1
|
Zhang H, Zhang M, Zhu K, Feng Y, Yang L, Ding W. Unraveling the mechanism: How does β-phosphoglucomutase from the haloacid dehalogenase superfamily catalyze the interconversion of β-d-glucose 1-phosphate and β-d-glucose 6-phosphate? A chemical perspective. J Inorg Biochem 2024; 264:112794. [PMID: 39667067 DOI: 10.1016/j.jinorgbio.2024.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
The catalytic mechanisms of enzymes can be phylogenetically mapped corresponding to their catalytic structures. This mapping effectively elucidates the diversity of enzyme catalytic mechanisms and the emergence of new enzymatic activities within enzyme superfamilies. The haloacid dehalogenase (HAD) superfamily serves as an exemplary model system for comprehending the co-evolution of catalytic structures and mechanisms. This study delves into the mechanism underlying the functional divergence of β-phosphoglucomutase (β-PGM) from the phosphatase branch of the HAD superfamily, employing a chemical perspective. Through the construction and calculation of three models of varying scales using the Density Functional Theory method with B3LYP function, we aim to investigate the chemical mechanism driving this functional divergence of β-PGM from the HAD family. The computational results indicate that residues His20 and Lys76 in the second shell stabilize substrates and enhance the acid-base catalytic ability of Asp10. Additionally, residues Arg49, Ser116 and Asn118 facilitate substrate binding by engaging in close hydrogen bonding interactions with the substrates. Through cooperative action, these residues enable β-PGM to function as an efficient phosphoglucomutase. Through computational modeling and a chemical perspective, we unravel the mechanisms enabling β-PGM to convert β-d-glucose 1-phosphate to β-d-glucose 6-phosphate. Finally, based on the analysis of the evolutionary tree, we discussed and summarized the evolutionary relationships among different forms of metal cores of hydrolases.
Collapse
Affiliation(s)
- Hao Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Mingming Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Kangning Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, PR China
| | - Yulan Feng
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, PR China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou 450000, PR China.
| | - Wanjian Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
2
|
Kurz JL, Pedroso MM, Richard E, McGeary RP, Schenk G. Inhibitors for metallo-β-lactamases from the B1 and B3 subgroups provide an avenue to combat a major mechanism of antibiotic resistance. Bioorg Med Chem Lett 2023; 92:129387. [PMID: 37369333 DOI: 10.1016/j.bmcl.2023.129387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Metallo-β-lactamases (MBLs) are a group of Zn(II)-dependent enzymes that pose a major threat to global health. They are linked to an increasing number of multi-drug resistant bacterial pathogens, but no clinically useful inhibitor is yet available. Since β-lactam antibiotics, which are inactivated by MBLs, constitute ∼65% of all antibiotics used to treat infections, the search for clinically relevant MBL inhibitors is urgent. Here, derivatives of a 2-amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile (1a) were synthesised and their inhibitory effects assessed against prominent representatives of the MBL family. Several compounds are potent inhibitors of each MBL tested, making them promising candidates for the development of broad-spectrum drug leads. In particular, compound 5f is highly potent across the MBL family, with Ki values in the low µM range. Furthermore, this compound also appears to display synergy in combination with antibiotics such as penicillin G, cefuroxime or meropenem. This molecule thus represents a promising starting point to develop new drugs to inhibit a major mechanism of antibiotic resistance.
Collapse
Affiliation(s)
- Julia L Kurz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emmanuelle Richard
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
3
|
Krco S, Davis SJ, Joshi P, Wilson LA, Monteiro Pedroso M, Douw A, Schofield CJ, Hugenholtz P, Schenk G, Morris MT. Structure, function, and evolution of metallo-β-lactamases from the B3 subgroup-emerging targets to combat antibiotic resistance. Front Chem 2023; 11:1196073. [PMID: 37408556 PMCID: PMC10318434 DOI: 10.3389/fchem.2023.1196073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
β-Lactams are the most widely employed antibiotics in clinical settings due to their broad efficacy and low toxicity. However, since their first use in the 1940s, resistance to β-lactams has proliferated to the point where multi-drug resistant organisms are now one of the greatest threats to global human health. Many bacteria use β-lactamases to inactivate this class of antibiotics via hydrolysis. Although nucleophilic serine-β-lactamases have long been clinically important, most broad-spectrum β-lactamases employ one or two metal ions (likely Zn2+) in catalysis. To date, potent and clinically useful inhibitors of these metallo-β-lactamases (MBLs) have not been available, exacerbating their negative impact on healthcare. MBLs are categorised into three subgroups: B1, B2, and B3 MBLs, depending on their sequence similarities, active site structures, interactions with metal ions, and substrate preferences. The majority of MBLs associated with the spread of antibiotic resistance belong to the B1 subgroup. Most characterized B3 MBLs have been discovered in environmental bacteria, but they are increasingly identified in clinical samples. B3-type MBLs display greater diversity in their active sites than other MBLs. Furthermore, at least one of the known B3-type MBLs is inhibited by the serine-β-lactamase inhibitor clavulanic acid, an observation that may promote the design of derivatives active against a broader range of MBLs. In this Mini Review, recent advances in structure-function relationships of B3-type MBLs will be discussed, with a view to inspiring inhibitor development to combat the growing spread of β-lactam resistance.
