1
|
Kharboot LH, Fadil NA, Bakar TAA, Najib ASM, Nordin NH, Ghazali H. A Review of Transition Metal Sulfides as Counter Electrodes for Dye-Sensitized and Quantum Dot-Sensitized Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2881. [PMID: 37049175 PMCID: PMC10095893 DOI: 10.3390/ma16072881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Third-generation solar cells, including dye-sensitized solar cells (DSSCs) and quantum dot-sensitized solar cells (QDSSCs), have been associated with low-cost material requirements, simple fabrication processes, and mechanical robustness. Hence, counter electrodes (CEs) are a critical component for the functionality of these solar cells. Although platinum (Pt)-based CEs have been dominant in CE fabrication, they are costly and have limited market availability. Therefore, it is important to find alternative materials to overcome these issues. Transition metal chalcogenides (TMCs) and transition metal dichalcogenides (TMDs) have demonstrated capabilities as a more cost-effective alternative to Pt materials. This advantage has been attributed to their strong electrocatalytic activity, excellent thermal stability, tunability of bandgap energies, and variable crystalline morphologies. In this study, a comprehensive review of the major components and working principles of the DSSC and QDSSC are presented. In developing CEs for DSSCs and QDSSCs, various TMS materials synthesized through several techniques are thoroughly reviewed. The performance efficiencies of DSSCs and QDSSCs resulting from TMS-based CEs are subjected to in-depth comparative analysis with Pt-based CEs. Thus, the power conversion efficiency (PCE), fill factor (FF), short circuit current density (Jsc) and open circuit voltage (Voc) are investigated. Based on this review, the PCEs for DSSCs and QDSSCs are found to range from 5.37 to 9.80% (I-/I3- redox couple electrolyte) and 1.62 to 6.70% (S-2/Sx- electrolyte). This review seeks to navigate the future direction of TMS-based CEs towards the performance efficiency improvement of DSSCs and QDSSCs in the most cost-effective and environmentally friendly manner.
Collapse
Affiliation(s)
- Layla Haythoor Kharboot
- Department of Materials, Manufacturing, and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (L.H.K.); (T.A.A.B.); (A.S.M.N.)
| | - Nor Akmal Fadil
- Department of Materials, Manufacturing, and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (L.H.K.); (T.A.A.B.); (A.S.M.N.)
- Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Tuty Asma Abu Bakar
- Department of Materials, Manufacturing, and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (L.H.K.); (T.A.A.B.); (A.S.M.N.)
- Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Abdillah Sani Mohd Najib
- Department of Materials, Manufacturing, and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (L.H.K.); (T.A.A.B.); (A.S.M.N.)
- Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Norhuda Hidayah Nordin
- Department of Manufacturing and Material Engineering, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Selangor, Malaysia;
| | - Habibah Ghazali
- College of Engineering and Science, Victoria University, Footscray Park Campus, Ballarat Road, Footscray, P.O. Box 14428, Melbourne, VIC 8001, Australia;
| |
Collapse
|
2
|
Baptayev B, Mustazheb D, Abilova Z, Balanay MP. Nanostructured flower-shaped CuCo 2S 4 as a Pt-free counter-electrode for dye-sensitized solar cells. Chem Commun (Camb) 2020; 56:12190-12193. [PMID: 32914788 DOI: 10.1039/d0cc04211k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We demonstrated a solvothermally prepared cost-effective, mesoporous, and high surface area nanostructured flower-shaped CuCo2S4 counter-electrode for dye-sensitized solar cells. The new counter electrode exhibited comparable results with a traditional Pt-based counter electrode, 7.56% vs. 7.42%, respectively. The electrochemical analysis demonstrated superior electrocatalytic activity of the product, which was stable even after 6 months of aging.
Collapse
Affiliation(s)
- Bakhytzhan Baptayev
- National Laboratory Astana, 53 Kabanbay Batyr Ave., Nur-Sultan, 010000, Kazakhstan.
| | - Dias Mustazheb
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan, 010000, Kazakhstan.
| | - Zhamilya Abilova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan, 010000, Kazakhstan.
| | - Mannix P Balanay
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan, 010000, Kazakhstan.
