1
|
Noreldeen HAA, Yang L, Guo XY, He SB, Peng HP, Deng HH, Chen W. A peroxidase-like activity-based colorimetric sensor array of noble metal nanozymes to discriminate heavy metal ions. Analyst 2021; 147:101-108. [PMID: 34846387 DOI: 10.1039/d1an01895g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heavy metal ions (HMIs), including Cu2+, Ag+, Cd2+, Hg2+, and Pb2+ from the environment pose a threat to human beings and can cause a series of life-threatening diseases. Therefore, colorimetric sensors with convenience and flexibility for HMI discrimination are still required. To provide a solution, a peroxidase-like activity-based colorimetric sensor array of citrate-capped noble metal nanozymes (osmium, platinum, and gold) has been fabricated. Some studies reported that some HMIs could interact with the noble metal nanozymes leading to a change in their peroxidase-like activity. This phenomenon was confirmed in our work. Based on this principle, different concentrations of HMIs (Cu2+, Ag+, Cd2+, Hg2+, and Pb2+) were discriminated. Moreover, their practical application has been tested by discriminating HMIs in tap water and SiYu lake water. What is more, as an example of the validity of our method to quantify HMIs at nanomolar concentrations, the LOD of Hg2+ was presented. To sum up, our study not only demonstrates the differentiation ability of this nanozyme sensor array but also gives hints for using nanozyme sensor arrays for further applications.
Collapse
Affiliation(s)
- Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China. .,Marine Chemistry Lab, Marine Environment Division, National Institute of Oceanography and Fisheries (NIOF), Egypt
| | - Liu Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Xiao-Yun Guo
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Shao-Bin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China. .,Department of Pharmacy, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
2
|
Bollella P, Kadambar VK, Melman A, Katz E. Reconfigurable Implication and Inhibition Boolean logic gates based on NAD
+
‐dependent enzymes: Application to signal‐controlled biofuel cells and molecule release. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” 70125 Bari Italy
| | | | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| |
Collapse
|
3
|
Bollella P, Guo Z, Edwardraja S, Krishna Kadambar V, Alexandrov K, Melman A, Katz E. Self-powered molecule release systems activated with chemical signals processed through reconfigurable Implication or Inhibition Boolean logic gates. Bioelectrochemistry 2020; 138:107735. [PMID: 33482577 DOI: 10.1016/j.bioelechem.2020.107735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
The Implication (IMPLY) and Inhibition (INHIB) Boolean logic gates were realized using switchable chimeric pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH-Clamp) containing a fused affinity clamp unit recognizing a signal-peptide. The second component of the logic gate was the wild-type PQQ-glucose dehydrogenase working cooperatively with the PQQ-GDH-Clamp enzyme. The IMPLY and INHIB gates were realized using the same enzyme composition activated with differently defined input signals, thus representing reconfigurable logic systems. The logic gates were first tested while operating in a solution with optical analysis of the output signals. Then, the enzymes were immobilized on a buckypaper electrode for electrochemical transduction of the output signals. The switchable modified electrodes mimicking the IMPLY or INHIB logic gates were integrated with an oxygen-reducing electrode modified with bilirubin oxidase to operate as a biofuel cell activated/inhibited by various input signal combinations processed either by IMPLY or INHIB logic gates. The switchable biofuel cell was used as a self-powered device triggering molecule release function controlled by the logically processed molecule signals.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4001, QLD, Australia
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Vasantha Krishna Kadambar
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4001, QLD, Australia.