Collapse
Affiliation(s)
- Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Samuel J. Davis
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Pallav Joshi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Liam A. Wilson
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Marc T. Morris
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Jayasinghe-Arachchige VM, Serafim LF, Hu Q, Ozen C, Moorkkannur SN, Schenk G, Prabhakar R. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Cihan Ozen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sreerag N. Moorkkannur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
5
|
Krivitskaya AV, Khrenova MG. Interplay between the Enamine and Imine Forms of the Hydrolyzed Imipenem in the Active Sites of Metallo-β-lactamases and in Water Solution. J Chem Inf Model 2022; 62:6519-6529. [PMID: 35758922 DOI: 10.1021/acs.jcim.2c00539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Deactivation of the β-lactam antibiotics in the active sites of the β-lactamases is among the main mechanisms of bacterial antibiotic resistance. As drugs of last resort, carbapenems are efficiently hydrolyzed by metallo-β-lactamases, presenting a serious threat to human health. Our study reveals mechanistic aspects of the imipenem hydrolysis by bizinc metallo-β-lactamases, NDM-1 and L1, belonging to the B1 and the B3 subclasses, respectively. The results of QM(PBE0-D3/6-31G**)/MM simulations show that the enamine product with the protonated nitrogen atom is formed as the major product in NDM-1 and as the only product in the L1 active site. In NDM-1, there is also another reaction pathway that leads to the formation of the (S)-enantiomer of the imine form of the hydrolyzed imipenem; this process occurs with the higher energy barriers. The absence of the second pathway in L1 is due to the different amino acid composition of the active site loop. In L1, the hydrophobic Pro226 residue is located above the pyrroline ring of imipenem that blocks protonation of the carbon atom. Electron density analysis is performed at the stationary points to compare reaction pathways in L1 and NDM-1. Tautomerization from the enamine to the imine form likely happens in solution after the dissociation of the hydrolyzed imipenem from the active site of the enzyme. Classical molecular dynamics simulations of the hydrolyzed imipenem in solution, both with the neutral enamine and the negatively charged N-C2-C3 fragment, demonstrate a huge diversity of conformations. The vast majority of conformations blocks the C3-atom from the side required for the (S)-imine formation upon tautomerization. Thus, according to our calculations, formation of the (R)-imine is more likely. QM(PBE0-D3/6-31G**)/MM molecular dynamics simulations of the hydrolyzed imipenem with the negatively charged N-C2-C3 fragment followed by the Laplacian bond order analysis demonstrate that the N═C2-C3- resonance structure is the most pronounced that facilitates formation of the imine form. The proposed mechanism of the enzymatic enamine formation and its subsequent tautomerization to the imine form in solution is in agreement with the recent spectroscopic and NMR studies.
