1
|
Allard C, Alvarez L, Bantignies JL, Bendiab N, Cambré S, Campidelli S, Fagan JA, Flahaut E, Flavel B, Fossard F, Gaufrès E, Heeg S, Lauret JS, Loiseau A, Marceau JB, Martel R, Marty L, Pichler T, Voisin C, Reich S, Setaro A, Shi L, Wenseleers W. Advanced 1D heterostructures based on nanotube templates and molecules. Chem Soc Rev 2024; 53:8457-8512. [PMID: 39036944 DOI: 10.1039/d3cs00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.
Collapse
Affiliation(s)
| | - Laurent Alvarez
- Laboratoire Charles Coulomb, CNRS-Université de Montpellier, France
| | | | | | | | | | | | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, cedex 9, France
| | | | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Etienne Gaufrès
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | - Jean-Sebastien Lauret
- LUMIN, Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Jean-Baptiste Marceau
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | | | | | | | | | - Antonio Setaro
- Free University of Berlin, Germany
- Faculty of Engineering and Informatics, Pegaso University, Naples, Italy
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology and Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
2
|
Cao R, Zhang M, Tang W, Wu J, Luo Y, Chen Y, Liu Z, Hao F, Sheng L, Xu H. Spatial confinement of styryl pyridine salt derivative in MCM-22 molecular sieve network for boosted fluorescence emission and stable ratiometric sensing of bacillus anthracis biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123964. [PMID: 38286080 DOI: 10.1016/j.saa.2024.123964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
In this work, a stable ratiometric nanofluorescent probe for the detection of 2,6-dipicolinic acid (DPA), a Bacillus anthracis biomarker, was developed based on confinement-induced emission enhancement of cationic styrylpyridine salt derivative L in MCM-22 molecular sieve pores. The cationic L and the lanthanide Tb3+ were loaded into the pores of the molecular sieve by electrostatic interaction with the negatively charged AlO4 tetrahedron unit, and L exhibited enhanced red fluorescence emission as a stable fluorescence reference mark in the nanoprobe platform due to the restricted molecular torsion of L in the pores of MCM-22. At the same time, the characteristic green fluorescence emission of Tb3+ can be excited by energy transfer due to the "antenna effect" of DPA. The prepared Tb-L@MCM-22 nanoprobe showed specific selectivity and stable fluorescence ratiometric detection of DPA in tap water, lake water, bovine serum and actual bacterial spores. Benefiting from the confinement-induced fluorescence enhancement effect of L in the MCM-22 molecular sieve pores, the obtained Tb-L@MCM-22 can provide a stable reference signal for the fluorescence ratiometric detection of DPA with a limit of detection (LOD) of 78.6 nM and 1.310 × 104 spores per mL. More importantly, combining of the Tb-L@MCM-22 based DPA detection test strips with a smartphone app demonstrated a stable, convenient and rapid method for detecting of anthrax biomarkers.
Collapse
Affiliation(s)
- Rui Cao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Mengyu Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Wen Tang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Jing Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Yang Luo
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Yi Chen
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Zhaodi Liu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China.
| | - Fuying Hao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Liangquan Sheng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China
| | - Huajie Xu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, PR China.
