1
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2025; 16:1560-1596. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
2
|
Wu Y, Wang Y, Guan H, Du Y, Zheng X, Xue J. Effect of electron-donating substitution on the triplet state reactivities of 1-nitronaphthalene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121997. [PMID: 36308824 DOI: 10.1016/j.saa.2022.121997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), often found in polluted air, are carcinogenic and mutagenic. The nitro group increases the spin-orbit coupling and results in the lowest excited triplet (T1) on the picosecond time scale with a high yield. The electron-donating substituents have a significant influence on the photophysics and photochemistry of nitro-PAHs. We used transient absorption spectroscopy and kinetic analysis to investigate the reactivities of the T1 state 1-methoxy-4-nitronaphthalene (3MeO-NN) and 1-methyl-4-nitronaphthalene (3Me-NN). The results show that the methoxy and methyl substitutions have a minor effect on their hydrogen abstraction and electron accepting abilities. The main distinction is their reaction rates towards protons. The second order rate constant of 3MeO-NN towards protons is three orders of magnitude greater than that of 3Me-NN, indicating that 3MeO-NN has a stronger hydrogen bond accepting ability. The kinetic analysis reveals that the dimer of 2,2,2-trifluoroethanol participates in the reaction with 3MeO-NN. These results suggest that the formation of the hydrogen-bonded complex is responsible for the unusually short lifetime of 3MeO-NN in methanol solution and the lack of hydrogen abstraction radicals during the decay of 3MeO-NN in methanol.
Collapse
Affiliation(s)
- Yu Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangxin Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huaiyu Guan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yong Du
- Centre for THz Research, Jiliang University, Hangzhou 310018, China
| | - Xuming Zheng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Ward DJ, Saccomando DJ, Walker G, Mansell SM. Sustainable routes to alkenes: applications of homogeneous catalysis to the dehydration of alcohols to alkenes. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Homogeneous catalysis applied to alcohol dehydration.
Collapse
|
4
|
Pan X, Han T, Long J, Xie B, Du Y, Zhao Y, Zheng X, Xue J. Excited state proton transfer of triplet state p-nitrophenylphenol to amine and alcohol: a spectroscopic and kinetic study. Phys Chem Chem Phys 2022; 24:18427-18434. [PMID: 35881619 DOI: 10.1039/d2cp02503e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydroxyaromatic compounds (ArOHs) have a wide range of applications in catalytic synthesis and biological processes due to their increased acidity upon photo-excitation. The proton transfer of ArOHs via the excited singlet state has been extensively studied. However, there has still been a debate on the unique type of ArOH that can undergo an ultrafast intersystem crossing. The nitro group in p-nitrophenylphenol (NO2-Bp-OH) enhances the spin-orbit coupling between excited singlet states and the triplet manifold, enabling ultrafast intersystem crossing and the formation of the long-lived lowest excited triplet state (T1) with a high yield. In this work, we used time-resolved transient absorption to investigate the excited state proton transfer of NO2-Bp-OH in its T1 state to t-butylamine, methanol, and ethanol. The T1 state of the deprotonated form NO2-Bp-O- was first observed and identified in the case of t-butylamine. Kinetic analysis demonstrates that the formation of the hydrogen-bonded complex with methanol and ethanol as proton acceptors involves their trimers. The alcohol oligomer size required in the excited state proton transfer process is dependent on the excited acidity of photoacid.
Collapse
Affiliation(s)
- Xinghang Pan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Ting Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jing Long
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Binbin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 310018, China
| | - Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Yanying Zhao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China. .,Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xuming Zheng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China. .,Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
5
|
Acid–base
reaction of a
super‐photoacid
with a cooperative amide
hydrogen‐bonded
chain. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Nho HW, Park JH, Adhikari A, Kwon OH. Acid–base reaction of a cationic hydration probe in vicinity of anionic interface of AOT reverse micelles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Kang HS, Kim DH, Kim TW. Organic light-emitting devices based on conducting polymer treated with benzoic acid. Sci Rep 2021; 11:3885. [PMID: 33594127 PMCID: PMC7886878 DOI: 10.1038/s41598-021-82980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
We report on the enhanced conductivity of the benzoic-acid-treated poly(3,4-ethlenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) electrode for use in highly flexible, organic light-emitting devices (OLEDs). The conductivity of the benzoic-acid-treated PEDOT:PSS electrode increased from 1 to 1583.2 S/cm, in comparison with that of the pristine PEDOT:PSS electrode, due to a complex factor of the H+ mole % and the dielectric constant of the benzoic solution. Among the post-treatment methods of the PEDOT:PSS electrodes, the operating voltage at 1000 cd/m2 of OLEDs fabricated utilizing the PEDOT:PSS electrode with the benzoic acid treatment has the lowest value, and its maximum luminance is 24,400 cd/m2, which are 1.54 and 2.15 times higher than those of OLEDs using PEDOT:PSS electrodes treated with dimethyl sulfoxide and methanol, respectively. The luminance of a flexible OLED with a benzoic-acid-treated PEDOT:PSS electrode after 1400 bending cycles decreased to 83% of the initial luminance, resulting in excellent mechanical stability.
