1
|
Zhang W, Lucier BEG, Terskikh VV, Chen S, Huang Y. Understanding Cu(i) local environments in MOFs via63/65Cu NMR spectroscopy. Chem Sci 2024; 15:6690-6706. [PMID: 38725502 PMCID: PMC11077522 DOI: 10.1039/d4sc00782d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 05/12/2024] Open
Abstract
The field of metal-organic frameworks (MOFs) includes a vast number of hybrid organic and inorganic porous materials with wide-ranging applications. In particular, the Cu(i) ion exhibits rich coordination chemistry in MOFs and can exist in two-, three-, and four-coordinate environments, which gives rise to many structural motifs and potential applications. Direct characterization of the structurally and chemically important Cu(i) local environments is essential for understanding the sources of specific MOF properties. For the first time, 63/65Cu solid-state NMR has been used to investigate a variety of Cu(i) sites and local coordination geometries in Cu MOFs. This approach is a sensitive probe of the local Cu environment, particularly when combined with density functional theory calculations. A wide range of structurally-dependent 63/65Cu NMR parameters have been observed, including 65Cu quadrupolar coupling constants ranging from 18.8 to 74.8 MHz. Using the data from this and prior studies, a correlation between Cu quadrupolar coupling constants, Cu coordination number, and local Cu coordination geometry has been established. Links between DFT-calculated and experimental Cu NMR parameters are also presented. Several case studies illustrate the feasibility of 63/65Cu NMR for investigating and resolving inequivalent Cu sites, monitoring MOF phase changes, interrogating the Cu oxidation number, and characterizing the product of a MOF chemical reaction involving Cu(ii) reduction to Cu(i). A convenient avenue to acquire accurate 65Cu NMR spectra and NMR parameters from Cu(i) MOFs at a widely accessible magnetic field of 9.4 T is described, with a demonstrated practical application for tracking Cu(i) coordination evolution during MOF anion exchange. This work showcases the power of 63/65Cu solid-state NMR spectroscopy and DFT calculations for molecular-level characterization of Cu(i) centers in MOFs, along with the potential of this protocol for investigating a wide variety of MOF structural changes and processes important for practical applications. This approach has broad applications for examining Cu(i) centers in other weight-dilute systems.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Victor V Terskikh
- Metrology, National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Shoushun Chen
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| |
Collapse
|
2
|
He C, Li S, Xiao Y, Xu J, Deng F. Application of solid-state NMR techniques for structural characterization of metal-organic frameworks. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 117:101772. [PMID: 35016011 DOI: 10.1016/j.ssnmr.2022.101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Solid-state NMR can afford the structural information about the chemical composition, local environment, and spatial coordination at the atomic level, which has been extensively applied to characterize the detailed structure and host-guest interactions in metal-organic frameworks (MOFs). In this review, recent advances for the structural characterizations of MOFs using versatile solid-state NMR techniques were briefly introduced. High-field sensitivity-enhanced solid-state NMR method enabled the direct observation of metal centers in MOFs containing low-γ nuclei. Two-dimensional (2D) homo- and hetero-nuclear correlation MAS NMR experiments provided the spatial proximity among linkers, metal clusters and the introduced guest molecules. Moreover, quantitative measurement of inter-nuclear distances using solid-state NMR provided valuable structural information about the connectivity geometry as well as the host-guest interactions within MOFs. Furthermore, solid-state NMR has exhibited great potential for unraveling the structure property of MOFs containing paramagnetic metal centers.