| |
Collapse
|
3
|
Oliden-Sánchez A, Sola-Llano R, Pérez-Pariente J, Gómez-Hortigüela L, Martínez-Martínez V. Confinement of a Styryl Dye into Nanoporous Aluminophosphates: Channels vs. Cavities. Int J Mol Sci 2024; 25:3577. [PMID: 38612388 PMCID: PMC11011965 DOI: 10.3390/ijms25073577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Styryl dyes are generally poor fluorescent molecules inherited from their flexible molecular structures. However, their emissive properties can be boosted by restricting their molecular motions. A tight confinement into inorganic molecular sieves is a good strategy to yield highly fluorescent hybrid systems. In this work, we compare the confinement effect of two Mg-aluminophosphate zeotypes with distinct pore systems (the AEL framework, a one-dimensional channeled structure with elliptical pores of 6.5 Å × 4.0 Å, and the CHA framework, composed of large cavities of 6.7 Å × 10.0 Å connected by eight-ring narrower windows) for the encapsulation of 4-DASPI styryl dye (trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide). The resultant hybrid systems display significantly improved photophysical features compared to 4-DASPI in solution as a result of tight confinement in both host inorganic frameworks. Molecular simulations reveal a tighter confinement of 4-DASPI in the elliptical channels of AEL, explaining its excellent photophysical properties. On the other hand, a singular arrangement of 4-DASPI dye is found when confined within the cavity-based CHA framework, where the 4-DASPI molecule spans along two adjacent cavities, with each aromatic ring sitting on these adjacent cavities and the polymethine chain residing within the narrower eight-ring window. However, despite the singularity of this host-guest arrangement, it provides less tight confinement for 4-DASPI than AEL, resulting in a slightly lower quantum yield.
Collapse
Affiliation(s)
- Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 48080 Bilbao, Spain; (A.O.-S.); (R.S.-L.)
| | - Rebeca Sola-Llano
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 48080 Bilbao, Spain; (A.O.-S.); (R.S.-L.)
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica (CSIC), c/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain;
| | - Luis Gómez-Hortigüela
- Instituto de Catálisis y Petroleoquímica (CSIC), c/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain;
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 48080 Bilbao, Spain; (A.O.-S.); (R.S.-L.)
| |
Collapse
|
4
|
Oliden-Sánchez A, Sola-Llano R, Pérez-Pariente J, Gómez-Hortigüela L, Martínez-Martínez V. Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer. Phys Chem Chem Phys 2024; 26:1225-1233. [PMID: 38099816 DOI: 10.1039/d3cp02625f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The combination between photoactive molecules and inorganic structures is of great interest for the development of advanced materials in the field of optics. Particularly, zeotypes with extra-large pore size are attractive because they allow the encapsulation of bulky dyes. The microporous aluminophoshate Mg-ITQ-51 (IFO-type structure) represents an ideal candidate because of the synergic combination of two crucial features: the IFO framework itself, which is composed of non-interconnected one-dimensional extra-large elliptical channels with a diameter up to 11 Å able to host bulky guest species, and the particular organic structure-directing agent used for the synthesis (1,8-bis(dimethylamino)naphthalene, DMAN), which efficiently fills the IFO pores, and is itself a photoactive molecule with interesting fluorescence properties in the blue range of the visible spectrum, thus providing a densely-incorporated donor species for FRET processes. Besides, occlusion of DMAN dye in the framework triggers a notable improvement of its fluorescence properties by confinement effect. To extend the action of the material and to mimic processes such as photosynthesis in which FRET is essential, two robust laser dyes with bulky size, rhodamine 123 and Nile Blue, have been encapsulated for the first time in a zeolitic framework, together with DMAN, in a straightforward one-pot synthesis. Thus, photoactive systems with emission in the entire visible range have been achieved due to a partial FRET between organic chromophores protected in a rigid aluminophosphate matrix.
Collapse
Affiliation(s)
- Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 4808 Bilbao, Spain.
| | - Rebeca Sola-Llano
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 4808 Bilbao, Spain.
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain.
| | - Luis Gómez-Hortigüela
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain.
