Babu K, Kumar GB, Ravikumar A, Kamal A. 2-Anilino-3-Aroylquinolines as Potent Tubulin Polymerization Inhibitors. ChemMedChem 2016; 11:2050-62. [PMID: 27465681 DOI: 10.1002/cmdc.201600259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Indexed: 01/11/2023]
Abstract
Several 2-anilino-3-aroylquinolines were designed, synthesized, and screened for their cytotoxic activity against five human cancer cell lines: HeLa, DU-145, A549, MDA-MB-231, and MCF-7. Their IC50 values ranged from 0.77 to 23.6 μm. Among the series, compounds 7 f [(4-fluorophenyl)(2-((4-fluorophenyl)amino)quinolin-3-yl)methanone] and 7 g [(4-chlorophenyl)(2-((4-fluorophenyl)amino)quinolin-3-yl)methanone] showed remarkable antiproliferative activity against human lung cancer and prostate cancer cell lines. The IC50 values for inhibiting tubulin polymerization were 2.24 and 2.10 μm for compounds 7 f and 7 g, respectively, and were much lower than that of the reference compound E7010 [N-(2-(4-hydroxyphenylamino)pyridin-3-yl)-4-methoxybenzenesulfonamide]. Furthermore, flow cytometric analysis revealed that these compounds arrest the cell cycle at the G2 /M phase, leading to apoptosis. Apoptosis was also confirmed by mitochondrial membrane potential, Annexin V-FITC assay, and intracellular ROS generation. Immunohistochemistry, western blot, and tubulin polymerization assays showed that these compounds disrupt tubulin polymerization. Molecular docking studies revealed that these compounds bind efficiently to β-tubulin at the colchicine binding site.
Collapse
Affiliation(s)
- P S Srikanth
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - V Lakshma Nayak
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Korrapati Suresh Babu
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - G Bharath Kumar
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - A Ravikumar
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. .,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India. .,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| |
Collapse
|
39
|
Gromov SP, Vedernikov AI, Sazonov SK, Kuz’mina LG, Lobova NA, Strelenko YA, Howard JAK. Synthesis, structure, and stereospecific cross-[2+2] photocycloaddition of pseudodimeric complexes based on ammonioalkyl derivatives of styryl dyes. NEW J CHEM 2016. [DOI: 10.1039/c5nj03500g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two different styryl dyes form pseudodimeric complexes via hydrogen bonding and stacking interactions; irradiation of these complexes gives rctt-cyclobutane derivatives.
Collapse
Affiliation(s)
- Sergey P. Gromov
- Photochemistry Center
- Russian Academy of Sciences
- Moscow 119421
- Russian Federation
- Department of Chemistry
| | - Artem I. Vedernikov
- Photochemistry Center
- Russian Academy of Sciences
- Moscow 119421
- Russian Federation
| | - Sergey K. Sazonov
- Photochemistry Center
- Russian Academy of Sciences
- Moscow 119421
- Russian Federation
| | - Lyudmila G. Kuz’mina
- N. S. Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | - Natalia A. Lobova
- Photochemistry Center
- Russian Academy of Sciences
- Moscow 119421
- Russian Federation
| | - Yuri A. Strelenko
- N. D. Zelinskiy Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russian Federation
| | | |
Collapse
|
40
|
Kuz'mina LG, Vedernikov AI, Howard JAK, Bezzubov SI, Alfimov MV, Gromov SP. Peculiarities of styryl dyes of the benzoselenazole series crystal packings and their influence on solid phase [2 + 2] photocycloaddition reaction with single crystal retention. CrystEngComm 2016. [DOI: 10.1039/c6ce01426g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
|