1
|
Khadiri Y, Volkringer C, Royer S, El Kadib A, Loiseau T, Dhainaut J. Chemical shaping of CPO-27-M (M = Co, Ni) through an in situ crystallization within chitosan hydrogels. Chem Commun (Camb) 2024; 60:7717-7720. [PMID: 38967366 DOI: 10.1039/d4cc02082k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The preparation of MOF composites is considered as an effective method to address the challenges of shaping MOFs and to create porous solids with enhanced properties and broader applications. In this study, CPO-27-Co was crystallized via a simple strategy within porous chitosan beads. The resulting CS@CPO-27-Co composites were tested for CO2 sorption and they demonstrated promising performances by exceeding 3 mmol(CO2) g-1. The versatility of this strategy was further demonstrated by replacing cobalt(II) ions with nickel(II), also leading to the isostructural CPO-27 framework.
Collapse
Affiliation(s)
- Yassine Khadiri
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
- Euromed University of Fes, UEMF, Morocco
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | | | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| |
Collapse
|
2
|
Akagi K, Naito H, Saikawa T, Kotani M, Yoshikawa H. Linear regression model for metal-organic frameworks with CO 2 adsorption based on topological data analysis. Sci Rep 2024; 14:12021. [PMID: 38797807 PMCID: PMC11128442 DOI: 10.1038/s41598-024-62858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Metal-organic frameworks (MOFs), self-assembled porous materials synthesized from metal ions and organic ligands, are promising candidates for the direct capture of CO2 from the atmosphere. In this work, we developed a regression model to predict the optimal component of the MOF that governs the amount of CO2 adsorption per volume based on experimentally observed adsorption and structure data combined with MOF adsorption sites. The structural descriptors were generated by topological data analysis with persistence diagrams, an advanced mathematical method for quantifying the rings and cavities within the MOF. This enables us to analyze direct effects and significance of the geometric structure of the MOF on the efficiency of CO2 adsorption in a novel way. The proposed approach is proved to be highly correlated with experimental data and thus offers an effective screening tool for MOFs with optimized structures.
Collapse
Affiliation(s)
- Kazuto Akagi
- Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan.
| | - Hisashi Naito
- Graduate School of Mathematics, Nagoya University, Furocho, Nagoya, 464-8602, Japan
| | - Takafumi Saikawa
- Graduate School of Mathematics, Nagoya University, Furocho, Nagoya, 464-8602, Japan
| | - Motoko Kotani
- Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan
| | - Hirofumi Yoshikawa
- Program of Materials Science, School of Engineering, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
3
|
Liang Z, Ou Y, El-Sayed ESM, Su K, Wang W, Yuan D. Effect of Functional Groups on Low-Concentration Carbon Dioxide Capture in UiO-66-Type Metal-Organic Frameworks. Inorg Chem 2023; 62:8309-8314. [PMID: 37187458 DOI: 10.1021/acs.inorgchem.3c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The selective capture of low-concentration CO2 from air or confined spaces remains a great challenge. In this study, various functional groups were introduced into UiO-66 to generate functionalized derivatives (UiO-66-R, R = NO2, NH2, OH, and CH3), aiming at significantly enhancing CO2 adsorption and separation efficiency. More significantly, UiO-66-NO2 and UiO-66-NH2 with high polarity exhibit exceptional CO2 affinity and optimal separation characteristics in mixed CO2/O2/N2 (1:21:78). In addition, the impressive stability of UiO-66-NO2 and UiO-66-NH2 endows them with excellent recycling stability. The effective adsorption and separation performances demonstrated by these two functional materials suggest their potential as promising physical adsorbents for capturing low-concentration CO2.
