1
|
Bruggeman DF, Detz RJ, Mathew S, Reek JNH. Increased solar-driven chemical transformations through surface-induced benzoperylene aggregation in dye-sensitized photoanodes. Photochem Photobiol Sci 2024; 23:503-516. [PMID: 38363531 DOI: 10.1007/s43630-024-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
The impact of benzo[ghi]perylenetriimide (BPTI) dye aggregation on the performance of photoelectrochemical devices was explored, through imide-substitution with either alkyl (BPTI-A, 2-ethylpropyl) or bulky aryl (BPTI-B, 2,6-diisopropylphenyl) moieties, to, respectively, enable or suppress aggregation. While both dyes demonstrated similar monomeric optoelectronic properties in solution, adsorption onto mesoporous SnO2 revealed different behavior, with BPTI-A forming aggregates via π-stacking and BPTI-B demonstrating reduced aggregation in the solid state. BPTI photoanodes were tested in dye-sensitized solar cells (DSSCs) before application to dye-sensitized photoelectrochemical cells (DSPECs) for Br2 production (a strong oxidant) coupled to H2 generation (a solar fuel). BPTI-A demonstrated a twofold higher dye loading of the SnO2 surface than BPTI-B, resulting in a fivefold enhancement to both photocurrent and Br2 production. The enhanced output of the photoelectrochemical systems (with respect to dye loading) was attributed to both J- and H- aggregation phenomena in BPTI-A photoanodes that lead to improved light harvesting. Our investigation provides a strategy to exploit self-assembly via aggregation to improve molecular light-harvesting and charge separation properties that can be directly applied to dye-sensitized photoelectrochemical devices.
Collapse
Affiliation(s)
- Didjay F Bruggeman
- Homogeneous, Supramolecular and Bioinspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Remko J Detz
- Energy Transition Studies, Netherlands Organization for Applied Scientific Research (TNO), Radarweg 60, Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular and Bioinspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bioinspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Belić J, Förster A, Menzel JP, Buda F, Visscher L. Automated assessment of redox potentials for dyes in dye-sensitized photoelectrochemical cells. Phys Chem Chem Phys 2021; 24:197-210. [PMID: 34878470 PMCID: PMC8694061 DOI: 10.1039/d1cp04218a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
Sustainable solutions for hydrogen production, such as dye-sensitized photoelectrochemical cells (DS-PEC), rely on the fundamental properties of its components whose modularity allows for their separate investigation. In this work, we design and execute a high-throughput scheme to tune the ground state oxidation potential (GSOP) of perylene-type dyes by functionalizing them with different ligands. This allows us to identify promising candidates which can then be used to improve the cell's efficiency. First, we investigate the accuracy of different theoretical approaches by benchmarking them against experimentally determined GSOPs. We test different methods to calculate the vertical oxidation potential, including GW with different levels of self-consistency, Kohn-Sham (KS) orbital energies and total energy differences. We find that there is little difference in the performance of these methods. However, we show that it is crucial to take into account solvent effects as well as the structural relaxation of the dye after oxidation. Other thermodynamic contributions are negligible. Based on this benchmark, we decide on an optimal strategy, balancing computational cost and accuracy, to screen more than 1000 dyes and identify promising candidates which could be used to construct more robust DS-PECs.
Collapse
Affiliation(s)
- Jelena Belić
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| | - Arno Förster
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| | - Jan Paul Menzel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Belić J, van Beek B, Menzel JP, Buda F, Visscher L. Systematic Computational Design and Optimization of Light Absorbing Dyes. J Phys Chem A 2020; 124:6380-6388. [PMID: 32649188 PMCID: PMC7416309 DOI: 10.1021/acs.jpca.0c04506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We present a workflow
to aid the discovery of new dyes for the
role of a photosensitive unit in the dye-sensitized photo-electrochemical
cells (DS-PECs). New structures are generated in a fully automated
way using the Compound Attachment Tool (CAT) introduced in this work.
These structures are characterized with efficient approximate density
functional theory (DFT) methods, and molecules with favorable optical
properties are suggested for possible further use in DS-PECs. As around
2500 structures are generated in this work, and as we aim for still
larger volumes of compounds to screen in subsequent applications,
we have assessed the reliability of low-cost screening methods and
show that simplified time-dependent density functional theory (sTDDFT)
provides a satisfying accuracy/cost ratio. From the dyes considered,
we propose a set that can be suitable for panchromatic sensitization
of the photoelectrode in DS-PECs to further increase DS-PEC efficiency.
Collapse
Affiliation(s)
- Jelena Belić
- Vrije Uversiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Bas van Beek
- Vrije Uversiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Jan Paul Menzel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Lucas Visscher
- Vrije Uversiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
4
|
Wu S, Cheng C, Hou W, Li Q, Dong D, Gao Y, Liu L, Liang B, Zhang H. Structural, photoelectrical and thermol properties of ultra-stable Benzo[ghi]perylene trimide dimer anion. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Chen HC, Jiang BH, Hsu CP, Tsai YY, Jeng RJ, Chen CP, Wong KT. The Twisted Benzo[ghi
]-Perylenetriimide Dimer as a 3D Electron Acceptor for Fullerene-Free Organic Photovoltaics. Chemistry 2018; 24:17590-17597. [DOI: 10.1002/chem.201804088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Hung-Cheng Chen
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan
| | - Bing-Huang Jiang
- Institute of Polymer Science and Engineering, and Advanced Research Center for Green Materials Science and Technology; National (Taiwan) University; Taipei 10617 Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry; Academia Sinica; Taipei 11529 Taiwan
| | - Yao-Yu Tsai
- Department of Materials Engineering; Ming Chi University of Technology; New Taipei City 243 Taiwan
| | - Ru-Jong Jeng
- Institute of Polymer Science and Engineering, and Advanced Research Center for Green Materials Science and Technology; National (Taiwan) University; Taipei 10617 Taiwan
| | - Chih-Ping Chen
- Department of Materials Engineering; Ming Chi University of Technology; New Taipei City 243 Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan
| |
Collapse
|
6
|
Li L, Hong YJ, Chen DY, Lin MJ. Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization. Chemistry 2017; 23:16612-16620. [DOI: 10.1002/chem.201703823] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fuzhou University; 350116 P. R. China
| | - Yu-Jian Hong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fuzhou University; 350116 P. R. China
| | - Dong-Yang Chen
- College of Materials Science and Engineering; Fuzhou University; 350116 P. R. China
| | - Mei-Jin Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fuzhou University; 350116 P. R. China
| |
Collapse
|
7
|
Kirner JT, Finke RG. Sensitization of Nanocrystalline Metal Oxides with a Phosphonate-Functionalized Perylene Diimide for Photoelectrochemical Water Oxidation with a CoO x Catalyst. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27625-27637. [PMID: 28727440 DOI: 10.1021/acsami.7b05874] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A planar organic thin film composed of a perylene diimide dye (N,N'-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoOx) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MOx) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO2 > SnO2 ≫ WO3. Despite highest initial dye loading on TiO2 films, photocurrent with hydroquinone (H2Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO2 films, likely due to a higher driving force for charge injection into the more positive conduction band energy of SnO2. Dyeing conditions and SnO2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λmax of the dye, and absorbed photon-to-current efficiency of 13% with H2Q, a 2-fold improvement over the previous thin-film architecture. A CoOx water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoOx always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO2, as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.
Collapse
Affiliation(s)
- Joel T Kirner
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Richard G Finke
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices. ENERGIES 2016. [DOI: 10.3390/en9050384] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|