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.
| |
Collapse
|
4
|
Kaniewska K, Bollella P, Katz E. Implication and Inhibition Boolean Logic Gates Mimicked with Enzyme Reactions. Chemphyschem 2020; 21:2150-2154. [DOI: 10.1002/cphc.202000653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Klaudia Kaniewska
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
- Faculty of Chemistry Biological and Chemical Research Center University of Warsaw 101 Żwirki i Wigury Av. 02-089 Warsaw Poland
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| |
Collapse
|
5
|
Funai T, Tagawa C, Nakagawa O, Wada SI, Ono A, Urata H. Enzymatic formation of consecutive thymine–HgII–thymine base pairs by DNA polymerases. Chem Commun (Camb) 2020; 56:12025-12028. [DOI: 10.1039/d0cc04423g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ten consecutive T–HgII–T base pairs were successfully formed by DNA polymerase-catalyzed primer extension reactions.
Collapse
Affiliation(s)
- Tatsuya Funai
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| | - Chizuko Tagawa
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| | - Osamu Nakagawa
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| | - Shun-ichi Wada
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| | - Akira Ono
- Department of Material & Life Chemistry
- Faculty of Engineering, Kanagawa University
- 3-27-1 Rokkakubashi
- Kanagawa-ku
- Japan
| | - Hidehito Urata
- Department of Bioorganic Chemistry
- Osaka University of Pharmaceutical Sciences
- 4-20-1 Nasahara
- Takatsuki
- Japan
| |
Collapse
|
6
|
Funai T, Aotani M, Kiriu R, Nakamura J, Miyazaki Y, Nakagawa O, Wada S, Torigoe H, Ono A, Urata H. Silver(I)‐Ion‐Mediated Cytosine‐Containing Base Pairs: Metal Ion Specificity for Duplex Stabilization and Susceptibility toward DNA Polymerases. Chembiochem 2019; 21:517-522. [DOI: 10.1002/cbic.201900450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Tatsuya Funai
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Megumi Aotani
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Risa Kiriu
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Junko Nakamura
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Yuki Miyazaki
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Osamu Nakagawa
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
- Present address: Graduate School of Pharmaceutical SciencesOsaka University 1–6 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shun‐ichi Wada
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| | - Hidetaka Torigoe
- Department of Applied ChemistryFaculty of ScienceTokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Akira Ono
- Department of Material and Life ChemistryFaculty of EngineeringKanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Japan
| | - Hidehito Urata
- Department of Bioorganic ChemistryOsaka University of Pharmaceutical Sciences 4-20-1 Nasahara, Takatsuki Osaka 569-1094 Japan
| |
Collapse
|
7
|
Leng X, Li R, Wang Y, Wu Y, Tu Y, Pei Q, Cui X, Huang J, Liu S. Target-activated cascaded digestion amplification of exonuclease III aided signal-on and ultrasensitive fluorescence detection of ATP. NEW J CHEM 2018. [DOI: 10.1039/c7nj04657j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a rapid, one-step and ultrasensitive signal-on fluorescence sensing for the detection of adenosine triphosphate (ATP) based on target-activated cascaded digestion amplification with Exo III aid was developed.
Collapse
Affiliation(s)
- Xueqi Leng
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Rongguo Li
- Jinan Maternity and Child Care Hospital
- Jinan 250022
- P. R. China
| | - Yu Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yunping Wu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yuqin Tu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Xuejun Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
- Jinan
- P. R. China
| | - Jiadong Huang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan
| | - Su Liu
- College of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
8
|
Zhang L, Cheng XZ, Kuang L, Xu AZ, Liang RP, Qiu JD. Simple and highly selective detection of arsenite based on the assembly-induced fluorescence enhancement of DNA quantum dots. Biosens Bioelectron 2017; 94:701-706. [DOI: 10.1016/j.bios.2017.03.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022]
|
9
|
Gamella M, Zakharchenko A, Guz N, Masi M, Minko S, Kolpashchikov DM, Iken H, Poghossian A, Schöning MJ, Katz E. DNA Computing Systems Activated by Electrochemically-triggered DNA Release from a Polymer-brush-modified Electrode Array. ELECTROANAL 2017; 29:398-408. [PMID: 29379265 PMCID: PMC5786385 DOI: 10.1002/elan.201600389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
Abstract
An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA-based Identity, AND and XOR logic gates. Single-stranded DNA molecules were loaded on the mixed poly(N,N-di-methylaminoethyl methacrylate) (PDMAEMA)/poly-(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAE-MA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at -1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals.