| |
Collapse
|
3
|
Ma D, Zai J, Wang Y, Qiao Q, Qian X. Photovoltaic Counter Electrodes: An Alternative Approach to Extend Light Absorption Spectra and Enhance Performance of Dye-Sensitized Solar Cells. Chempluschem 2020; 84:241-246. [PMID: 31950766 DOI: 10.1002/cplu.201800590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/16/2018] [Indexed: 11/07/2022]
Abstract
If counter electrodes (CEs) could also contribute to light harvesting in dye-sensitized solar cells (DSSCs), then the power conversion efficiency (PCE) of DSSCs would be further boosted without changing the device structure. Nearly monodispersed Ag2 Se nanocrystals with a bandgap of 1.62 eV (∼765 nm) were synthesized via a one-pot process, and Ag2 Se CEs were fabricated by using a spin-coating and annealing process. Incident photon-to-current conversion efficiency and photocurrent spectra indicated that Ag2 Se CEs can generate the electricity by harvesting more visible light, which could not be absorbed by dye-sensitized photoanodes. Thus, compared to Pt CE (7.57 %), the DSSC based on Ag2 Se CE exerted a higher PCE of 8.06 %. The development of photovoltaic CEs may offer an alternative way to promote the performance and competitiveness of DSSCs.
Collapse
Affiliation(s)
- Dui Ma
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai, Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiantao Zai
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai, Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yan Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai, Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qiquan Qiao
- Center for Advanced Photovoltaics, South Dakota State University, Brookings, SD, 57007, USA
| | - Xuefeng Qian
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai, Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Economically viable V2O3@activated carbon composite materials as counter electrodes for dye sensitized solar cells by single step reduction. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Kumari R, Barsainya M, Singh DP. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4645-4654. [PMID: 27966085 DOI: 10.1007/s11356-016-8170-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Biogenic synthesis of silver nanoparticles (AgNPs) using extracellular metabolites from the bacterium Pseudomonas aeruginosa DM1 offers an eco-friendly and sustainable way of metal nanoparticle synthesis. The present work highlights the biotransformation of silver nitrate solution into AgNP, mediated by extracellular secondary metabolite pyoverdine, a siderophore produced by P. aeruginosa. The bioreduction of silver ions into AgNPs by using pyoverdine was recorded in terms of Fourier transform infrared spectroscopy (FTIR) analysis and color change in the reaction mixture (AgNO3 + pyoverdine) from pale yellow to dark brown with absorption maxima at 415 nm. The results of X-ray diffraction (XRD) analysis of AgNPs showed its crystalline face-centered cubic structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures of AgNPs showed spherical morphology of AgNP in the range of 45-100 nm, with tendency of agglomerations. The energy-dispersive X-ray (EDX) analysis of particles provided strong signal of elemental silver with few minor peaks of other impurities. The present approach offers a unique in vitro method of metal nanoparticle synthesis by exogenously produced bacterial secondary metabolites, where direct contact between the toxic metal and biological resource material can be avoided. The biologically synthesized AgNPs are found to have anti-algal effects against two species of Chlorella (Chlorella vulgaris and Chlorella pyenoidosa), as indicated by zone of growth inhibition on algal culture plates. Further results exhibit concentration-dependent progressive inhibition of chlorophyll content in the algal cells by AgNPs, confirming the algicidal effect of AgNPs.
Collapse
Affiliation(s)
- Rima Kumari
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Manjari Barsainya
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Devendra Pratap Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
6
|
Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G, Lin Y, Xie Y, Wei Y. Counter electrodes in dye-sensitized solar cells. Chem Soc Rev 2017; 46:5975-6023. [DOI: 10.1039/c6cs00752j] [Citation(s) in RCA: 480] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article panoramically reviews the counter electrodes in dye-sensitized solar cells, which is of great significance for the development of photovoltaic and photoelectric devices.
Collapse
|
7
|
Zhang X, Zhen M, Bai J, Jin S, Liu L. Efficient NiSe-Ni3Se2/Graphene Electrocatalyst in Dye-Sensitized Solar Cells: The Role of Hollow Hybrid Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17187-93. [PMID: 27314283 DOI: 10.1021/acsami.6b02350] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hollow and hybrid nanomaterials are excellent electrocatalysts on account of their novel electrocatalytic properties compared with homogeneous solid nanostructures. In this report, NiSe-Ni3Se2 hybrid nanostructure with morphology of hollow hexagonal nanodisk was synthesized in situ on graphene. A series of NiSe-Ni3Se2/RGO with different phase constitutions and nanostructures were obtained by controlling the durations of solvothermal treatment. Because of their unique hollow and hybrid structure, NiSe-Ni3Se2/RGO hollow nanodisks exhibited higher electrocatalytic performance than NiSe/RGO and solid NiSe-Ni3Se2/RGO nanostructure for reducing I3(-) as counter cell (CE) of dye-sensitized solar cells (DSSCs). Additionally, NiSe-Ni3Se2/RGO hollow nanodisks achieved much lower charge transfer resistance (Rct = 0.68 Ω) and higher power conversion efficiency (PCE) (7.87%) than those of Pt (Rct = 1.41 Ω, PCE = 7.28%).