Collapse
Affiliation(s)
- Caiyan He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Li K, Li ZG, Xu J, Qin Y, Li W, Stroppa A, Butler KT, Howard CJ, Dove MT, Cheetham AK, Bu XH. Origin of Ferroelectricity in Two Prototypical Hybrid Organic-Inorganic Perovskites. J Am Chem Soc 2022; 144:816-823. [PMID: 35005965 DOI: 10.1021/jacs.1c10188] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hybrid organic-inorganic perovskite (HOIP) ferroelectrics are attracting considerable interest because of their high performance, ease of synthesis, and lightweight. However, the intrinsic thermodynamic origins of their ferroelectric transitions remain insufficiently understood. Here, we identify the nature of the ferroelectric phase transitions in displacive [(CH3)2NH2][Mn(N3)3] and order-disorder type [(CH3)2NH2][Mn(HCOO)3] via spatially resolved structural analysis and ab initio lattice dynamics calculations. Our results demonstrate that the vibrational entropy change of the extended perovskite lattice drives the ferroelectric transition in the former and also contributes importantly to that of the latter along with the rotational entropy change of the A-site. This finding not only reveals the delicate atomic dynamics in ferroelectric HOIPs but also highlights that both the local and extended fluctuation of the hybrid perovskite lattice can be manipulated for creating ferroelectricity by taking advantages of their abundant atomic, electronic, and phononic degrees of freedom.
Collapse
Affiliation(s)
- Kai Li
- School of Materials Science and Engineering & Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Zhi-Gang Li
- School of Materials Science and Engineering & Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Jun Xu
- School of Materials Science and Engineering & Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Yan Qin
- School of Materials Science and Engineering & Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Wei Li
- School of Materials Science and Engineering & Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Alessandro Stroppa
- CNR-SPIN, c/o Dip. to di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito (AQ), Italy
| | - Keith T Butler
- Department of Chemistry, University of Reading, Reading RG6 6AD, U.K
| | - Christopher J Howard
- School of Engineering, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Martin T Dove
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Anthony K Cheetham
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Xian-He Bu
- School of Materials Science and Engineering & Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Zou K, Zhang T, Ding K, Cheng SN, Zhang Y, Ge JZ, Fu DW. Solvent-induced reversible high-temperature phase transition in crown ether clathrates. NEW J CHEM 2022. [DOI: 10.1039/d2nj00642a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phase transitions of crown ether complexes with molecular motor motion triggered by the solvent-induced effect are reported.
Collapse
Affiliation(s)
- Ke Zou
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Kun Ding
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Sai-Nan Cheng
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jia-Zhen Ge
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
5
|
Ptak M, Sieradzki A, Šimėnas M, Maczka M. Molecular spectroscopy of hybrid organic–inorganic perovskites and related compounds. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Xu J, Terskikh VV, Chu Y, Zheng A, Huang Y. 13 C chemical shift tensors in MOF α-Mg 3 (HCOO) 6 : Which component is more sensitive to host-guest interaction? MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1082-1090. [PMID: 31659777 DOI: 10.1002/mrc.4944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/23/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of important porous materials with many current and potential applications. Their applications almost always involve the interaction between host framework and guest species. Therefore, understanding of host-guest interaction in MOF systems is fundamentally important. Solid-state NMR spectroscopy is an excellent technique for investigating host-guest interaction as it provides information complementary to that obtained from X-ray diffraction. In this work, using MOF α-Mg3 (HCOO)6 as an example, we demonstrated that 13 C chemical shift tensor of organic linker can be utilized to probe the host-guest interaction in MOFs. Obtaining 13 C chemical shift tensor components (δ11 , δ22 , and δ33 , where δ11 ≥ δ22 ≥ δ33 ) in this MOF is particularly challenging as there are six coordinatively equivalent but crystallographically non-equivalent carbons in the unit cell with very similar local coordination environment. Two-dimensional magic-angle-turning experiments were employed to measure the 13 C chemical shift tensors of each individual crystallographically non-equivalent carbon in three microporous α-Mg3 (HCOO)6 samples with different guest species. The results indicate that the δ22 component (with its direction approximately being co-planar with the formate anion and perpendicular to the C-H bond) is more sensitive to the adsorbate molecules inside the MOF channel due to the weak C-H···O hydrogen bonding or the ring current effect of benzene. The 13 C isotropic chemical shift, on the other hand, seems much less sensitive to the subtle changes in the local environment around formate linker induced by adsorption. The approach described in this study may be used in future studies on host-guest interaction within MOFs.
