1
|
Arteaga A, Arino T, Moore GC, Bustos JL, Horton MK, Persson KA, Li J, Stickle WF, Kohlgruber TA, Surbella RG, Nyman M. The Role of Alkalis in Orchestrating Uranyl-Peroxide Reactivity Leading to Direct Air Capture of Carbon Dioxide. Chemistry 2024; 30:e202301687. [PMID: 38466912 DOI: 10.1002/chem.202301687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Spectator ions have known and emerging roles in aqueous metal-cation chemistry, respectively directing solubility, speciation, and reactivity. Here, we isolate and structurally characterize the last two metastable members of the alkali uranyl triperoxide series, the Rb+ and Cs+ salts (Cs-U1 and Rb-U1). We document their rapid solution polymerization via small-angle X-ray scattering, which is compared to the more stable Li+, Na+ and K+ analogues. To understand the role of the alkalis, we also quantify alkali-hydroxide promoted peroxide deprotonation and decomposition, which generally exhibits increasing reactivity with increasing alkali size. Cs-U1, the most unstable of the uranyl triperoxide monomers, undergoes ambient direct air capture of CO2 in the solid-state, converting to Cs4[UVIO2(CO3)3], evidenced by single-crystal X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. We have attempted to benchmark the evolution of Cs-U1 to uranyl tricarbonate, which involves a transient, unstable hygroscopic solid that contains predominantly pentavalent uranium, quantified by X-ray photoelectron spectroscopy. Powder X-ray diffraction suggests this intermediate state contains a hydrous derivative of CsUVO3, where the parent phase has been computationally predicted, but not yet synthesized.
Collapse
Affiliation(s)
- Ana Arteaga
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Trevor Arino
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
- current address, Department of Nuclear Chemistry U.C. Berkeley, Berkeley, California, 94720, USA
| | - Guy C Moore
- Department of Materials Science and Engineering, U. C. Berkeley, California, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenna L Bustos
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Matthew K Horton
- Department of Materials Science and Engineering, U. C. Berkeley, California, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kristin A Persson
- Department of Materials Science and Engineering, U. C. Berkeley, California, 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jun Li
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | | | | | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
2
|
Greaves N, Kaltsoyannis N. Computational Study of Very High Spin Actinyl Peroxide Matryoshka Nanoclusters. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicholas Greaves
- Department of Chemistry School of Natural Sciences University of Manchester Oxford Road M13 9PL Manchester United Kingdom
| | - Nikolas Kaltsoyannis
- Department of Chemistry School of Natural Sciences University of Manchester Oxford Road M13 9PL Manchester United Kingdom
| |
Collapse
|
3
|
Hu SX, You XX, Zou WL, Lu E, Gao X, Zhang P. Electronic Structures and Unusual Chemical Bonding in Actinyl Peroxide Dimers [An 2O 6] 2+ and [(An 2O 6)(12-crown-4 ether) 2] 2+ (An = U, Np, and Pu). Inorg Chem 2022; 61:15589-15599. [DOI: 10.1021/acs.inorgchem.2c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Xiao-Xia You
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Wen-Li Zou
- Institute of Modern Physics, Northwest University, Xi’an, 710127, China
| | - Erli Lu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - Xiang Gao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ping Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
4
|
Felton DE, Fairley M, Arteaga A, Nyman M, LaVerne JA, Burns PC. Gamma-Ray-Induced Formation of Uranyl Peroxide Cage Clusters. Inorg Chem 2022; 61:11916-11922. [PMID: 35848217 DOI: 10.1021/acs.inorgchem.2c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aqueous solutions of lithium uranyl triperoxide, Li4[UO2(O2)3] (LiUT), were irradiated with gamma rays at room temperature and found to form the uranyl peroxide cage cluster, Li24[(UO2)(O2)(OH)]24 (Li-U24). Raman spectroscopy and 18O labeling were used to identify the Raman-active vibrations of LiUT. With these assignments, the concentration of LiUT was tracked as a function of radiation dose. A discrepancy between monomer removal and cluster formation suggests that the reaction proceeds by the assembly of an intermediate. Non-negative matrix factorization was used to separate Raman spectra into components and resulted in the identification of a unique intermediate species. Much of the conversion appears to be driven by water radiolysis products, particularly the hydroxyl radical. This differs from the 18O-labeled copper-catalyzed formation of U24, which progresses at a steady rate with no observation of intermediates. Li-U24 in solution decomposes at high radiation doses resulting in a solid insoluble product similar to Na-compreignacite, Na2(UO2)6O4(OH)6·7H2O, which contains uranyl oxyhydroxy sheets.