| | | |
Collapse
|
5
|
Warerkar OD, Mudliar NH, Singh PK. A hemicyanine based fluorescence turn-on sensor for amyloid fibril detection in the far-red region. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
White Light Emission by Simultaneous One Pot Encapsulation of Dyes into One-Dimensional Channelled Aluminophosphate. NANOMATERIALS 2020; 10:nano10061173. [PMID: 32560167 PMCID: PMC7353364 DOI: 10.3390/nano10061173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023]
Abstract
By simultaneous occlusion of rationally chosen dyes, emitting in the blue, green and red region of the electromagnetic spectrum, into the one-dimensional channels of a magnesium-aluminophosphate with AEL-zeolitic type structure, MgAPO-11, a solid-state system with efficient white light emission under UV excitation, was achieved. The dyes herein selected—acridine (AC), pyronin Y (PY), and hemicyanine LDS722—ensure overall a good match between their molecular sizes and the MgAPO-11 channel dimensions. The occlusion was carried out via the crystallization inclusion method, in a suitable proportion of the three dyes to render efficient white fluorescence systems by means of fine-tuned FRET (fluorescence resonance energy transfer) energy transfer processes. The FRET processes are thoroughly examined by the analysis of fluorescence decay traces using the femtosecond fluorescence up-conversion technique.
Collapse
|
7
|
Chakraborty G, Ray AK, Singh PK, Pal H. Does the degree of substitution on the cyclodextrin hosts impact their affinity towards guest binding? Photochem Photobiol Sci 2020; 19:956-965. [DOI: 10.1039/d0pp00103a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The degree of substitution on βCD rims by sulfobutylether groups significantly modulates the binding affinity of the SBEnβCD hosts for the studied cationic guest molecule.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Laser and Plasma Technology Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Alok K. Ray
- Laser and Plasma Technology Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| | - Prabhat K. Singh
- Homi Bhabha National Institute
- Mumbai-400094
- India
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
| | - Haridas Pal
- Homi Bhabha National Institute
- Mumbai-400094
- India
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
| |
Collapse
|
8
|
Mejía L, Hadad C. Effect of the Euclidean dimensionality on the energy transfer up-conversion luminescence. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Chakraborty D, Chattaraj PK. Bonding, Reactivity, and Dynamics in Confined Systems. J Phys Chem A 2019; 123:4513-4531. [DOI: 10.1021/acs.jpca.9b00830] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Debdutta Chakraborty
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Calzaferri G. Entropy in multiple equilibria, compounds with different sites. Phys Chem Chem Phys 2018; 20:29070-29084. [PMID: 30452040 DOI: 10.1039/c8cp04145h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The influence of entropy in multiple chemical equilibria is investigated for systems with different types of sites for the condition that the binding enthalpy of the species is the same within each type of sites and independent of those species that are already bonded. This allows splitting of the free reaction enthalpy into the particle distribution term and all other contributions for each type of sites separately and, hence, to evaluate this entropy contribution to the free reaction enthalpy. The situations for which this applies can be chemically very different, e.g. acid base, ligand exchange, isomerisation, conformational change, rearrangement of a ligand, ion exchange, adsorption of a species on the surface of a particle or a dendrimer, insertion of charged or neutral species into the cavities of a microporous or mesoporous host. We provide physical insight by discussing Xrc1{n1ABn2}Xrc2 systems. The number of coordination sites A and B are n1 and n2, respectively. The indices rc1 = 1, 2,…,n1 and rc2 = 1, 2,…,n2 count the number of X bonded to sites A and sites B, respectively. An important result is that the large number of equilibrium constants needed to describe those situations can be expressed as a function of two constants only. This allows studying systems quantitatively by experimental and theoretical means which otherwise might be difficult to handle. It has also implication for theoretical studies in the sense that it is sufficient to model only two reactions instead of many in order to describe a system. The results remain valid for systems with more than two types of different sites. The description of the entropy driven development of the fractional equilibrium coverage of the sites provides a new tool for understanding adsorption and ion exchange isotherms. The fractional equilibrium coverage of the sites can be described as a linear combination of individual Langmuir isotherms despite of the fact that such a linear combination has never the shape of the original Langmuir isotherm. This is remarkable and very useful. It provides us with new tools for describing and testing isotherms based on well defined, transparent physical ideas. Explicit solution for systems with 2, 3, 4, 5, 6, and 12 coordination sites are reported. Applications to a system with 12 coordination sites serve to illustrate information that can be obtained for complex situations.