Collapse
Affiliation(s)
- Jun Xu
- Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P.R. China
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Victor V Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Yueying Chu
- Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Wuhan, 430071, P.R. China
| | - Anmin Zheng
- Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Wuhan, 430071, P.R. China
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
7
|
Navickas M, Giriūnas L, Kalendra V, Biktagirov T, Gerstmann U, Schmidt WG, Mączka M, Pöppl A, Banys J, Šimėnas M. Electron paramagnetic resonance study of ferroelectric phase transition and dynamic effects in a Mn 2+ doped [NH 4][Zn(HCOO) 3] hybrid formate framework. Phys Chem Chem Phys 2020; 22:8513-8521. [PMID: 32301462 DOI: 10.1039/d0cp01612h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an X- and Q-band continuous wave (CW) and pulse electron paramagnetic resonance (EPR) study of a manganese doped [NH4][Zn(HCOO)3] hybrid framework, which exhibits a ferroelectric structural phase transition at 190 K. The CW EPR spectra obtained at different temperatures exhibit clear changes at the phase transition temperature. This suggests a successful substitution of the Zn2+ ions by the paramagnetic Mn2+ centers, which is further confirmed by the pulse EPR and 1H ENDOR experiments. Spectral simulations of the CW EPR spectra are used to obtain the temperature dependence of the Mn2+ zero-field splitting, which indicates a gradual deformation of the MnO6 octahedra indicating a continuous character of the transition. The determined data allow us to extract the critical exponent of the order parameter (β = 0.12), which suggests a quasi two-dimensional ordering in [NH4][Zn(HCOO)3]. The experimental EPR results are supported by the density functional theory calculations of the zero-field splitting parameters. Relaxation time measurements of the Mn2+ centers indicate that the longitudinal relaxation is mainly driven by the optical phonons, which correspond to the vibrations of the metal-oxygen octahedra. The temperature behavior of the transverse relaxation indicates a dynamic process in the ordered ferroelectric phase.
Collapse
Affiliation(s)
- Marius Navickas
- Faculty of Physics, Vilnius University, Sauletekio av. 9, LT-10222 Vilnius, Lithuania.
| | - Laisvydas Giriūnas
- Faculty of Physics, Vilnius University, Sauletekio av. 9, LT-10222 Vilnius, Lithuania.
| | - Vidmantas Kalendra
- Faculty of Physics, Vilnius University, Sauletekio av. 9, LT-10222 Vilnius, Lithuania.
| | - Timur Biktagirov
- Department of Physics, Paderborn University, Warburger 100, D-33098 Paderborn, Germany
| | - Uwe Gerstmann
- Department of Physics, Paderborn University, Warburger 100, D-33098 Paderborn, Germany
| | - Wolf Gero Schmidt
- Department of Physics, Paderborn University, Warburger 100, D-33098 Paderborn, Germany
| | - Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box-1410, PL-50-950 Wroclaw 2, Poland
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Leipzig University, Linnestrasse 5, D-04103 Leipzig, Germany
| | - Jūras Banys
- Faculty of Physics, Vilnius University, Sauletekio av. 9, LT-10222 Vilnius, Lithuania.
| | - Mantas Šimėnas
- Faculty of Physics, Vilnius University, Sauletekio av. 9, LT-10222 Vilnius, Lithuania.
| |
Collapse
|
8
|
Leroy C, Szell PMJ, Bryce DL. On the importance of accurate nuclear quadrupole moments in NMR crystallography. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:265-267. [PMID: 30114324 DOI: 10.1002/mrc.4787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Patrick M J Szell
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Avalos CE, Walder BJ, Viger-Gravel J, Magrez A, Emsley L. Chemical exchange at the ferroelectric phase transition of lead germanate revealed by solid state 207Pb nuclear magnetic resonance. Phys Chem Chem Phys 2019; 21:1100-1109. [DOI: 10.1039/c8cp06507a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-dimensional NMR is used to quantitatively identify a mixed order–disorder and displacive mechanism for the ferroelectric phase transition of lead germanate.