Collapse
Affiliation(s)
- Daniel E Felton
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Melissa Fairley
- Radiation Laboratory, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Ana Arteaga
- Department of Chemistry, Oregon State University, Corvallis 97330, Oregon, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis 97330, Oregon, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame 46556, Indiana, United States.,Department of Physics, University of Notre Dame, Notre Dame 46556, Indiana, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame 46556, Indiana, United States.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame 46556, Indiana, United States
| |
Collapse
|
5
|
Li J, Szabó Z, Jonsson M. Stability of Studtite in Saline Solution: Identification of Uranyl-Peroxo-Halo Complex. Inorg Chem 2022; 61:8455-8466. [PMID: 35608075 PMCID: PMC9175179 DOI: 10.1021/acs.inorgchem.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Hydrogen peroxide
is produced upon radiolysis of water and has
been shown to be the main oxidant driving oxidative dissolution of
UO2-based nuclear fuel under geological repository conditions.
While the overall mechanism and speciation are well known for granitic
groundwaters, considerably less is known for saline waters of relevance
in rock salt or during emergency cooling of reactors using seawater.
In this work, the ternary uranyl–peroxo–chloro and uranyl–peroxo–bromo
complexes were identified using IR, Raman, and nuclear magnetic resonance
(NMR) spectroscopy. Based on Raman spectra, the estimated stability
constants for the identified uranyl–peroxo–chloro ((UO2)(O2)(Cl)(H2O)2–) and uranyl–peroxo–bromo ((UO2)(O2)(Br)(H2O)2–) complexes are
0.17 and 0.04, respectively, at ionic strength ≈5 mol/L. It
was found that the uranyl–peroxo–chloro complex is more
stable than the uranyl–peroxo–bromo complex, which transforms
into studtite at high uranyl and H2O2 concentrations.
Studtite is also found to be dissolved at a high ionic strength, implying
that this may not be a stable solid phase under very saline conditions.
The uranyl–peroxo–bromo complex was shown to facilitate
H2O2 decomposition via a mechanism involving
reactive intermediates. Aqueous
solutions containing UO22+ and H2O2 are stabilized by the presence of
chloride. This is attributed to the formation of uranyl−chloro
and uranyl−peroxo−chloro complexes preventing the precipitation
of studtite. The existence of these complexes was confirmed using
IR, Raman, and NMR spectroscopies.
Collapse
Affiliation(s)
- Junyi Li
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal institute of Technology, SE-10044 Stockholm, Sweden
| | - Zoltán Szabó
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal institute of Technology, SE-10044 Stockholm, Sweden
| | - Mats Jonsson
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
6
|
Martins FF, Sánchez‐González Á, Lanuza J, Miras HN, Lopez X, Bandeira NA, Gil A. Probing the Catalytically Active Species in POM‐Catalysed DNA‐Model Hydrolysis**. Chemistry 2021; 27:8977-8984. [DOI: 10.1002/chem.202004989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Frederico F. Martins
- BioISI – Biosystems and Integrative Sciences Institute Departamento de Química e Bioquímica Faculdade de Ciências Universidade de Lisboa 8.5.53 C8 bdg, Campo Grande 1749-016 Lisboa Portugal
| | - Ángel Sánchez‐González
- BioISI – Biosystems and Integrative Sciences Institute Departamento de Química e Bioquímica Faculdade de Ciências Universidade de Lisboa 8.5.53 C8 bdg, Campo Grande 1749-016 Lisboa Portugal
| | - Jose Lanuza
- Polimero eta Material Aurreratuak: Fisika Kimika eta Teknologia Saila, Kimika Fakultatea Euskal Herriko Unibertsitatea (UPV/EHU) Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
| | - Haralampos N. Miras
- School of Chemistry University of Glasgow Joseph Black Building Glasgow G12 8QQ UK
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika Kimika eta Teknologia Saila, Kimika Fakultatea Euskal Herriko Unibertsitatea (UPV/EHU) Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
| | - Nuno A. Bandeira
- BioISI – Biosystems and Integrative Sciences Institute Departamento de Química e Bioquímica Faculdade de Ciências Universidade de Lisboa 8.5.53 C8 bdg, Campo Grande 1749-016 Lisboa Portugal
| | - Adrià Gil