Collapse
Affiliation(s)
- Gion Calzaferri
- Department of Chemistry and Biochemistry, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
11
|
Oliden-Sánchez A, Sola-Llano R, López-Arbeloa I, Martínez-Martínez V. Enhancement of NIR emission by a tight confinement of a hemicyanine dye within zeolitic MgAPO-5 nanochannels. Photochem Photobiol Sci 2018; 17:917-922. [PMID: 29892736 DOI: 10.1039/c8pp00029h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The encapsulation of a hemicyanine dye, LDS 730, into the 1D nanochannels of MgAPO-5 aluminophosphate by "one-pot" synthesis, based on "in situ" occlusion via a crystallization inclusion method, has led to a hybrid material with emission in the NIR region. The tight fitting between the molecular size of the guest dye and the pore dimensions of the host has enabled a rigid conformation of the LDS 730 dye within the nanochannels. Consequently, fluorescence in the NIR range of the spectra is enhanced with respect to the dye in solution. The synthesis of the hybrid material was optimized through a systematic variation of the gel composition via MW in order to obtain a pure phase.
Collapse
Affiliation(s)
- Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco, UPV/EHU, Apartado 644, 48080, Bilbao, Spain.
| | | | | | | |
Collapse
|
12
|
Abstract
Empty spaces are abhorred by nature, which immediately rushes in to fill the void. Humans have learnt pretty well how to make ordered empty nanocontainers, and to get useful products out of them. When such an order is imparted to molecules, new properties may appear, often yielding advanced applications. This review illustrates how the organized void space inherently present in various materials: zeolites, clathrates, mesoporous silica/organosilica, and metal organic frameworks (MOF), for example, can be exploited to create confined, organized, and self-assembled supramolecular structures of low dimensionality. Features of the confining matrices relevant to organization are presented with special focus on molecular-level aspects. Selected examples of confined supramolecular assemblies - from small molecules to quantum dots or luminescent species - are aimed to show the complexity and potential of this approach. Natural confinement (minerals) and hyperconfinement (high pressure) provide further opportunities to understand and master the atomistic-level interactions governing supramolecular organization under nanospace restrictions.
Collapse
Affiliation(s)
- Gloria Tabacchi
- Department of Science and High Technology, University of Insubria, Via Valleggio, 9 I-22100, Como, Italy
| |
Collapse
|
13
|
Sola-Llano R, Fujita Y, Gómez-Hortigüela L, Alfayate A, Uji-i H, Fron E, Toyouchi S, Pérez-Pariente J, López-Arbeloa I, Martínez-Martínez V. One-Directional Antenna Systems: Energy Transfer from Monomers to J-Aggregates within 1D Nanoporous Aluminophosphates. ACS PHOTONICS 2018; 5:151-157. [PMID: 30364720 PMCID: PMC6197758 DOI: 10.1021/acsphotonics.7b00553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 05/05/2023]
Abstract
A cyanine dye (PIC) was occluded into two 1D-nanopoporus Mg-containing aluminophosphates with different pore size (MgAPO-5 and MgAPO-36 with AFI and ATS zeolitic structure types, with cylindrical channels of 7.3 Å diameter and elliptical channels of 6.7 Å × 7.5 Å, respectively) by crystallization inclusion method. Different J-aggregates are photophysically characterized as a consequence of the different pore size of the MgAPO frameworks, with emission bands at 565 nm and at 610 nm in MgAPO-5 and MgAPO-36, respectively. Computational results indicate a more linear geometry of the J-aggregates inside the nanochannels of the MgAPO-36 sample than those in MgAPO-5, which is as a consequence of the more constrained environment in the former. For the same reason, the fluorescence of the PIC monomers at 550 nm is also activated within the MgAPO-36 channels. Owing to the strategic distribution of the fluorescent PIC species in MgAPO-36 crystals (monomers at one edge and J-aggregates with intriguing emission properties at the other edge) an efficient and one-directional antenna system is obtained. The unidirectional energy transfer process from monomers to J-aggregates is demonstrated by remote excitation experiments along tens of microns of distance.