Collapse
Affiliation(s)
- Claudia E. Avalos
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Brennan J. Walder
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Jasmine Viger-Gravel
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Arnaud Magrez
- Institut de Physique
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
10
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
11
|
Seymour VR, Day SP, Scholz G, Scheurell K, Iuga D, Griffin JM, Kemnitz E, Hanna JV, Smith ME. A Combined 25 Mg Solid-State NMR and Ab Initio DFT Approach to Probe the Local Structural Differences in Magnesium Acetate Phases Mg(CH 3 COO) 2 ⋅ nH 2 O (n=0, 1, 4). Chemphyschem 2018; 19:1722-1732. [PMID: 29667743 DOI: 10.1002/cphc.201800317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 11/07/2022]
Abstract
Multinuclear (1 H, 13 C, 25 Mg) solid-state NMR data is reported for a series of magnesium acetate phases Mg(CH3 COO)2 ⋅ nH2 O (n=0 (two polymorphs), 1, 4). The central focus here is 25 Mg as this set of compounds provides an expanded range of local magnesium coordinations compared to what has previously been reported in the literature using NMR. These four compounds provide 10 distinct magnesium sites with varying NMR interaction parameters. One of the anhydrous crystal structures (α) has an MgO7 site which is reported, to the best of our knowledge, for the first time. For those phases with a single crystal structure, a combination of magic angle spinning (MAS) NMR at high magnetic field (20 T) and first principles density functional theory (DFT) calculations demonstrates the value of including 25 Mg in NMR crystallography approaches. For the second anhydrate phase (β), where no single crystal structure exists, the multinuclear NMR data clearly show the multiplicity of sites for the different elements, with 25 Mg satellite transition (ST) MAS NMR revealing four inequivalent magnesium environments, which is new information constraining future refinement of the structure. This study highlights the sensitivity of 25 Mg NMR to the local environment, an observation important for several sub-disciplines of chemistry where the structural chemistry of magnesium is likely to be crucial.
Collapse
Affiliation(s)
- Valerie R Seymour
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Stephen P Day
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Gudrun Scholz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, D-12489, Berlin, Germany
| | - Kerstin Scheurell
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, D-12489, Berlin, Germany
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - John M Griffin
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK.,Materials Science Institute, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - Erhard Kemnitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor Str. 2, D-12489, Berlin, Germany
| | - John V Hanna
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Mark E Smith
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK.,Vice-Chancellor's Office, University House, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK
| |
Collapse
|
12
|
Lucier BEG, Chen S, Huang Y. Characterization of Metal-Organic Frameworks: Unlocking the Potential of Solid-State NMR. Acc Chem Res 2018; 51:319-330. [PMID: 29251909 DOI: 10.1021/acs.accounts.7b00357] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An exciting advance in materials science is the discovery of hybrid organic-inorganic solids known as metal-organic frameworks (MOFs). Although they have numerous important applications, the local structures, specific molecular-level features, and guest behaviors underpinning desirable properties and applications are often unknown. Solid-state nuclear magnetic resonance (SSNMR) is a powerful tool for MOF characterization as it provides information complementary to that from X-ray diffraction (XRD). We describe our novel pursuits in the three primary applications of SSNMR for MOF characterization: interrogating the metal center, targeting linker molecules, and probing guests. MOFs have relatively low densities, and the incorporated metals are often quadrupolar nuclei, making SSNMR detection difficult. Recently, we examined the local structures of metal centers (i.e., 25Mg, 47/49Ti, 63/65Cu, 67Zn, 69/71Ga, 91Zr, 115In, 135/137Ba, 139La, 27Al) in representative MOFs by SSNMR at a high magnetic field of 21.1 T, addressing several important issues: (1) resolving chemically and crystallographically nonequivalent metal sites; (2) exploring the origin of disorder around metals; (3) refining local metal geometry; (4) probing the effects of activation and adsorption on the metal local environment; and (5) monitoring in situ phase changes in MOFs. Organic linkers can be characterized by 1H, 13C, and 17O SSNMR. Although the framework structure can be determined by X-ray diffraction, hydrogen atoms cannot be accurately located, and thus the local structure about hydrogen is poorly characterized. Our work demonstrates that magic-angle spinning (MAS) experiments at very high magnetic field along with ultrafast spinning rates and isotope dilution enables one to obtain ultrahigh resolution 1H MAS spectra of MOFs, yielding structural information truly complementary to that obtained from single-crystal XRD. Oxygen is a key constituent of many important MOFs but 17O SSNMR work on MOFs is scarce due to the low natural abundance of 17O. 17O enriched MOFs can now be prepared in an efficient and economically feasible manner using solvothermal approaches involving labeled H217O water; the resulting 17O SSNMR spectra provide distinct spectral signatures of various key oxygen species in representative MOFs. MOFs are suitable for the capture of the greenhouse gas CO2 and the storage of energy carrier gases such as H2 and CH4. A better understanding of gas adsorption obtained using 13C, 2H, and 17O SSNMR will enable researchers to improve performance and realize practical applications for MOFs as gas adsorbents and carriers. The combination of SSNMR with XRD allows us to determine the number of adsorption sites in the framework, identify the location of binding sites, gain physical insight into the nature and strength of host-guest interactions, and understand guest dynamics.