Collapse
Affiliation(s)
- Zihao Liang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yangyang Ou
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - El-Sayed M El-Sayed
- Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, Nasr City 11727, Egypt
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Ma J, Wang R, Wang B, Luo J, Zhang Q, Zhuo S. Hybrid nanoarrays of Cu-MOFs@H-substituted graphdiyne with various levels of Lewis acidity for nitrate electroreduction. Chem Commun (Camb) 2023; 59:4348-4351. [PMID: 36946210 DOI: 10.1039/d2cc06989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
To mimic enzymes in nature, a set of hybrid nanoarrays of Cu-MOFs sealed in hydrogen-substituted graphdiyne has been developed in order to serve as Lewis-acid-promoted catalysts. By regulating the electron-withdrawing capability of the ligands bridging Cu2+ sites, these Cu-MOFs provided different levels of Lewis acidity toward nitrate affinity, a feature crucial for nitrate-to-ammonia conversion.
Collapse
Affiliation(s)
- Jiahao Ma
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen City, 518063, P. R. China
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Ru Wang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Biwen Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jiaxin Luo
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Sifei Zhuo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, ShenZhen City, 518063, P. R. China
- School of Chemistry and Chemical Engineering, Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
5
|
Ju SE, Choe JH, Kang M, Kang DW, Kim H, Lee JH, Hong CS. Understanding Correlation Between CO 2 Insertion Mechanism and Chain Length of Diamine in Metal-Organic Framework Adsorbents. CHEMSUSCHEM 2021; 14:2426-2433. [PMID: 33871138 DOI: 10.1002/cssc.202100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Although CO2 insertion is a predominant phenomenon in diamine-functionalized Mg2 (dobpdc) (dobpdc4- =4,4-dioxidobiphenyl-3,3'-dicarboxylate) adsorbents, a high-performance metal-organic framework for capturing CO2 , the fundamental function of the diamine carbon chain length in the mechanism remains unclear. Here, Mg2 (dobpdc) systems with open metal sites grafted by primary diamines NH2 -(CH2 )n -NH2 were developed, with en (n=2), pn (n=3), bn (n=4), pen (n=5), hn (n=6), and on (n=8). Based on CO2 adsorption and IR results, CO2 insertion is involved in frameworks with n=2 and 3 but not in systems with n≥5. According to NMR data, bn-appended Mg2 (dobpdc) exhibited three different chemical environments of carbamate units, attributed to different relative conformations of carbon chains upon CO2 insertion, as validated by first-principles density functional theory (DFT) calculations. For 1-hn and 1-on, DFT calculations indicated that diamine inter-coordinated open metal sites in adjacent chains bridged by carboxylates and phenoxides of dobpdc4- . Computed CO2 binding enthalpies for CO2 insertion (-27.8 kJ mol-1 for 1-hn and -20.2 kJ mol-1 for 1-on) were comparable to those for CO2 physisorption (-19.3 kJ mol-1 for 1-hn and -20.8 kJ mol-1 for 1-on). This suggests that CO2 insertion is likely to compete with CO2 physisorption on diamines of the framework when n≥5.
Collapse
Affiliation(s)
- Susan E Ju
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| |
Collapse
|
6
|
Novel mixed matrix membranes based on polyethersulfone and MIL-96 (Al) for CO2 gas separation. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01562-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kim H, Hong CS. MOF-74-type frameworks: tunable pore environment and functionality through metal and ligand modification. CrystEngComm 2021. [DOI: 10.1039/d0ce01870h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This highlight demonstrates a comprehensive overview of MOF-74-type frameworks in terms of synthetic approaches and pre- or post-synthetic modification approaches.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
8
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
9
|
Park J, Park JR, Choe JH, Kim S, Kang M, Kang DW, Kim JY, Jeong YW, Hong CS. Metal-Organic Framework Adsorbent for Practical Capture of Trace Carbon Dioxide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50534-50540. [PMID: 33131271 DOI: 10.1021/acsami.0c16224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Control of indoor CO2 concentration to a safe level is important to human health. Metal-organic-framework-based adsorbents show superior adsorption performance at moderate CO2 concentration compared to other solid adsorbents but suffer from low capacities and high regeneration temperature at indoor CO2 concentrations and poor humidity stability. Herein, we report epn-grafted Mg2(dobpdc) (epn = 1-ethylpropane-1,3-diamine) showing a CO2 capacity of 12.2 wt % at an acceptable concentration of 1000 ppm and a practically low desorption temperature of 70 °C, which surpasses the performance of conventional solid adsorbents under the given conditions. After poly(dimethylsiloxane) coating, this material reveals a significant adsorption amount (∼10 wt %) in humid conditions (up to 98% relative humidity) with structural durability.