- BioISI – Biosystems and Integrative Sciences Institute Departamento de Química e Bioquímica Faculdade de Ciências Universidade de Lisboa 8.5.53 C8 bdg, Campo Grande 1749-016 Lisboa Portugal
- CIC nanoGUNE BRTA Tolosa Hiribidea 76 20018 Donostia - San Sebastian Euskadi Spain
| |
Collapse
|
7
|
Xu M, Eckard P, Burns PC. Organic Functionalization of Uranyl Peroxide Clusters to Impact Solubility. Inorg Chem 2020; 59:9881-9888. [PMID: 32644786 DOI: 10.1021/acs.inorgchem.0c01080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzene-1,2-diphosphonic acid (Ppb) was introduced into the uranyl peroxide cluster system, resulting in three Ppb-functionalized uranyl peroxide clusters, (UO2)20(O2)20(C6H4P2O6)1040- (U20Ppb10), (UO2)26(O2)33(C6H4P2O6)638- (U26Ppb6), and (UO2)20(O2)24(C6H4P2O6)632- (U20Ppb6). Dissolution experiments were performed for the potassium salts of U20Ppb10 and U26Ppb6, which revealed the capacity of U20Ppb10 to dissolve in the organic solvent dimethyl sulfoxide (DMSO). Unlike U20Ppb10, the K salt of U26Ppb6 did not dissolve in DMSO but was more soluble in water, perhaps due to the lower proportion of Ppb ligands in its structure. In this work, U20Ppb10 and U20Ppb6 formed as potassium salts and both adopt the fullerene topology of previously reported U20. U20 contains 20 uranyl peroxide units and encapsulates 12 Na cations. It is not possible for unfunctionalized U20 to incorporate 12 K cations owing to space constraints, as is the case in the new clusters reported here. Transformation of U20Ppb10 in water over time to produce U24 was observed, possibly owing to its ability to incorporate K cations, which have been associated with the formation of U24.
Collapse
Affiliation(s)
- Mengyu Xu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter Eckard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Petrus E, Segado M, Bandeira NAG, Bo C. Unveiling a Photoinduced Hydrogen Evolution Reaction Mechanism via the Concerted Formation of Uranyl Peroxide. Inorg Chem 2020; 59:8353-8360. [PMID: 32496796 DOI: 10.1021/acs.inorgchem.0c00757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present a density functional theory study for the photochemical water oxidation reaction promoted by uranyl nitrate upon sunlight radiation. First, we explored the most stable uranyl complex in the absence of light. The reaction in a dark environmen proceeds through the condensation of uranyl monomers to form dimeric hydroxo-bridged species, which is the first step toward a hydrogen evolution reaction (HER). We found a triplet-state-driven mechanism that leads to the formation of uranyl peroxide and hydrogen gas. To describe in detail this reaction path, we characterized the singlet and triplet low-lying states of the dimeric hydroxo-bridged species, including minima, transition states, minimal energy crossing points, and adiabatic energies. Our computational results provide mechanistic insights that are in good agreement with the experimental data available.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Mireia Segado
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Nuno A G Bandeira
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.,BioISI - Biosystems & Integrative Sciences Institute, C8, Faculty Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Física I Inorgànica, Universitat Roviri i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
9
|
Dembowski M, Pilgrim CD, Hickam S, Spano T, Hamlin D, Oliver AG, Casey WH, Burns PC. Dynamics of Cation-Induced Conformational Changes in Nanometer-Sized Uranyl Peroxide Clusters. Inorg Chem 2020; 59:2495-2502. [PMID: 32017549 DOI: 10.1021/acs.inorgchem.9b03390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conformational changes of the pyrophosphate (Pp)-functionalized uranyl peroxide nanocluster [(UO2)24(O2)24(P2O7)12]48- ({U24Pp12}), dissolved as a Li/Na salt, can be induced by the titration of alkali cations into solution. The most symmetric conformer of the molecule has idealized octahedral (Oh) molecular symmetry. One-dimensional 31P NMR experiments provide direct evidence that both K+ and Rb+ ions trigger an Oh-to-D4h conformational change within {U24Pp12}. Variable-temperature 31P NMR experiments conducted on partially titrated {U24Pp12} systems show an effect on the rates; increased activation enthalpy and entropy for the