Collapse
Affiliation(s)
- Bryan E. G. Lucier
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Shoushun Chen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| |
Collapse
|
13
|
A 3D metal-organic framework with a pcu net constructed from lead(II) and thiophene-2, 5-dicarboxylic acid: Synthesis, structure and ferroelectric property. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Mączka M, Marinho Costa NL, Gągor A, Paraguassu W, Sieradzki A, Hanuza J. Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate. Phys Chem Chem Phys 2017; 18:13993-4000. [PMID: 27150209 DOI: 10.1039/c6cp01353h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and characterisation of a magnesium formate framework templated by protonated imidazole. Single-crystal X-ray diffraction data showed that this compound crystallizes in the monoclinic structure in the P21/n space group with lattice parameters a = 12.1246(4) Å, b = 12.2087(5) Å, c = 12.4991(4) Å and β = 91.39(1)°. The antiparallel arrangement of the dipole moments associated with imidazolium cations suggests the antiferroelectric character of the room-temperature phase. The studied compound undergoes a structural phase transition at 451 K associated with a halving of the c lattice parameter and the disappearance of the antiferroelectric order. The monoclinic symmetry is preserved and the new metrics are a = 12.261(7) Å, b = 12.290(4) Å, c = 6.280(4) Å, and β = 90.62(5)°. Raman and IR data are consistent with the X-ray diffraction data. They also indicate that the disorder of imidazolium cations plays a significant role in the mechanism of the phase transition. Dielectric data show that the phase transition is associated with a relaxor nature of electric ordering. We also report high-pressure Raman scattering studies of this compound that revealed the presence of two pressure-induced phase transitions near 3 and 7 GPa. The first transition is most likely associated with a rearrangement of the imidazolium cations without any significant distortion of these cations and the magnesium formate framework, whereas the second transition leads to strong distortion of both the framework and imidazolium cations. High-pressure data also show that imidazolium magnesium formate does not show any signs of amorphization up to 11.4 GPa.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wrocław 2, Poland.
| | | | - Anna Gągor
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wrocław 2, Poland.
| | - Waldeci Paraguassu
- Faculdade de Física, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil
| | - Adam Sieradzki
- Department of Experimental Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Jerzy Hanuza
- Department of Bioorganic Chemistry, Faculty of Industry and Economics, Wrocław University of Economics, 118/120 Komandorska Str., 53-345 Wrocław, Poland
| |
Collapse
|
15
|
Preise des Chemical Institute of Canada und der Canadian Society for Chemistry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Chemical Institute of Canada and Canadian Society for Chemistry Awards. Angew Chem Int Ed Engl 2017; 56:5975-5977. [DOI: 10.1002/anie.201703739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
|
18
|
Veinberg SL, Friedl ZW, Lindquist AW, Kispal B, Harris KJ, O'Dell LA, Schurko RW. 14N Solid-State NMR Spectroscopy of Amino Acids. Chemphyschem 2016; 17:4011-4027. [DOI: 10.1002/cphc.201600873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Stanislav L. Veinberg
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Zachary W. Friedl
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Austin W. Lindquist
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Brianna Kispal
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Kristopher J. Harris
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Luke A. O'Dell
- Institute for Frontier Materials; Deakin University; Waurn Ponds Campus Geelong Victoria 3220 Australia
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| |
Collapse
|
19
|