Collapse
Affiliation(s)
- Jinkyoung Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jeoung Ryul Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Saemi Kim
- Samsung Research, SEC 33, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jee Yeon Kim
- Samsung Research, SEC 33, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea
| | - Yong Won Jeong
- Samsung Research, SEC 33, Seongchon-gil, Seocho-gu, Seoul 06765, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Kim DW, Kang DW, Kang M, Lee J, Choe JH, Chae YS, Choi DS, Yun H, Hong CS. High Ammonia Uptake of a Metal–Organic Framework Adsorbent in a Wide Pressure Range. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dae Won Kim
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Dong Won Kang
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Minjung Kang
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Jung‐Hoon Lee
- Computational Science Research Center Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Yun Seok Chae
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Doo San Choi
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
11
|
Kim DW, Kang DW, Kang M, Lee JH, Choe JH, Chae YS, Choi DS, Yun H, Hong CS. High Ammonia Uptake of a Metal-Organic Framework Adsorbent in a Wide Pressure Range. Angew Chem Int Ed Engl 2020; 59:22531-22536. [PMID: 32969148 DOI: 10.1002/anie.202012552] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 11/06/2022]
Abstract
Although numerous porous adsorbents have been investigated for NH3 capture applications, these materials often exhibit insufficient NH3 uptake, low NH3 affinity at the ppm level, and poor chemical stability against wet NH3 conditions. The NH3 capture properties of M2 (dobpdc) complexes (M=Mg2+ , Mn2+ , Co2+ , Ni2+ , and Zn2+ ; dobpdc4- =4,4-dioxidobiphenyl-3,3-dicarboxylate) that contain open metal sites is presented. The NH3 uptake of Mg2 (dobpdc) at 298 K was 23.9 mmol g-1 at 1 bar and 8.25 mmol g-1 at 570 ppm, which are record high capacities at both pressures among existing porous adsorbents. The structural stability of Mg2 (dobpdc) upon exposure to wet NH3 was superior to that of the other M2 (dobpdc) and the frameworks tested. Overall, these results demonstrate that Mg2 (dobpdc) is a recyclable compound that exhibits significant NH3 affinity and capacity, making it a promising candidate for real-world NH3 -capture applications.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Yun Seok Chae
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Doo San Choi
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
Wu D, Liu C, Tian J, Jiang F, Yuan D, Chen Q, Hong M. Acid-Base-Resistant Metal-Organic Framework for Size-Selective Carbon Dioxide Capture. Inorg Chem 2020; 59:13542-13550. [PMID: 32864962 DOI: 10.1021/acs.inorgchem.0c01912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of practical porous materials for the selective capture of CO2 from flue gas and crude biogas is highly critical for both environment protection and energy safety. Here, a novel metal-organic framework (FJI-H29) has been prepared, which not only has excellent acid-base resistance but also possesses polar micropores (3.4-4.3 Å) that can match CO2 molecules well. FJI-H29 can selectively capture CO2 from N2 and CH4 with excellent separation efficiency and suitable adsorption enthalpy under ambient conditions. Breakthrough experiments further confirm its practicability for both CO2/N2 and CO2/CH4 separation. All of these confirm FJI-H29 is a practical CO2 adsorbent. Modeling calculations reveal that the confinement effect of micropores and the polar environment synergistically promotes the selective adsorption of CO2, which will provide a potential strategy for the synthesis of a practical metal-organic framework for CO2 capture.
Collapse
Affiliation(s)
- Dong Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jiayue Tian
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Maochun Hong
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
13
|
Schulz M, Marquardt N, Schäfer M, Heinemeyer T, Schaate A. Solvent-assisted linker exchange as a tool for the design of mixed-linker MIL-140D structured MOFs for highly selective detection of gaseous H 2S. RSC Adv 2020; 10:12334-12338. [PMID: 35497577 PMCID: PMC9050664 DOI: 10.1039/d0ra01164a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Solvent-assisted linker exchange was used as tool to modify a MIL-140D-sdc (sdc = 4,4′-stilbenedicarboxylate) MOF with azostilbene dicarboxylic acid. The azo groups can act as coordination sites for copper ions and allow the use of this material as sensor for gaseous H2S.