Collapse
Affiliation(s)
- Rebeca Sola-Llano
- Departamento
de Química Física, Universidad
del País Vasco, UPV/EHU, Apartado
644, 48080 Bilbao, Spain
| | - Yasuhiko Fujita
- Department
of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001Heverlee, Belgium
- Toray
Research Center, Inc., 3-3-7, Sonoyama, Otsu, Shiga 520-8567, Japan
| | - Luis Gómez-Hortigüela
- Instituto
de Catálisis y Petroleoquímica-CSIC, C/Marie Curie 2, 28049, Cantoblanco, Madrid, Spain
| | - Almudena Alfayate
- Instituto
de Catálisis y Petroleoquímica-CSIC, C/Marie Curie 2, 28049, Cantoblanco, Madrid, Spain
| | - Hiroshi Uji-i
- Department
of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001Heverlee, Belgium
- RIES, Hokkaido University,
N20W10, Kita-Ward Sapporo 001-0020, Japan
| | - Eduard Fron
- Department
of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001Heverlee, Belgium
| | - Shuichi Toyouchi
- Department
of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001Heverlee, Belgium
| | - Joaquín Pérez-Pariente
- Instituto
de Catálisis y Petroleoquímica-CSIC, C/Marie Curie 2, 28049, Cantoblanco, Madrid, Spain
| | - Iñigo López-Arbeloa
- Departamento
de Química Física, Universidad
del País Vasco, UPV/EHU, Apartado
644, 48080 Bilbao, Spain
| | | |
Collapse
|
14
|
Photoactive Nanomaterials Inspired by Nature: LTL Zeolite Doped with Laser Dyes as Artificial Light Harvesting Systems. MATERIALS 2017; 10:ma10050495. [PMID: 28772856 PMCID: PMC5459014 DOI: 10.3390/ma10050495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/27/2022]
Abstract
The herein reported work describes the development of hierarchically-organized fluorescent nanomaterials inspired by plant antenna systems. These hybrid materials are based on nanostructured zeolitic materials (LTL zeolite) doped with laser dyes, which implies a synergism between organic and inorganic moieties. The non-interconnected channeled structure and pore dimensions (7.1 Å) of the inorganic host are ideal to order and align the allocated fluorophores inside, inferring also high thermal and chemical stability. These artificial antennae harvest a broad range of chromatic radiation and convert it into predominant red-edge or alternatively white-light emission, just choosing the right dye combination and concentration ratio to modulate the efficiency of the ongoing energy transfer hops. A further degree of organization can be achieved by functionalizing the channel entrances of LTL zeolite with specific tailor-made (stopcock) molecules via a covalent linkage. These molecules plug the channels to avoid the leakage of the guest molecules absorbed inside, as well as connect the inner space of the zeolite with the outside thanks to energy transfer processes, making the coupling of the material with external devices easier.
Collapse
|
15
|
Calzaferri G. Entropy in multiple equilibria, theory and applications. Phys Chem Chem Phys 2017; 19:10611-10621. [DOI: 10.1039/c7cp00584a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Entropy controls the dependence of the equilibrium constants in the synthesis of host–guest composites on the occupation rc for channels of different length.
Collapse
Affiliation(s)
- Gion Calzaferri
- Department of Chemistry and Biochemistry
- 3012 Bern
- Switzerland
| |
Collapse
|
16
|
Chakraborty D, Das R, Chattaraj PK. Change in optoelectronic properties of ExBox+4 on functionalization and guest encapsulation. Phys Chem Chem Phys 2017; 19:23373-23385. [DOI: 10.1039/c7cp02433a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High non-linear optical properties could be derived from the ExBox+4 moiety due to functionalization as well as suitable guest encapsulation.
Collapse
Affiliation(s)
- Debdutta Chakraborty
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Ranjita Das
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|