Collapse
Affiliation(s)
- Maria Gamella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA, http://people.clarkson.edu/~ekatz/
| | - Andrey Zakharchenko
- Nanostructured Materials Lab, The University of Georgia, Athens, GA 30602, USA
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA, http://people.clarkson.edu/~ekatz/
| | - Madeline Masi
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA, http://people.clarkson.edu/~ekatz/
| | - Sergiy Minko
- Nanostructured Materials Lab, The University of Georgia, Athens, GA 30602, USA
| | - Dmitry M. Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
| | - Heiko Iken
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Muβmann-Str. 1, D-52428 Jülich, Germany
| | - Arshak Poghossian
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Muβmann-Str. 1, D-52428 Jülich, Germany
- Institute of Bio- and Nanosystems, Research Centre Jülich, GmbH, D-52425 Jülich Germany
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Muβmann-Str. 1, D-52428 Jülich, Germany
- Institute of Bio- and Nanosystems, Research Centre Jülich, GmbH, D-52425 Jülich Germany
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA, http://people.clarkson.edu/~ekatz/
| |
Collapse
|
10
|
Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A. DNA Generated Electric Current Biosensor. Anal Chem 2017; 89:2547-2552. [PMID: 28219246 DOI: 10.1021/acs.analchem.6b04756] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In addition to its primary function as a genetic material, deoxyribonucleic acid (DNA) is also a potential biologic energy source for molecular electronics. For the first time, we demonstrate that DNA can generate a redox electric current. As an example of this new functionality, DNA generated redox current was used for electrochemical detection of human epidermal growth factor receptor 2 (HER2), a clinically important breast cancer biomarker. To induce redox current, the phosphate of the single stranded DNA aptamer backbone was reacted with molybdate to form redox molybdophosphate precipitate and generate an electrochemical current of ∼16.8 μA/μM cm2. This detection of HER2 was performed using a sandwich detection assay. A HER2 specific peptide was immobilized onto a gold electrode surface for capturing HER2 in buffer and serum. The HER2 specific aptamer was used as both ligand to bind the captured HER2 and to generate a redox current signal. When tested for HER2 detection, the electrochemical current generated by the aptasensor was proportional to HER2 concentration in the range of 0.01 to 5 ng/mL, with a current generated in the range of ∼6.37 to 31.8 μA/cm2 in both buffer and serum. This detection level is within the clinically relevant range of HER2 concentrations. This method of electrochemical signal amplification greatly simplifies the signal transduction of aptasensors, broadening their use for HER2 analysis. This novel approach of using the same aptamer as biosensor ligand and as transducer can be universally extended to other aptasensors for a wide array of biodetection applications. Moreover, electric currents generated by DNA or other nucleic acids can be used in molecular electronics or implanted devices for both power generation and measurement of output.
