1
|
Wu Y, Xu H, Li X, Rao Y, Yuan S, Yan Y, Zhang YB, Li Q. Topology Prediction of Gas-Separating Metal-Organic Frameworks with Low Symmetry Vertices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402314. [PMID: 38708815 DOI: 10.1002/smll.202402314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Topology serves as a blueprint for the construction of reticular structures such as metal-organic frameworks, especially for those based on building blocks with highly symmetrical shapes. However, it remains a challenge to predict the topology of the frameworks from less symmetrical units, because their corresponding vertex figures are largely deformed from the perfect geometries with no "default" net embedding. Furthermore, vertices involving flexible units may have multiple shape choices, and the competition among their designated topologies makes the structure prediction in large uncertainty. Herein, the deformation index is proposed to characterize the symmetry loss of the vertex figure by comparing it with its ideal geometry. The mathematical index is employed to predict the shapes of two in situ formed Co-based metalloligands (pseudo-tetrahedron and pseudo-square), which further dictate the framework topology (flu and scu) when they are joined with the [Zr6O8]-based cuboid units. The two frameworks with very similar constituents provide an ideal platform to investigate how the pore shapes and interconnectivity influence the gas separation. The net with cylindrical channels outperforms the other with discreate cages in C3H8/C2H6/CH4 separation, benefiting from the facile accessibility of its interaction sites to the guests imposed by the specific framework topology.
Collapse
Affiliation(s)
- Yichen Wu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Huoshu Xu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xinhao Li
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yin Rao
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Sailin Yuan
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yu Yan
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yue-Biao Zhang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Sun P, Xie M, Zhang L, Liu J, Wu J, Li D, Yuan S, Wu T, Li D. Ultrastable Anti‐Acid “Shield” in Layered Silver Coordination Polymers. Angew Chem Int Ed Engl 2022; 61:e202209971. [DOI: 10.1002/anie.202209971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Peipei Sun
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
- School of Energy Materials and Chemical Engineering Hefei University Hefei 230601 China
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Mo Xie
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| | - Lin‐Mei Zhang
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| | - Jia‐Xing Liu
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| | - Jin Wu
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Dong‐Sheng Li
- College of Materials and Chemical Engineering Hubei Provincial Collaborative Innovation Center for New Energy Microgrid Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang 443002 China
| | - Shang‐Fu Yuan
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| | - Tao Wu
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Dan Li
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| |
Collapse
|
3
|
Sun P, Xie M, Zhang LM, Liu JX, Wu J, Li DS, Yuan SF, Wu T, Li D. Ultrastable Anti‐Acid "Shield" in Layered Silver Coordination Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peipei Sun
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Mo Xie
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Lin-Mei Zhang
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Jia-Xing Liu
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Jin Wu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No 199 Ren'ai Road 215123 Suzhou CHINA
| | - Dong-Sheng Li
- China Three Gorges University College of Materials and Chemical Engineering CHINA
| | - Shang-Fu Yuan
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Tao Wu
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Dan Li
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| |
Collapse
|
4
|
Roychowdhury P, Herrera RG, Tan H, Powers DC. Traceless Benzylic C-H Amination via Bifunctional N-Aminopyridinium Intermediates. Angew Chem Int Ed Engl 2022; 61:e202200665. [PMID: 35483017 PMCID: PMC9256810 DOI: 10.1002/anie.202200665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/06/2022]
Abstract
C-H amination reactions provide the opportunity to streamline the synthesis of nitrogen-containing organic small molecules. The impact of intermolecular C-H amination methods, however, is currently limited the frequent requirement for the amine precursors to bear activating groups, such as N-sulfonyl substituents, that are both challenging to remove and not useful synthetic handles for subsequent derivatization. Here, we introduce traceless nitrogen activation for C-H amination-which enables application of selective C-H amination chemistry to the preparation of diverse N-functionalized products-via sequential benzylic C-H N-aminopyridylation followed by Ni-catalyzed C-N cross-coupling with aryl boronic acids. Unlike many C-H amination reactions that provide access to protected amines, the current method installs an easily diversifiable synthetic handle that serves as a lynchpin for C-H amination, deaminative N-N functionalization sequences.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Roberto G Herrera