Collapse
Affiliation(s)
- Alexandra V Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia.,Department of Chemistry, Interdisciplinary Scientific and Educational School of Moscow University "Brain, Cognitive Systems, Artificial Intelligence", Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Efficient Degradation of Tetracycline Antibiotics by Engineered Myoglobin with High Peroxidase Activity. Molecules 2022; 27:molecules27248660. [PMID: 36557794 PMCID: PMC9782475 DOI: 10.3390/molecules27248660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Tetracyclines are one class of widely used antibiotics. Meanwhile, due to abuse and improper disposal, they are often detected in wastewater, which causes a series of environmental problems and poses a threat to human health and safety. As an efficient and environmentally friendly method, enzymatic catalysis has attracted much attention. In previous studies, we have designed an efficient peroxidase (F43Y/P88W/F138W Mb, termed YWW Mb) based on the protein scaffold of myoglobin (Mb), an O2 carrier, by modifying the heme active center and introducing two Trp residues. In this study, we further applied it to degrade the tetracycline antibiotics. Both UV-Vis and HPLC studies showed that the triple mutant YWW Mb was able to catalyze the degradation of tetracycline, oxytetracycline, doxycycline, and chlortetracycline effectively, with a degradation rate of ~100%, ~98%, ~94%, and ~90%, respectively, within 5 min by using H2O2 as an oxidant. These activities are much higher than those of wild-type Mb and other heme enzymes such as manganese peroxidase. As further analyzed by UPLC-ESI-MS, we identified multiple degradation products and thus proposed possible degradation mechanisms. In addition, the toxicity of the products was analyzed by using in vitro antibacterial experiments of E. coli. Therefore, this study indicates that the engineered heme enzyme has potential applications for environmental remediation by degradation of tetracycline antibiotics.
Collapse
|
7
|
Dong R, Yang H, Ai C, Duan G, Wang J, Guo F. DeepBLI: A Transferable Multichannel Model for Detecting β-Lactamase-Inhibitor Interaction. J Chem Inf Model 2022; 62:5830-5840. [PMID: 36245217 DOI: 10.1021/acs.jcim.2c01008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogens producing β-lactamase pose a great challenge to antibiotic-resistant infection treatment; thus, it is urgent to discover novel β-lactamase inhibitors for drug development. Conventional high-throughput screening is very costly, and structure-based virtual screening is limited with mechanisms. In this study, we construct a novel multichannel deep neural network (DeepBLI) for β-lactamase inhibitor screening, pretrained with a label reversal KIBA data set and fine-tuned on β-lactamase-inhibitor pairs from BindingDB. First, the pairs of encoders (Conv and Att) fuse the information spatially and sequentially for both enzymes and inhibitors. Then, a co-attention module creates the connection between the inhibitor and enzyme embeddings. Finally, multichannel outputs fuse with an element-wise product and then are fed into 3-layer fully connected networks to predict interactions. Comparing the state-of-the-art methods, DeepBLI yields an AUROC of 0.9240 and an AUPRC of 0.9715, which indicates that it can identify new β-lactamase-inhibitor interactions. To demonstrate its prediction ability, an application of DeepBLI is described to screen potential inhibitor compounds for metallo-β-lactamase AIM-1 and repurpose rottlerin for four classes of β-lactamase targets, showing the possibility of being a broad-spectrum inhibitor. DeepBLI provides an effective way for antibacterial drug development, contributing to antibiotic-resistant therapeutics.
Collapse
Affiliation(s)
- Ruihan Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hongpeng Yang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Chengwei Ai
- College of Intelligence and Computing, Tianjin University, Tianjin300350, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| |
Collapse
|
8
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
9
|
Yun Y, Han S, Park YS, Park H, Kim D, Kim Y, Kwon Y, Kim S, Lee JH, Jeon JH, Lee SH, Kang LW. Structural Insights for Core Scaffold and Substrate Specificity of B1, B2, and B3 Metallo-β-Lactamases. Front Microbiol 2022; 12:752535. [PMID: 35095785 PMCID: PMC8792953 DOI: 10.3389/fmicb.2021.752535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems; however, no effective inhibitors are currently clinically available. MBLs are classified into three subclasses: B1, B2, and B3. Although the amino acid sequences of MBLs are varied, their overall scaffold is well conserved. In this study, we systematically studied the primary sequences and crystal structures of all subclasses of MBLs, especially the core scaffold, the zinc-coordinating residues in the active site, and the substrate-binding pocket. We presented the conserved structural features of MBLs in the same subclass and the characteristics of MBLs of each subclass. The catalytic zinc ions are bound with four loops from the two central β-sheets in the conserved αβ/βα sandwich fold of MBLs. The three external loops cover the zinc site(s) from the outside and simultaneously form a substrate-binding pocket. In the overall structure, B1 and B2 MBLs are more closely related to each other than they are to B3 MBLs. However, B1 and B3 MBLs have two zinc ions in the active site, while B2 MBLs have one. The substrate-binding pocket is different among all three subclasses, which is especially important for substrate specificity and drug resistance. Thus far, various classes of β-lactam antibiotics have been developed to have modified ring structures and substituted R groups. Currently available structures of β-lactam-bound MBLs show that the binding of β-lactams is well conserved according to the overall chemical structure in the substrate-binding pocket. Besides β-lactam substrates, B1 and cross-class MBL inhibitors also have distinguished differences in the chemical structure, which fit well to the substrate-binding pocket of MBLs within their inhibitory spectrum. The systematic structural comparison among B1, B2, and B3 MBLs provides in-depth insight into their substrate specificity, which will be useful for developing a clinical inhibitor targeting MBLs.