Collapse
Affiliation(s)
- Hwa Seung Kang
- Department of Information Display Engineering, Hanyang University, Seoul, 04763, Korea
| | - Dae Hun Kim
- Department of Electronics and Computer Engineering, Hanyang University, Seoul, 04763, Korea
| | - Tae Whan Kim
- Department of Information Display Engineering, Hanyang University, Seoul, 04763, Korea.
- Department of Electronics and Computer Engineering, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
8
|
|
9
|
Hunt JR, Dawlaty JM. Kinetic Evidence for the Necessity of Two Proton Donor Molecules for Successful Excited State Proton Transfer by a Photobase. J Phys Chem A 2019; 123:10372-10380. [PMID: 31710812 DOI: 10.1021/acs.jpca.9b08970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photobases are molecules that convert light to proton transfer drive and therefore have potential applications in many areas of chemistry. Previously, we studied the photobasicity of quinolines and explored their applications. While it is possible to tether a photobase near a target proton donor, for the sake of versatility it is desirable to explore their capability to deprotonate molecules dispersed in a solution. Previous evidence suggested that in this scenario at least two proton donors were necessary for successful excited state proton transfer: one to donate a proton and the second to stabilize the photogenerated donor anion. Here we report kinetic evidence from transient absorption (TA) and time-correlated single photon counting (TCSPC) in support of this hypothesis. We used 5-methoxyquinoline as the photobase and 2,2,2-trifluoroethanol (TFE), a low pKa alcohol, as the proton donor. A constant concentration of the photobase was used for a range of proton-donor dilutions spanning several orders of magnitude in an aprotic background solvent. Absorption spectra confirm that over most of the studied range the majority of the photobase population is hydrogen bonded to at least one donor. Short-pulse TA was used to measure the faster (2-500 ps) dynamics, while TSCPC was used to measure the slower (>500 ps) dynamics. The measured proton transfer time constants varied as a function of donor concentration over a wide range. A log-log plot of the proton transfer rate constant as a function of proton-donor concentration shows two regimes: nondiffusive at high donor concentrations where multiple proton donors are near the photobase and diffusive at low donor concentrations where proton donors are more dilute. The nondiffusive regime has a slope of approximately one, suggesting that the proton transfer process is dependent on one donor molecule in addition to the donor molecule already hydrogen bonded with the photobase. The diffusive regime reasonably follows diffusion kinetics. We propose a model for how the second proton-donor molecule may interact with the photogenerated alkoxide to stabilize it. This work highlights the importance of inducing irreversible changes, in this case solvation of the alkoxide, after proton transfer. Understanding of such details is likely to be important in applications of photobases.
Collapse
Affiliation(s)
- Jonathan Ryan Hunt
- Department of Chemistry , University of Southern California , 920 Bloom Walk SSC 702 , Los Angeles , California 90089-0482 , United States
| | - Jahan M Dawlaty
- Department of Chemistry , University of Southern California , 920 Bloom Walk SSC 702 , Los Angeles , California 90089-0482 , United States
| |
Collapse
|
10
|
Hunt JR, Tseng C, Dawlaty JM. Donor-acceptor preassociation, excited state solvation threshold, and optical energy cost as challenges in chemical applications of photobases. Faraday Discuss 2019; 216:252-268. [PMID: 31025987 DOI: 10.1039/c8fd00215k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photobases are molecules with increased pKa in the excited state that can serve to transduce light energy into proton removal capability. They can be used to control chemical reactions using light, such as removing protons from a catalytic site in reactions that are rate-limited by proton transfer. We identify and explore several major challenges toward their practical applications. Two important challenges are the need for pre-association (or ground state hydrogen bonding) between the proton donor and the photobase, and the need for excited state solvation of the photogenerated products. We investigate these two challenges with the photobase 5-methoxyquinoline as the proton acceptor and a low-pKa alcohol, 2,2,2-trifluoroethanol, as the proton donor. We vary the concentration of the donor in a background non-hydrogen-bonding solvent. Using absorption spectroscopy, we have identified that the donor-acceptor concentration ratio must exceed 100 : 1 to achieve appreciable ground state hydrogen bonding. Interestingly, emission spectroscopy reveals that the onset of ground state hydrogen bonding does not guarantee successful excited state proton transfer. It takes an additional order of magnitude increase in donor-acceptor ratio to achieve that goal, revealing that it is necessary to have excess donor molecules to reach the solvation threshold for the photogenerated products. The next challenge is reducing the large ground-excited state energy gap, which often requires UV photons to drive proton transfer. We show experimental and computational data comparing the photobasicity and optical energy gap for a few N-aromatic heterocyclic photobases. In general, we find that reducing the energy gap by increasing the conjugation size necessarily reduces photobasicity, while adding substituents of varying electron-withdrawing strength allows some fine-tuning of this effect. The combination of these two factors provide a preliminary design space for creating new photobasic molecules.