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Hao Tan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Roychowdhury P, Herrera RG, Tan H, Powers DC. Traceless Benzylic C−H Amination via Bifunctional
N
‐Aminopyridinium Intermediates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Roberto G. Herrera
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Hao Tan
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
6
|
Su Z, Ma L, Wei J, Bai X, Wang N, Li J. A Zinc Porphyrin Polymer as Efficient Bifunctional Catalyst for Conversion of CO
2
to Cyclic Carbonates. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenping Su
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Linjing Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Jiaojiao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Xiaolong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| |
Collapse
|
7
|
Moumen E, Assen AH, Adil K, Belmabkhout Y. Versatility vs stability. Are the assets of metal–organic frameworks deployable in aqueous acidic and basic media? Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
De S, Devic T, Fateeva A. Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates. Dalton Trans 2021; 50:1166-1188. [PMID: 33427825 DOI: 10.1039/d0dt03903a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the ubiquitous role of porphyrins in natural systems, these molecules and related derivatives such as phthalocyanines are fascinating building units to achieve functional porous materials. Porphyrin-based MOFs have been developed over the past three decades, yet chemically robust frameworks, necessary for applications, have been achieved much more recently and this field is expanding. This progress is partially driven by the development of porphyrins and phthalocyanines bearing alternative coordinating groups (phosphonate, azolates, phenolates…) that allowed moving the related MOFs beyond metal-carboxylates and achieving new topologies and properties. In this perspective article we first give a brief outline of the synthetic pathways towards simple porphyrins and phthalocyanines bearing these complexing groups. The related MOF compounds are then described; their structural and textural properties are discussed, as well as their stability and physical properties. An overview of the resulting nets and topologies is proposed, showing both the similarities with metal-carboxylate phases and the peculiarities related to the alternative coordinating groups. Eventually, the opportunities offered by this recent research topic, in terms of both synthesis pathways and modulation of pore size and shape, stability and physical properties, are discussed.
Collapse
Affiliation(s)
- Siddhartha De
- Univ. Lyon, Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, F-69622 Villeurbanne, France.
| | - Thomas Devic
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Alexandra Fateeva
- Univ. Lyon, Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, F-69622 Villeurbanne, France.
| |
Collapse
|
9
|
Robison L, Gong X, Evans AM, Son FA, Wang X, Redfern LR, Wasson MC, Syed ZH, Chen Z, Idrees KB, Islamoglu T, Delferro M, Dichtel WR, Coudert FX, Gianneschi NC, Farha OK. Transient Catenation in a Zirconium-Based Metal-Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. J Am Chem Soc 2021; 143:1503-1512. [PMID: 33433209 DOI: 10.1021/jacs.0c11266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interpenetration of two or more sublattices is common among many metal-organic frameworks (MOFs). Herein, we study the evolution of one zirconium cluster-based, 3,8-connected MOF from its non-interpenetrated (NU-1200) to interpenetrated (STA-26) isomer. We observe this transient catenation process indirectly using ensemble methods, such as nitrogen porosimetry and X-ray diffraction, and directly, using high-resolution transmission electron microscopy. The approach detailed here will serve as a template for other researchers to monitor the interpenetration of their MOF samples at the bulk and single-particle limits. We investigate the mechanical stability of both lattices experimentally by pressurized in situ X-ray diffraction and nanoindentation as well as computationally with density functional theory calculations. Both lines of study reveal that STA-26 is considerably more mechanically stable than NU-1200. We conclude this study by demonstrating the potential of these MOFs and their mixed phases for the capture of gaseous n-hexane, used as a structural mimic for the chemical warfare agent sulfur mustard gas.
Collapse
Affiliation(s)
- Lee Robison
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinyi Gong
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin M Evans
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Florencia A Son
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Louis R Redfern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Department of Materials Science & Engineering, Department of Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Ding M, Cai X, Jiang HL. Improving MOF stability: approaches and applications. Chem Sci 2019; 10:10209-10230. [PMID: 32206247 PMCID: PMC7069376 DOI: 10.1039/c9sc03916c] [Citation(s) in RCA: 530] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
This review summarizes recent advances in the design and synthesis of stable MOFs and highlights the relationships between the stability and functional applications.