D4h-to-Oh transition is observed in the presence of Rb+ compared to K+. Two-dimensional, exchange spectroscopy 31P NMR revealed that magnetization transfer links chemically unique Pp bridges that are present in the D4h conformation and that this magnetization transfer occurs via a conformational rearrangement mechanism as the bridges interconvert between two symmetries. The interconversion is triggered by the departure and reentry of K (or Rb) cations out of and into the cavity of the cluster. This rearrangement allows Pp bridges to interconvert without the need to break bonds. Cs ions exhibit unique interactions with {U24Pp12} clusters and cause only minor changes in the solution 31P NMR signatures, suggesting that Oh symmetry is conserved. Single-crystal X-ray diffraction measurements reveal that the mixed Li/Na/Cs salt adopts D2h molecular symmetry, implying that while solvated, this cluster is in equilibrium with a more symmetric form. These results highlight the unusually flexible nature of the actinide-based {U24Pp12} and its sensitivity to countercations in solution.
Collapse
Affiliation(s)
- Mateusz Dembowski
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Corey D Pilgrim
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Sarah Hickam
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Tyler Spano
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Dallas Hamlin
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Allen G Oliver
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - William H Casey
- Department of Chemistry , University of California , Davis , California 95616 , United States.,Department of Earth and Planetary Sciences , University of California , Davis , California 95616 , United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States.,Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
10
|
Arteaga A, Ray D, Glass E, Martin NP, Zakharov LN, Gagliardi L, Nyman M. The Role of the Organic Solvent Polarity in Isolating Uranyl Peroxide Capsule Fragments. Inorg Chem 2020; 59:1633-1641. [DOI: 10.1021/acs.inorgchem.9b02660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Arteaga
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elliot Glass
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nicolas P. Martin
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lev N. Zakharov
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
11
|
Syntheses and crystal structures of two uranyl peroxide nanoclusters with a diphosphonate linker ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Kravchuk DV, Forbes TZ. In Situ Generation of Organic Peroxide to Create a Nanotubular Uranyl Peroxide Phosphate. Angew Chem Int Ed Engl 2019; 58:18429-18433. [DOI: 10.1002/anie.201910287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Dmytro V. Kravchuk
- Department of Chemistry University of Iowa Chemistry Building W374 Iowa City IA 52242 USA
| | - Tori Z. Forbes
- Department of Chemistry University of Iowa Chemistry Building W374 Iowa City IA 52242 USA
| |
Collapse
|
13
|
Kravchuk DV, Forbes TZ. In Situ Generation of Organic Peroxide to Create a Nanotubular Uranyl Peroxide Phosphate. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dmytro V. Kravchuk
- Department of Chemistry University of Iowa Chemistry Building W374 Iowa City IA 52242 USA
| | - Tori Z. Forbes
- Department of Chemistry University of Iowa Chemistry Building W374 Iowa City IA 52242 USA
| |
Collapse
|
14
|
Hickam S, Ray D, Szymanowski JES, Li RY, Dembowski M, Smith P, Gagliardi L, Burns PC. Neptunyl Peroxide Chemistry: Synthesis and Spectroscopic Characterization of a Neptunyl Triperoxide Compound, Ca2[NpO2(O2)3]·9H2O. Inorg Chem 2019; 58:12264-12271. [DOI: 10.1021/acs.inorgchem.9b01712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah Hickam
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jennifer E. S. Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ru-Ye Li
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mateusz Dembowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Philip Smith
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Xu M, Traustason H, Bo FD, Hickam S, Chong S, Zhang L, Oliver AG, Burns PC. Supramolecular Assembly of Geometrically Unstable Hybrid Organic–Inorganic Uranyl Peroxide Cage Clusters and Their Transformations. J Am Chem Soc 2019; 141:12780-12788. [DOI: 10.1021/jacs.9b05599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengyu Xu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hrafn Traustason