Collapse
Affiliation(s)
- Yeongjin Yun
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sangjun Han
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yoon Sik Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Dogyeong Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yeseul Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yongdae Kwon
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sumin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
- *Correspondence: Sang Hee Lee,
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
- Lin-Woo Kang,
| |
Collapse
|
10
|
Stroek R, Wilson L, Goracke W, Kang T, Vermue F, Krco S, Mendels Y, Douw A, Morris M, Knaven EG, Mitić N, Gutierrez MCR, Schenk EB, Clark A, Garcia D, Monteiro Pedroso M, Schenk G. LAM-1 from Lysobacter antibioticus: A potent zinc-dependent activity that inactivates β-lactam antibiotics. J Inorg Biochem 2021; 226:111637. [PMID: 34749064 DOI: 10.1016/j.jinorgbio.2021.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
Resistance to β-lactam antibiotics, including the "last-resort" carbapenems, has emerged as a major threat to global health. A major resistance mechanism employed by pathogens involves the use of metallo-β-lactamases (MBLs), zinc-dependent enzymes that inactivate most of the β-lactam antibiotics used to treat infections. Variants of MBLs are frequently discovered in clinical environments. However, an increasing number of such enzymes have been identified in microorganisms that are less impacted by human activities. Here, an MBL from Lysobacter antibioticus, isolated from the rhizosphere, has been shown to be highly active toward numerous β-lactam antibiotics. Its activity is higher than that of some of the most effective MBLs linked to hospital-acquired antibiotic resistance and thus poses an interesting system to investigate evolutionary pressures that drive the emergence of such biocatalysts.
Collapse
Affiliation(s)
- Rozanne Stroek
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Liam Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - William Goracke
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Taeuk Kang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Febe Vermue
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yonatan Mendels
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Marc Morris
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Esmee G Knaven
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Maria C R Gutierrez
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Elaine B Schenk
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alice Clark
- Sustainable Minerals Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
11
|
Kinetic and Structural Characterization of the First B3 Metallo-β-Lactamase with an Active Site Glutamic Acid. Antimicrob Agents Chemother 2021; 65:e0093621. [PMID: 34310207 DOI: 10.1128/aac.00936-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural diversity in metallo-β-lactamases (MBLs), especially in the vicinity of the active site, has been a major hurdle in the development of clinically effective inhibitors. Representatives from three variants of the B3 MBL subclass, containing either the canonical HHH/DHH active site motif (present in the majority of MBLs in this subclass) or the QHH/DHH (B3-Q) or HRH/DQK (B3-RQK) variations were reported previously. Here, we describe the structure and kinetic properties of the first example (SIE-1) of a fourth variant containing the EHH/DHH active site motif (B3-E). SIE-1 was identified in the hexachlorocyclohexane-degrading bacterium Sphingobium indicum, and kinetic analyses demonstrate that although it is active against a wide range of antibiotics its efficiency is lower than that of other B3 MBLs, but with improved efficiency towards cephalosporins relative to other β-lactam substrates. The overall fold of SIE-1 is characteristic of the MBLs; the notable variation is observed in the Zn1 site due to the replacement of the canonical His116 by a glutamate. The unusual preference of SIE-1 for cephalosporins and its occurrence in a widespread environmental organism suggests scope for increased MBL-mediated β-lactam resistance. It is thus relevant to include SIE-1 into MBL inhibitor design studies to widen the therapeutic scope of much needed anti-resistance drugs.