Zhang Y, Lucier BEG, Huang Y. Deducing CO2 motion, adsorption locations and binding strengths in a flexible metal-organic framework without open metal sites. Phys Chem Chem Phys 2016; 18:8327-41. [PMID: 26427010 DOI: 10.1039/c5cp04984a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microporous metal-organic frameworks (MOFs) have high surface areas and porosities, and are well-suited for CO2 capture. MIL-53 features corner-sharing MO4(OH)2 (M = Al, Ga, Cr, etc.) octahedra interconnected by benzenedicarboxylate linkers that form one-dimensional rhombic tunnels, and exhibits an excellent adsorption ability for guest molecules such as CO2. Studying the behavior of adsorbed CO2 in MIL-53 via solid-state NMR (SSNMR) provides rich information on the dynamic motion of guest molecules as well as their binding strengths to the MOF host, and sheds light on the specific guest adsorption mechanisms. Variable-temperature (13)C SSNMR spectra of (13)CO2 adsorbed within various forms of MIL-53 are acquired and analyzed. CO2 undergoes a combination of two motions within MIL-53; we report the types of motion present, their rates, and rotational angles. (1)H-(13)C CP SSNMR experiments are used to examine the proximity of (1)H atoms in the MOF to (13)C atoms in CO2 guests. By replacing (1)H with (2)H in MIL-53, the location of the CO2 adsorption site in MIL-53 is experimentally confirmed by (1)H-(13)C CP SSNMR. The binding strength of CO2 within these MIL-53 MOFs follows the order MIL-53-NH2 (Al) > MIL-53-NH2 (Ga) > MIL-53 (Al) > MIL-53 (Ga).
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
20
|
Collings IE, Bykov M, Bykova E, Tucker MG, Petitgirard S, Hanfland M, Glazyrin K, van Smaalen S, Goodwin AL, Dubrovinsky L, Dubrovinskaia N. Structural distortions in the high-pressure polar phases of ammonium metal formates. CrystEngComm 2016. [DOI: 10.1039/c6ce01891b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Wang X, Gou G, Wang D, Xiao H, Liu Y, Zhang M, Dkhil B, Ren X, Lou X. Structural, electronic and magnetic properties of metal–organic-framework perovskites [AmH][Mn(HCOO)3]: a first-principles study. RSC Adv 2016. [DOI: 10.1039/c6ra04916h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Novel multiferroic Metal–Organic-Frameworks (MOFs) [AmH][M(HCOO)3] are investigated in structural, electronic and magnetic properties using density functional theory.
Collapse
Affiliation(s)
- Xiangjian Wang
- Multi-disciplinary Materials Research Center
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Gaoyang Gou
- Multi-disciplinary Materials Research Center
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Dawei Wang
- Electronic Materials Research Laboratory
- Key Laboratory of the Ministry of Education and International Center for Dielectric Research
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Haiyan Xiao
- School of Physical Electronics
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yang Liu
- Laboratoire Structures
- Propriétés et Modélisation des Solides Université Paris-Saclay
- CentraleSupélec CNRS-UMR8580
- Cedex 92295
- France
| | - Ming Zhang
- Multi-disciplinary Materials Research Center
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Brahim Dkhil
- Laboratoire Structures
- Propriétés et Modélisation des Solides Université Paris-Saclay
- CentraleSupélec CNRS-UMR8580
- Cedex 92295
- France
| | - Xiaobing Ren
- Multi-disciplinary Materials Research Center
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Xiaojie Lou
- Multi-disciplinary Materials Research Center
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
22
|
Xu Y, Southern SA, Szell PMJ, Bryce DL. The role of solid-state nuclear magnetic resonance in crystal engineering. CrystEngComm 2016. [DOI: 10.1039/c6ce01206j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This Highlight article discusses the role of solid-state NMR spectroscopy in crystal engineering with the aid of several examples from the literature.
Collapse
Affiliation(s)
- Yijue Xu
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa, Ontario K1N6N5 Canada
| | - Scott A. Southern
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa, Ontario K1N6N5 Canada
| | - Patrick M. J. Szell
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa, Ontario K1N6N5 Canada
| | - David L. Bryce
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa, Ontario K1N6N5 Canada
| |
Collapse
|