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Fabrice Dal Bo
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sarah Hickam
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Saehwa Chong
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lei Zhang
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Hu SX, Jian J, Li J, Gibson JK. Destruction of the Uranyl Moiety in a U(V) “Cation–Cation” Interaction. Inorg Chem 2019; 58:10148-10159. [DOI: 10.1021/acs.inorgchem.9b01265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shu-Xian Hu
- Beijing Computational Science Research Center, Beijing 100193, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jiwen Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Hickam S, Breier J, Cripe Y, Cole E, Burns PC. Effects of H 2O 2 Concentration on Formation of Uranyl Peroxide Species Probed by Dissolution of Uranium Nitride and Uranium Dioxide. Inorg Chem 2019; 58:5858-5864. [PMID: 30964269 DOI: 10.1021/acs.inorgchem.9b00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dissolution of uranium materials in alkaline aqueous conditions containing H2O2 results in uranyl peroxide species in solution, including anionic uranyl peroxide cage clusters. Uranyl peroxide cage clusters are generally highly soluble in water, where they persist as aqueous macroanions. Previous studies indicate that uranyl cluster speciation and dissolution of uranium materials is impacted by the concentration of alkali metal in solution, but in these studies, high concentrations of H2O2 were used. Herein, the role of hydrogen peroxide concentration is examined relative to the dissolution of powdered UN and UO2. Lower initial H2O2 concentrations reduce dissolution of UO2 and UN and tend to produce simple (small) uranyl peroxide species rather the highly soluble uranyl peroxide clusters. H2O2 availability will have implications for uranyl speciation and solubility where spent nuclear fuel is in contact with water and where alkaline peroxide conditions are used in dissolution of nuclear material.
Collapse
Affiliation(s)
- Sarah Hickam
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Jaclyn Breier
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Yasmeen Cripe
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Erica Cole
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States.,Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
18
|
Lobeck HL, Isner JK, Burns PC. Transformation of Uranyl Peroxide Studtite, [(UO2)(O2)(H2O)2](H2O)2, to Soluble Nanoscale Cage Clusters. Inorg Chem 2019; 58:6781-6789. [DOI: 10.1021/acs.inorgchem.9b00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haylie L. Lobeck
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jordan K. Isner
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
19
|
Lobeck HL, Traustason H, Julien PA, FitzPatrick JR, Mana S, Szymanowski JES, Burns PC. In situ Raman spectroscopy of uranyl peroxide nanoscale cage clusters under hydrothermal conditions. Dalton Trans 2019; 48:7755-7765. [DOI: 10.1039/c9dt01529a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The behaviours of two uranyl peroxide nanoclusters in water heated to 180 °C were examined by in situ Raman spectroscopy.
Collapse
Affiliation(s)
- Haylie L. Lobeck
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
| | - Hrafn Traustason
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | | | - John R. FitzPatrick
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
| | - Sara Mana
- Department of Geological Sciences
- Salem State University
- Salem
- USA
| | - Jennifer E. S. Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
- Department of Chemistry and Biochemistry
| |
Collapse
|
20
|
Traustason H, Aksenov SM, Burns PC. The lithium–water configuration encapsulated by uranyl peroxide cage cluster U24. CrystEngComm 2019. [DOI: 10.1039/c8ce01774c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium cations encapsulated within the U24 nanocapsule are in square pyramidal and octahedral coordination environments imposed by the topology of the cluster, whereas lithium outside the cages are in a tetrahedral coordination environment.