Collapse
Affiliation(s)
- Lanshuang Hu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Shengqiang Hu
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Linyan Guo
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Congcong Shen
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University , Changsha, China , 410083
| | - Avraham Rasooly
- National Cancer Institute, National Institutes of Health , Rockville, Maryland 20850, United States
| |
Collapse
|
11
|
Li M, Yu X, Liu H. A New Biocomputing Platform Based on Potential- and pH-Sensitive Bioelectrocatalysis and Layer-by-Layer Films Assembled with Graphene Derivatives and Weak Polyelectrolyte. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Guz N, Fedotova TA, Fratto BE, Schlesinger O, Alfonta L, Kolpashchikov DM, Katz E. Bioelectronic Interface Connecting Reversible Logic Gates Based on Enzyme and DNA Reactions. Chemphyschem 2016; 17:2247-55. [PMID: 27145731 DOI: 10.1002/cphc.201600129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 12/17/2022]
Abstract
It is believed that connecting biomolecular computation elements in complex networks of communicating molecules may eventually lead to a biocomputer that can be used for diagnostics and/or the cure of physiological and genetic disorders. Here, a bioelectronic interface based on biomolecule-modified electrodes has been designed to bridge reversible enzymatic logic gates with reversible DNA-based logic gates. The enzyme-based Fredkin gate with three input and three output signals was connected to the DNA-based Feynman gate with two input and two output signals-both representing logically reversible computing elements. In the reversible Fredkin gate, the routing of two data signals between two output channels was controlled by the control signal (third channel). The two data output signals generated by the Fredkin gate were directed toward two electrochemical flow cells, responding to the output signals by releasing DNA molecules that serve as the input signals for the next Feynman logic gate based on the DNA reacting cascade, producing, in turn, two final output signals. The Feynman gate operated as the controlled NOT gate (CNOT), where one of the input channels controlled a NOT operation on another channel. Both logic gates represented a highly sophisticated combination of input-controlled signal-routing logic operations, resulting in redirecting chemical signals in different channels and performing orchestrated computing processes. The biomolecular reaction cascade responsible for the signal processing was realized by moving the solution from one reacting cell to another, including the reacting flow cells and electrochemical flow cells, which were organized in a specific network mimicking electronic computing circuitries. The designed system represents the first example of high complexity biocomputing processes integrating enzyme and DNA reactions and performing logically reversible signal processing.
Collapse
Affiliation(s)
- Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Tatiana A Fedotova
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Brian E Fratto
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Orr Schlesinger
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA.
| |
Collapse
|
13
|
Li Y, Li W, He KY, Li P, Huang Y, Nie Z, Yao SZ. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly. NANOSCALE 2016; 8:8591-8599. [PMID: 27049641 DOI: 10.1039/c6nr01072e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ma DL, Wang W, Mao Z, Yang C, Chen XP, Lu JJ, Han QB, Leung CH. A tutorial review for employing enzymes for the construction of G-quadruplex-based sensing platforms. Anal Chim Acta 2016; 913:41-54. [DOI: 10.1016/j.aca.2016.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 01/31/2023]
|
15
|
Chang T, Gong H, Ding P, Liu X, Li W, Bing T, Cao Z, Shangguan D. Activity Enhancement of G-Quadruplex/Hemin DNAzyme by Flanking d(CCC). Chemistry 2016; 22:4015-21. [PMID: 26813684 DOI: 10.1002/chem.201504797] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Indexed: 12/17/2022]
Abstract
G-quadruplex (G4)/hemin DNAzymes have been extensively applied in bioanalysis and molecular devices. However, their catalytic activity is still much lower than that of proteinous enzymes. The G4/hemin DNAzyme activity is correlated with the G4 conformations and the solution conditions. However, little is known about the effect of the flanking sequences on the activity, though they are important parts of G4s. Here, we report sequences containing d(CCC), flanked on both ends of the G4-core sequences remarkably enhance their DNAzyme activity. By using circular dichroism and UV-visible spectroscopy, the d(CCC) flanking sequences were demonstrated to improve the hemin binding affinity to G4s instead of increasing the parallel G4 formation, which might explain the enhanced DNAzyme activity. Meanwhile, the increased hemin binding ability promoted the degradation of hemin within the DNAzyme by H2O2. Furthermore, the DNAzyme with d(CCC) flanking sequences showed strong tolerance to pH value changes, which makes it more suitable for applications requiring wide pH conditions. The results highlight the influence of the flanking sequences on the DNAzyme activity and provide insightful information for the design of highly active DNAzymes.
Collapse
Affiliation(s)
- Tianjun Chang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Hongmei Gong
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Pi Ding
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Weiguo Li
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Zehui Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
| |
Collapse
|