Collapse
|
12
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
13
|
|
14
|
Selleck C, Pedroso MM, Wilson L, Krco S, Knaven EG, Miraula M, Mitić N, Larrabee JA, Brück T, Clark A, Guddat LW, Schenk G. Structure and mechanism of potent bifunctional β-lactam- and homoserine lactone-degrading enzymes from marine microorganisms. Sci Rep 2020; 10:12882. [PMID: 32732933 PMCID: PMC7392888 DOI: 10.1038/s41598-020-68612-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 11/11/2022] Open
Abstract
Genes that confer antibiotic resistance can rapidly be disseminated from one microorganism to another by mobile genetic elements, thus transferring resistance to previously susceptible bacterial strains. The misuse of antibiotics in health care and agriculture has provided a powerful evolutionary pressure to accelerate the spread of resistance genes, including those encoding β-lactamases. These are enzymes that are highly efficient in inactivating most of the commonly used β-lactam antibiotics. However, genes that confer antibiotic resistance are not only associated with pathogenic microorganisms, but are also found in non-pathogenic (i.e. environmental) microorganisms. Two recent examples are metal-dependent β-lactamases (MBLs) from the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans. Previous studies have demonstrated that their β-lactamase activity is comparable to those of well-known MBLs from pathogenic sources (e.g. NDM-1, AIM-1) but that they also possess efficient lactonase activity, an activity associated with quorum sensing. Here, we probed the structure and mechanism of these two enzymes using crystallographic, spectroscopic and fast kinetics techniques. Despite highly conserved active sites both enzymes demonstrate significant variations in their reaction mechanisms, highlighting both the extraordinary ability of MBLs to adapt to changing environmental conditions and the rather promiscuous acceptance of diverse substrates by these enzymes.
Collapse
Affiliation(s)
- Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Liam Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Esmée Gianna Knaven
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Manfredi Miraula
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - James A Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748, Garching, Germany
| | - Alice Clark
- Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
15
|
Raczynska JE, Imiolczyk B, Komorowska M, Sliwiak J, Czyrko-Horczak J, Brzezinski K, Jaskolski M. Flexible loops of New Delhi metallo-β-lactamase modulate its activity towards different substrates. Int J Biol Macromol 2020; 158:104-115. [PMID: 32353499 DOI: 10.1016/j.ijbiomac.2020.04.219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
Two accessory loop regions that are present in numerous variants of New Delhi metallo-β-lactamases (NDM) are important for the enzymatic activity. The first one is a flexible loop L3 that is located near the active site and is thought to play an important role in the catalytic process. The second region, Ω loop is located close to a structural element that coordinates two essential zinc ions. Both loops are not involved in any specific interactions with a substrate. Herein, we investigated how the length and hydrophobicity of loop L3 influence the enzymatic activity of NDMs, by analyzing mutants of NDM-1 with various deletions/point mutations within the L3 loop. We also investigated NDM variants with sequence variations/artificial deletions within the Ω loop. For all these variants we determined kinetic parameters for the hydrolysis of ampicillin, imipenem, and a chromogenic cephalosporin (CENTA). None of the mutations in the L3 loop completely abolished the enzymatic activity of NDM-1. Our results suggest that various elements of the loop play different roles in the hydrolysis of different substrates and the flexibility of the loop seems necessary to fulfill the requirements imposed by various substrates. Deletions within the Ω loop usually enhanced the enzymatic activity, particularly for the hydrolysis of ampicillin and imipenem. However, the exact role of the Ω loop in the catalytic reaction remains unclear. In our kinetic tests, the NDM enzymes were inhibited in the β-lactamase reaction by the CENTA substrate. We also present the X-ray crystal structures of the NDM-1, NDM-9 and NDM-12 proteins.
Collapse
Affiliation(s)
- Joanna E Raczynska
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Barbara Imiolczyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marlena Komorowska
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Joanna Sliwiak
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Justyna Czyrko-Horczak
- Laboratory of Biochemistry and Structural Biology, Faculty of Chemistry, University of Bialystok, Poland
| | - Krzysztof Brzezinski
- Laboratory of Biochemistry and Structural Biology, Faculty of Chemistry, University of Bialystok, Poland.