Collapse
Affiliation(s)
- Xiao Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University , Tianjin 300071, P. R. China
| | - Mengmeng Zhen
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University , Tianjin 300071, P. R. China
| | - Jinwu Bai
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University , Tianjin 300071, P. R. China
| | - Shaowei Jin
- School of Physics and Materials Science, Anhui University , Hefei, 230601, P. R. China
| | - Lu Liu
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University , Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Sun P, Wu Z, Ai C, Zhang M, Zhang X, Huang N, Sun Y, Sun X. Thermal Evaporation of Sb2Se3as Novel Counter Electrode for Dye-Sensitized Solar Cells. ChemistrySelect 2016. [DOI: 10.1002/slct.201600289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Panpan Sun
- College of Materials and Chemical Engineering; Hubei Provincial Collaborative Innovation Center for New Energy Microgrid; Collaborative Innovation Center for Energy Equipment of Three Gorges Region; Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; China Three Gorges University; Yichang 443002 China
| | - Zhixin Wu
- College of Materials and Chemical Engineering; Hubei Provincial Collaborative Innovation Center for New Energy Microgrid; Collaborative Innovation Center for Energy Equipment of Three Gorges Region; Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; China Three Gorges University; Yichang 443002 China
| | - Changzhi Ai
- College of Materials and Chemical Engineering; Hubei Provincial Collaborative Innovation Center for New Energy Microgrid; Collaborative Innovation Center for Energy Equipment of Three Gorges Region; Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; China Three Gorges University; Yichang 443002 China
| | - Ming Zhang
- College of Materials and Chemical Engineering; Hubei Provincial Collaborative Innovation Center for New Energy Microgrid; Collaborative Innovation Center for Energy Equipment of Three Gorges Region; Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; China Three Gorges University; Yichang 443002 China
| | - Xintong Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education; Northeast Normal University; 5268 Renmin Street Changchun 130024 China
| | - Niu Huang
- College of Materials and Chemical Engineering; Hubei Provincial Collaborative Innovation Center for New Energy Microgrid; Collaborative Innovation Center for Energy Equipment of Three Gorges Region; Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; China Three Gorges University; Yichang 443002 China
| | - Yihua Sun
- College of Materials and Chemical Engineering; Hubei Provincial Collaborative Innovation Center for New Energy Microgrid; Collaborative Innovation Center for Energy Equipment of Three Gorges Region; Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; China Three Gorges University; Yichang 443002 China
| | - Xiaohua Sun
- College of Materials and Chemical Engineering; Hubei Provincial Collaborative Innovation Center for New Energy Microgrid; Collaborative Innovation Center for Energy Equipment of Three Gorges Region; Key laboratory of inorganic nonmetallic crystalline and energy conversion materials; China Three Gorges University; Yichang 443002 China
| |
Collapse
|
9
|
Theerthagiri J, Senthil R, Buraidah M, Raghavender M, Madhavan J, Arof A. Synthesis and characterization of (Ni1−xCox)Se2 based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2016.03.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zhang X, Bai J, Zhen M, Liu L. Ultrathin Ni–Ni3Se2 nanosheets on graphene as a high-performance counter electrode for dye-sensitized solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra18151a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultrathin nanostructures of metal chalcogenides have exhibited excellent electrocatalytic activity due to the high percentage of surface atoms and many exposed interior atoms.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Environmental Science and Engineering
- Nankai University
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- Tianjin 300071
- P.R. China
| | - Jinwu Bai
- College of Environmental Science and Engineering
- Nankai University
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- Tianjin 300071
- P.R. China
| | - Mengmeng Zhen
- College of Environmental Science and Engineering
- Nankai University
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- Tianjin 300071
- P.R. China
| | - Lu Liu
- College of Environmental Science and Engineering
- Nankai University
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- Tianjin 300071
- P.R. China
| |
Collapse
|