Collapse
Affiliation(s)
- H. Traustason
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Indiana
- USA
| | - S. M. Aksenov
- Department of Civil and Environmental Engineering & Earth Sciences
- University of Notre Dame
- Indiana
- USA
| | - P. C. Burns
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Indiana
- USA
- Department of Civil and Environmental Engineering & Earth Sciences
| |
Collapse
|
21
|
Lu G, Haes AJ, Forbes TZ. Detection and identification of solids, surfaces, and solutions of uranium using vibrational spectroscopy. Coord Chem Rev 2018; 374:314-344. [PMID: 30713345 PMCID: PMC6358285 DOI: 10.1016/j.ccr.2018.07.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this review is to provide an overview of uranium speciation using vibrational spectroscopy methods including Raman and IR. Uranium is a naturally occurring, radioactive element that is utilized in the nuclear energy and national security sectors. Fundamental uranium chemistry is also an active area of investigation due to ongoing questions regarding the participation of 5f orbitals in bonding, variation in oxidation states and coordination environments, and unique chemical and physical properties. Importantly, uranium speciation affects fate and transportation in the environment, influences bioavailability and toxicity to human health, controls separation processes for nuclear waste, and impacts isotopic partitioning and geochronological dating. This review article provides a thorough discussion of the vibrational modes for U(IV), U(V), and U(VI) and applications of infrared absorption and Raman scattering spectroscopies in the identification and detection of both naturally occurring and synthetic uranium species in solid and solution states. The vibrational frequencies of the uranyl moiety, including both symmetric and asymmetric stretches are sensitive to the coordinating ligands and used to identify individual species in water, organic solvents, and ionic liquids or on the surface of materials. Additionally, vibrational spectroscopy allows for the in situ detection and real-time monitoring of chemical reactions involving uranium. Finally, techniques to enhance uranium species signals with vibrational modes are discussed to expand the application of vibrational spectroscopy to biological, environmental, inorganic, and materials scientists and engineers.
Collapse
Affiliation(s)
- Grace Lu
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Tori Z. Forbes
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
22
|
Hickam S, Aksenov SM, Dembowski M, Perry SN, Traustason H, Russell M, Burns PC. Complexity of Uranyl Peroxide Cluster Speciation from Alkali-Directed Oxidative Dissolution of Uranium Dioxide. Inorg Chem 2018; 57:9296-9305. [DOI: 10.1021/acs.inorgchem.8b01299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah Hickam
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sergey M. Aksenov
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mateusz Dembowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Samuel N. Perry
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hrafn Traustason
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Meghan Russell
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
23
|
Xie J, Neal HA, Szymanowski J, Burns PC, Alam TM, Nyman M, Gagliardi L. Resolving Confined 7Li Dynamics of Uranyl Peroxide Capsule U24. Inorg Chem 2018; 57:5514-5525. [DOI: 10.1021/acs.inorgchem.8b00474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Xie
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Harrison A. Neal
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jennifer Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Todd M. Alam
- Department of Organic Material Science, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Straub MD, Hohloch S, Minasian SG, Arnold J. Homoleptic U(iii) and U(iv) amidate complexes. Dalton Trans 2018; 47:1772-1776. [DOI: 10.1039/c7dt04813k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homoleptic U(iv) and U(iii) amidate complexes have been isolated and characterized; these species undergo an unusual and reversible change in coordination number upon reduction/oxidation.
Collapse
Affiliation(s)
- M. D. Straub
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - S. Hohloch
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - S. G. Minasian
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - J. Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
25
|
Burns PC, Nyman M. Captivation with encapsulation: a dozen years of exploring uranyl peroxide capsules. Dalton Trans 2018; 47:5916-5927. [DOI: 10.1039/c7dt04245k] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uranyl peroxide cages are an extensive family of topologically varied self-assembling nanoscale clusters with fascinating properties and applications.