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland.
| |
Collapse
|
16
|
Adaptation of a continuous, calorimetric kinetic assay to study the agmatinase-catalyzed hydrolytic reaction. Anal Biochem 2020; 595:113618. [DOI: 10.1016/j.ab.2020.113618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 11/19/2022]
|
17
|
Functional analysis of the Mn2+ requirement in the catalysis of ureohydrolases arginase and agmatinase - a historical perspective. J Inorg Biochem 2020; 202:110812. [DOI: 10.1016/j.jinorgbio.2019.110812] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
|
18
|
Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA. J Biol Inorg Chem 2019; 24:675-691. [DOI: 10.1007/s00775-019-01680-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
|
19
|
Kang JS, Zhang AL, Faheem M, Zhang CJ, Ai N, Buynak JD, Welsh WJ, Oelschlaeger P. Virtual Screening and Experimental Testing of B1 Metallo-β-lactamase Inhibitors. J Chem Inf Model 2018; 58:1902-1914. [PMID: 30107123 DOI: 10.1021/acs.jcim.8b00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The global rise of metallo-β-lactamases (MBLs) is problematic due to their ability to inactivate most β-lactam antibiotics. MBL inhibitors that could be coadministered with and restore the efficacy of β-lactams are highly sought after. In this study, we employ virtual screening of candidate MBL inhibitors without thiols or carboxylates to avoid off-target effects using the Avalanche software package, followed by experimental validation of the selected compounds. As target enzymes, we chose the clinically relevant B1 MBLs NDM-1, IMP-1, and VIM-2. Among 32 compounds selected from an approximately 1.5 million compound library, 6 exhibited IC50 values less than 40 μM against NDM-1 and/or IMP-1. The most potent inhibitors of NDM-1, IMP-1, and VIM-2 had IC50 values of 19 ± 2, 14 ± 1, and 50 ± 20 μM, respectively. While chemically diverse, the most potent inhibitors all contain combinations of hydroxyl, ketone, ester, amide, or sulfonyl groups. Docking studies suggest that these electron-dense moieties are involved in Zn(II) coordination and interaction with protein residues. These novel scaffolds could serve as the basis for further development of MBL inhibitors. A procedure for renaming NDM-1 residues to conform to the class B β-lactamase (BBL) numbering scheme is also included.
Collapse
Affiliation(s)
- Joon S Kang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States.,Department of Biological Sciences , California State Polytechnic University , Pomona , California 91768-2557 , United States
| | - Antonia L Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Mohammad Faheem
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Charles J Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Ni Ai
- Pharmaceutical Informatics Institute, School of Pharmaceutical Sciences , Zhejiang University , Zhejiang 31005 , People's Republic of China
| | - John D Buynak
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275-0314 , United States
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, and Division of Chem Informatics, Biomedical Informatics Shared Resource, Rutgers-Cancer Institute of New Jersey , The State University of New Jersey , Piscataway , New Jersey 08854-8021 , United States
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| |
Collapse
|
20
|
Monteiro Pedroso M, Selleck C, Bilyj J, Harmer JR, Gahan LR, Mitić N, Standish AJ, Tierney DL, Larrabee JA, Schenk G. Reaction mechanism of the metallohydrolase CpsB from Streptococcus pneumoniae, a promising target for novel antimicrobial agents. Dalton Trans 2018; 46:13194-13201. [PMID: 28573276 DOI: 10.1039/c7dt01350g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CpsB is a metal ion-dependent hydrolase involved in the biosynthesis of capsular polysaccharides in bacterial organisms. The enzyme has been proposed as a promising target for novel chemotherapeutics to combat antibiotic resistance. The crystal structure of CpsB indicated the presence of as many as three closely spaced metal ions, modelled as Mn2+, in the active site. While the preferred metal ion composition in vivo is obscure Mn2+ and Co2+ have been demonstrated to be most effective in reconstituting activity. Using isothermal titration calorimetry (ITC) we have demonstrated that, in contrast to the crystal structure, only two Mn2+ or Co2+ ions bind to a monomer of CpsB. This observation is in agreement with magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) data that indicate the presence of two weakly ferromagnetically coupled Co2+ ions in the active site of catalytically active CpsB. While CpsB is known to be a phosphoesterase we have also been able to demonstrate that this enzyme is efficient in hydrolyzing the β-lactam substrate nitrocefin. Steady-state and stopped-flow kinetics measurements further indicated that phosphoesters and nitrocefin undergo catalysis in a conserved manner with a metal ion-bridging hydroxide acting as a nucleophile. Thus, the combined physicochemical studies demonstrate that CpsB is a novel member of the dinuclear metallohydrolase family.
Collapse
Affiliation(s)
- Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Paul TJ, Schenk G, Prabhakar R. Formation of Catalytically Active Binuclear Center of Glycerophosphodiesterase: A Molecular Dynamics Study. J Phys Chem B 2018; 122:5797-5808. [DOI: 10.1021/acs.jpcb.8b02046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas J. Paul
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
22
|
Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrob Agents Chemother 2018; 62:AAC.02280-17. [PMID: 29133551 DOI: 10.1128/aac.02280-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce β-lactamases with carbapenemase activity, such as the metallo-β-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse β-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other β-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 μM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.