Metal–organic frameworks (MOFs) have been recognized as one of the most important classes of porous materials due to their unique attributes and chemical versatility. Unfortunately, some MOFs suffer from the drawback of relatively poor stability, which would limit their practical applications. In the recent past, great efforts have been invested in developing strategies to improve the stability of MOFs. In general, stable MOFs possess potential toward a broader range of applications. In this review, we summarize recent advances in the design and synthesis of stable MOFs and MOF-based materials via de novo synthesis and/or post-synthetic structural processing. Also, the relationships between the stability and functional applications of MOFs are highlighted, and finally, the subsisting challenges and the directions that future research in this field may take have been indicated.
Collapse
Affiliation(s)
- Meili Ding
- Hefei National Laboratory for Physical Sciences at the Microscale , CAS Key Laboratory of Soft Matter Chemistry , Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Xuechao Cai
- Hefei National Laboratory for Physical Sciences at the Microscale , CAS Key Laboratory of Soft Matter Chemistry , Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China . .,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale , CAS Key Laboratory of Soft Matter Chemistry , Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| |
Collapse
|
11
|
Karmakar A, Pombeiro AJ. Recent advances in amide functionalized metal organic frameworks for heterogeneous catalytic applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
|
13
|
Hu K, Huang Z, Zhang Z, Mei L, Qian B, Yu J, Chai Z, Shi W. Actinide‐Based Porphyrinic MOF as a Dehydrogenation Catalyst. Chemistry 2018; 24:16766-16769. [DOI: 10.1002/chem.201804284] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Kong‐Qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Wei Huang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Hui Zhang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative, Innovation Center Changzhou University Changzhou 213164 P. R. China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Bing‐Bing Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology Advanced Catalysis and Green Manufacturing Collaborative, Innovation Center Changzhou University Changzhou 213164 P. R. China
| | - Ji‐Pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Fang Chai
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Zhejiang 315201 China
| | - Wei‐Qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
Xu W, Thapa KB, Ju Q, Fang Z, Huang W. Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.10.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Zhang X, Frey BL, Chen YS, Zhang J. Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal–Organic Frameworks. J Am Chem Soc 2018; 140:7710-7715. [DOI: 10.1021/jacs.8b04277] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Brandon L. Frey
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Yu-Sheng Chen
- ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
16
|
Xu L, Zhai MK, Wang F, Sun L, Du HB. A series of robust metal-porphyrinic frameworks based on rare earth clusters and their application in N-H carbene insertion. Dalton Trans 2018; 45:17108-17112. [PMID: 27761541 DOI: 10.1039/c6dt03678c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We herein report a series of microporous metal-porphyrinic frameworks (MPFs), denoted as NUPF-2M, based on rare earth (RE) clusters. NUPF-2M represent the first examples of RE cluster-based MPFs, possessing a rarely seen shp-a topology and exhibiting high thermal and thermal stabilities. After a post-metallization process with FeCl3, NUPF-2M is catalytically active as an efficient heterogeneous catalyst for intermolecular N-H carbene insertion.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Meng-Ke Zhai
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Fei Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Lin Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hong-Bin Du
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Qin JS, Yuan S, Lollar C, Pang J, Alsalme A, Zhou HC. Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chem Commun (Camb) 2018; 54:4231-4249. [DOI: 10.1039/c7cc09173g] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent years have witnessed the exploration and synthesis of an increasing number of metal–organic frameworks (MOFs). The utilization of stable MOFs as a platform for catalysis and biomimetics is discussed.
Collapse
Affiliation(s)
- Jun-Sheng Qin
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Shuai Yuan
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Jiandong Pang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Ali Alsalme
- Chemistry Department
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Hong-Cai Zhou
- Department of Chemistry
- Texas A&M University
- College Station
- USA
- Chemistry Department
| |
Collapse
|
18
|
Chen L, Cui H, Wang Y, Liang X, Zhang L, Su CY. Carbene insertion into N–H bonds with size-selectivity induced by a microporous ruthenium–porphyrin metal–organic framework. Dalton Trans 2018; 47:3940-3946. [DOI: 10.1039/c8dt00434j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stable and porous porphyrinic metal–organic framework Ru-PMOF-1(Hf) has been prepared and used for N–H insertion reactions with high efficiency and selectivity.