Collapse
Affiliation(s)
| | - Cindy Tseng
- University of Southern California, 920 Bloom Walk, Los Angeles, USA.
| | - Jahan M Dawlaty
- University of Southern California, 920 Bloom Walk, Los Angeles, USA.
| |
Collapse
|
11
|
Singla R, Prakash K, Bihari Gupta K, Upadhyay S, Dhiman M, Jaitak V. Identification of novel indole based heterocycles as selective estrogen receptor modulator. Bioorg Chem 2018; 79:72-88. [DOI: 10.1016/j.bioorg.2018.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
|
12
|
Kim YJ, Rakshit S, Jin GY, Ghosh P, Lee YM, Park WW, Kim YS, Kwon OH. Synergistic Configuration of Diols as Brønsted Bases. Chemistry 2017; 23:17179-17185. [PMID: 28924983 DOI: 10.1002/chem.201703668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 02/03/2023]
Abstract
As viscous hydroxylic organic compounds, diols are of interest for their functional molecular conformation, which is based on inter- and intramolecular hydrogen (H)-bonds. By utilising steady-state electronic and vibrational spectroscopy, time-resolved fluorescence spectroscopy, and computational analyses, we report the association of the hydroxyl groups of diols via intra- or intermolecular H-bonds to enhance their reactivity as a base. Whereas the formation of an intermolecularly H-bonded dimer is requisite for diols of weak intramolecular H-bond to extract a proton from a model strong photoacid, a well-configured single diol molecule with an optimised intramolecular H-bond is revealed to serve as an effective Brønsted base with increased basicity. This observation highlights the collective role of H-bonding in acid-base reactions, and provides mechanistic backgrounds to understand the reactivity of polyols in the acid-catalysed dehydration for the synthesis of cyclic ethers at the molecular level.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Surajit Rakshit
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Current address: Department of Chemistry, Vijaygarh Jotish Roy College, 8/2, Bejoygarh, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Geun Young Jin
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Prasun Ghosh
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Current address: Geological Survey of India, Southern Region, Bandlaguda Road, Hyderabad, 5000068, India
| | - Young Min Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yung Sam Kim
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Oh-Hoon Kwon
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
13
|
Affiliation(s)
| | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Park SY, Kim TG, Ajitha MJ, Kwac K, Lee YM, Kim H, Jung Y, Kwon OH. The critical size of hydrogen-bonded alcohol clusters as effective Brønsted bases in solutions. Phys Chem Chem Phys 2016; 18:24880-9. [PMID: 27337993 DOI: 10.1039/c6cp01650b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The alkyl oxonium ion, which is a protonated alcohol, has long been proposed as a key reaction intermediate in alcohol dehydration. Nonetheless, the dynamics and structure of this simple but important intermediate species have not been adequately examined due to the transient nature of the oxonium ion. Here, we devised a model system for the key step in the alcohol dehydration reaction, in which a photoacid transfers a proton to alcohols of different basicity in the acetonitrile solvent. Using time-resolved spectroscopy and computation, we have found that the linkage of at least two alcohol molecules via hydrogen bonding is critical for their enhanced reactivity and extraction of the proton from the acid. This finding addresses the cooperative role of the simplest organic protic compounds, namely alcohols, in nonaqueous acid-base reactions.
Collapse
Affiliation(s)
- Sun-Young Park
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee YM, Park SY, Kim H, Kim TG, Kwon OH. Photoinduced strong acid–weak base reactions in a polar aprotic solvent. Methods Appl Fluoresc 2016; 4:024004. [DOI: 10.1088/2050-6120/4/2/024004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|