Collapse
Affiliation(s)
- Marcel Schulz
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| | - Nele Marquardt
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| | - Malte Schäfer
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| | - Thea Heinemeyer
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| | - Andreas Schaate
- Institute for Inorganic Chemistry
- ZFM – Center for Solid State Chemistry and New Materials
- Leibniz Universität
- 30167 Hannover
- Germany
| |
Collapse
|
14
|
Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chem Soc Rev 2020; 49:2751-2798. [DOI: 10.1039/c9cs00609e] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The defined synthesis of OMS in MOFs is the basis for targeted functionalization through grafting, the coordination of weakly binding species and increased (supramolecular) interactions with guest molecules.
Collapse
Affiliation(s)
- Ülkü Kökçam-Demir
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Anna Goldman
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Leili Esrafili
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Maniya Gharib
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| |
Collapse
|
15
|
Abdoli Y, Razavian M, Fatemi S. Bimetallic Ni–Co‐based metal–organic framework: An open metal site adsorbent for enhancing CO
2
capture. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yekta Abdoli
- School of Chemical Engineering, College of EngineeringUniversity of Tehran Tehran Iran
| | - Marjan Razavian
- School of Chemical Engineering, College of EngineeringUniversity of Tehran Tehran Iran
| | - Shohreh Fatemi
- School of Chemical Engineering, College of EngineeringUniversity of Tehran Tehran Iran
| |
Collapse
|
16
|
Ahmadi M, Janakiram S, Dai Z, Ansaloni L, Deng L. Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO₂ Separation: A Review. MEMBRANES 2018; 8:membranes8030050. [PMID: 30060592 PMCID: PMC6161244 DOI: 10.3390/membranes8030050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/29/2022]
Abstract
Application of conventional polymeric membranes in CO2 separation processes are limited by the existing trade-off between permeability and selectivity represented by the renowned upper bound. Addition of porous nanofillers in polymeric membranes is a promising approach to transcend the upper bound, owing to their superior separation capabilities. Porous nanofillers entice increased attention over nonporous counterparts due to their inherent CO2 uptake capacities and secondary transport pathways when added to polymer matrices. Infinite possibilities of tuning the porous architecture of these nanofillers also facilitate simultaneous enhancement of permeability, selectivity and stability features of the membrane conveniently heading in the direction towards industrial realization. This review focuses on presenting a complete synopsis of inherent capacities of several porous nanofillers, like metal organic frameworks (MOFs), Zeolites, and porous organic frameworks (POFs) and the effects on their addition to polymeric membranes. Gas permeation performances of select hybrids with these three-dimensional (3D) fillers and porous nanosheets have been summarized and discussed with respect to each type. Consequently, the benefits and shortcomings of each class of materials have been outlined and future research directions concerning the hybrids with 3D fillers have been suggested.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Saravanan Janakiram
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Zhongde Dai
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Luca Ansaloni
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|
17
|
Shalini S, Nandi S, Justin A, Maity R, Vaidhyanathan R. Potential of ultramicroporous metal–organic frameworks in CO2 clean-up. Chem Commun (Camb) 2018; 54:13472-13490. [DOI: 10.1039/c8cc03233e] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article explains the need for energy-efficient large-scale CO2 capture and briefly mentions the requirements for optimal solid sorbents for this application.
Collapse
Affiliation(s)
- Sorout Shalini
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune
- India
| | - Shyamapada Nandi
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune
- India
| | - Anita Justin
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune
- India
| | - Rahul Maity
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune
- India
| | | |
Collapse
|
18
|
Hu Z, Zhao D. Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm 2017. [DOI: 10.1039/c6ce02660e] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this highlight, we review the recent development in the design and synthesis of metal–organic frameworks with Lewis acidity, the characterization techniques of Lewis acid sites, and their applications in heterogeneous catalysis.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|