Collapse
Affiliation(s)
- Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences
- University of Notre Dame
- Notre Dame
- USA
- Department of Chemistry and Biochemistry
| | - May Nyman
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| |
Collapse
|
26
|
Olds TA, Dembowski M, Wang X, Hoffman C, Alam TM, Hickam S, Pellegrini KL, He J, Burns PC. Single-Crystal Time-of-Flight Neutron Diffraction and Magic-Angle-Spinning NMR Spectroscopy Resolve the Structure and 1H and 7Li Dynamics of the Uranyl Peroxide Nanocluster U 60. Inorg Chem 2017; 56:9676-9683. [PMID: 28783328 DOI: 10.1021/acs.inorgchem.7b01174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-crystal time-of-flight neutron diffraction has provided atomic resolution of H atoms of H2O molecules and hydroxyl groups, as well as Li cations in the uranyl peroxide nanocluster U60. Solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy was used to confirm the dynamics of these constituents, revealing the transportation of Li atoms and H2O through cluster walls. H atoms of hydroxyl units that are located on the cluster surface are involved in the transfer of H2O and Li cations from inside to outside and vice versa. This exchange occurs as a concerted motion and happens rapidly even in the solid state. As a consequence of its large size and open hexagonal pores, U60 exchanges Li cations more rapidly compared to other uranyl nanoclusters.
Collapse
Affiliation(s)
| | | | | | | | - Todd M Alam
- Department of Organic Material Science, Sandia National Laboratories , Albuquerque, New Mexico 87185, United States
| | | | | | | | | |
Collapse
|
27
|
Dembowski M, Colla CA, Hickam S, Oliveri AF, Szymanowski JES, Oliver AG, Casey WH, Burns PC. Hierarchy of Pyrophosphate-Functionalized Uranyl Peroxide Nanocluster Synthesis. Inorg Chem 2017; 56:5478-5487. [DOI: 10.1021/acs.inorgchem.7b00649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mateusz Dembowski
- Department
of Chemistry and Biochemistry and §Department of Civil and Environmental Engineering
and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Earth and Planetary
Sciences and ∥Department of Chemistry, University of California, Davis, California 95616, United States
| | - Christopher A. Colla
- Department
of Chemistry and Biochemistry and §Department of Civil and Environmental Engineering
and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Earth and Planetary
Sciences and ∥Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sarah Hickam
- Department
of Chemistry and Biochemistry and §Department of Civil and Environmental Engineering
and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Earth and Planetary
Sciences and ∥Department of Chemistry, University of California, Davis, California 95616, United States
| | - Anna F. Oliveri
- Department
of Chemistry and Biochemistry and §Department of Civil and Environmental Engineering
and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Earth and Planetary
Sciences and ∥Department of Chemistry, University of California, Davis, California 95616, United States
| | - Jennifer E. S. Szymanowski
- Department
of Chemistry and Biochemistry and §Department of Civil and Environmental Engineering
and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Earth and Planetary
Sciences and ∥Department of Chemistry, University of California, Davis, California 95616, United States
| | - Allen G. Oliver
- Department
of Chemistry and Biochemistry and §Department of Civil and Environmental Engineering
and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Earth and Planetary
Sciences and ∥Department of Chemistry, University of California, Davis, California 95616, United States
| | - William H. Casey
- Department
of Chemistry and Biochemistry and §Department of Civil and Environmental Engineering
and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Earth and Planetary
Sciences and ∥Department of Chemistry, University of California, Davis, California 95616, United States
| | - Peter C. Burns
- Department
of Chemistry and Biochemistry and §Department of Civil and Environmental Engineering
and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Earth and Planetary
Sciences and ∥Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
28
|
Dau PD, Dau PV, Rao L, Kovács A, Gibson JK. A Uranyl Peroxide Dimer in the Gas Phase. Inorg Chem 2017; 56:4186-4196. [DOI: 10.1021/acs.inorgchem.7b00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Phuong D. Dau
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phuong V. Dau
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Linfeng Rao
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Attila Kovács
- European
Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe, Germany
| | - John K. Gibson
- Chemical Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Qiu J, Dembowski M, Szymanowski JES, Toh WC, Burns PC. Time-Resolved X-ray Scattering and Raman Spectroscopic Studies of Formation of a Uranium-Vanadium-Phosphorus-Peroxide Cage Cluster. Inorg Chem 2016; 55:7061-7. [DOI: 10.1021/acs.inorgchem.6b00918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Qiu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mateusz Dembowski
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer E. S. Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Wen Cong Toh
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C. Burns
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|