Collapse
Affiliation(s)
- Lianfen Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Hao Cui
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Yanhu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Xiang Liang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| |
Collapse
|
19
|
Zhai M, Wang F, Du H. Transition-Metal Phosphide-Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40171-40179. [PMID: 29098858 DOI: 10.1021/acsami.7b10680] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The preparation of highly active, sustainable, nonprecious metal materials as hydrogen evolution and oxygen evolution reaction (HER and OER) catalysts that can relieve the environmental pollution and energy shortage problems present a great challenge to chemists. We herein report the fabrication of a highly active metal phosphide-carbon composite catalyst for HER and OER in acid and basic solution, respectively. The catalyst is derived through carbonization and subsequent phosphorization of two-dimensional (2D) cobalt porphyrinic metal-organic framework nanosheets. It consists of cobalt phosphide nanoparticles embedded in mesoporous N-doped graphitic carbon materials. The catalyst shows good electrocatalytic activities for HER in 0.5 M H2SO4 and OER in 1 M KOH with overpotentials of 98 and 370 mV at a current density of 10 mA cm-2 and the Tafel slopes of 74 and 79 mV dec-1, respectively. In addition, the catalyst also shows good durability. The method used in this study could be applied to prepare new, highly efficient water-splitting catalysts by using diverse 2D metal-organic frameworks as templates.
Collapse
Affiliation(s)
- Mengke Zhai
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Fei Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Hongbin Du
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
20
|
Zhang L, Xiang L, Hang C, Liu W, Huang W, Pan Y. From Discrete Molecular Cages to a Network of Cages Exhibiting Enhanced CO2Adsorption Capacity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Long Xiang
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 P.R. China
| | - Cheng Hang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Wenlong Liu
- College of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou 225002 P.R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yichang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 P.R. China
| |
Collapse
|
21
|
From Discrete Molecular Cages to a Network of Cages Exhibiting Enhanced CO2Adsorption Capacity. Angew Chem Int Ed Engl 2017; 56:7787-7791. [DOI: 10.1002/anie.201702399] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 11/07/2022]
|
22
|
Rimoldi M, Howarth AJ, DeStefano MR, Lin L, Goswami S, Li P, Hupp JT, Farha OK. Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02923] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Martino Rimoldi
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ashlee J. Howarth
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew R. DeStefano
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lu Lin
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhadip Goswami
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Liu H, He Y, Jiao J, Bai D, Chen DL, Krishna R, Chen B. A Porous Zirconium-Based Metal-Organic Framework with the Potential for the Separation of Butene Isomers. Chemistry 2016; 22:14988-14997. [DOI: 10.1002/chem.201602892] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Huimin Liu
- College of Chemistry and Life Sciences; Zhejiang Normal University; Jinhua 321004 China
| | - Yabing He
- College of Chemistry and Life Sciences; Zhejiang Normal University; Jinhua 321004 China
| | - Jingjing Jiao
- College of Chemistry and Life Sciences; Zhejiang Normal University; Jinhua 321004 China
| | - Dongjie Bai
- College of Chemistry and Life Sciences; Zhejiang Normal University; Jinhua 321004 China
| | - De-li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis; Materials Institute of Physical Chemistry; Zhejiang Normal University; Jinhua 321004 China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Banglin Chen
- College of Chemistry and Life Sciences; Zhejiang Normal University; Jinhua 321004 China
- Department of Chemistry; University of Texas at San Antonio; One UTSA Circle San Antonio Texas 78249-0698 USA
| |
Collapse
|
24
|
Xu L, Zhai MK, Lu XC, Du HB. A robust indium–porphyrin framework for CO2 capture and chemical transformation. Dalton Trans 2016; 45:18730-18736. [DOI: 10.1039/c6dt03651a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A robust indium–porphyrin framework based on amido-decorated porphyrin ligands is used for CO2 capture and chemical fixation, showing good catalytic activity and recyclability.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Meng-Ke Zhai
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Xin-Chao Lu
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Hong-Bin Du
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|