Collapse
|
23
|
Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, Bethel CR, Marshall SH, Credille CV, Riley CL, Page RC, Bonomo RA, Crowder MW, Tierney DL, Fast W, Cohen SM. Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1. J Med Chem 2017; 60:7267-7283. [PMID: 28809565 PMCID: PMC5599375 DOI: 10.1021/acs.jmedchem.7b00407] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The efficacy of β-lactam antibiotics is threatened by the emergence and global spread of metallo-β-lactamase (MBL) mediated resistance, specifically New Delhi metallo-β-lactamase-1 (NDM-1). By utilization of fragment-based drug discovery (FBDD), a new class of inhibitors for NDM-1 and two related β-lactamases, IMP-1 and VIM-2, was identified. On the basis of 2,6-dipicolinic acid (DPA), several libraries were synthesized for structure-activity relationship (SAR) analysis. Inhibitor 36 (IC50 = 80 nM) was identified to be highly selective for MBLs when compared to other Zn(II) metalloenzymes. While DPA displayed a propensity to chelate metal ions from NDM-1, 36 formed a stable NDM-1:Zn(II):inhibitor ternary complex, as demonstrated by 1H NMR, electron paramagnetic resonance (EPR) spectroscopy, equilibrium dialysis, intrinsic tryptophan fluorescence emission, and UV-vis spectroscopy. When coadministered with 36 (at concentrations nontoxic to mammalian cells), the minimum inhibitory concentrations (MICs) of imipenem against clinical isolates of Eschericia coli and Klebsiella pneumoniae harboring NDM-1 were reduced to susceptible levels.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Pei W Thomas
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas , Austin, Texas 78712, United States
| | - Alesha C Stewart
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas , Austin, Texas 78712, United States
| | - Alexander Bergstrom
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Callie Miller
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Christopher R Bethel
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center , Cleveland, Ohio 44106, United States
| | - Steven H Marshall
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center , Cleveland, Ohio 44106, United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Christopher L Riley
- Department of Molecular Biosciences, University of Texas , Austin, Texas 78712, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert A Bonomo
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center , Cleveland, Ohio 44106, United States
- Department of Medicine, Department of Molecular Biology and Microbiology, Department of Biochemistry, and Department of Pharmacology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas , Austin, Texas 78712, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
24
|
A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat Commun 2017; 8:538. [PMID: 28912448 PMCID: PMC5599593 DOI: 10.1038/s41467-017-00601-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae threaten human health, since carbapenems are last resort drugs for infections by such organisms. Metallo-β-lactamases (MβLs) are the main mechanism of resistance against carbapenems. Clinically approved inhibitors of MBLs are currently unavailable as design has been limited by the incomplete knowledge of their mechanism. Here, we report a biochemical and biophysical study of carbapenem hydrolysis by the B1 enzymes NDM-1 and BcII in the bi-Zn(II) form, the mono-Zn(II) B2 Sfh-I and the mono-Zn(II) B3 GOB-18. These MβLs hydrolyse carbapenems via a similar mechanism, with accumulation of the same anionic intermediates. We characterize the Michaelis complex formed by mono-Zn(II) enzymes, and we identify all intermediate species, enabling us to propose a chemical mechanism for mono and binuclear MβLs. This common mechanism open avenues for rationally designed inhibitors of all MβLs, notwithstanding the profound differences between these enzymes’ active site structure, β-lactam specificity and metal content. Carbapenem-resistant bacteria pose a major health threat by expressing metallo-β-lactamases (MβLs), enzymes able to hydrolyse these life-saving drugs. Here the authors use biophysical and computational methods and show that different MβLs share the same reaction mechanism, suggesting new strategies for drug design.
Collapse
|
25
|
Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1 H -pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor. Eur J Med Chem 2017; 137:351-364. [DOI: 10.1016/j.ejmech.2017.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/16/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022]
|
26
|
Abstract
The global overuse of antibiotics has led to the emergence of drug-resistant pathogenic bacteria. Bacteria can combat β-lactams by expressing β-lactamases. Inhibitors of one class of β-lactamase, the serine-β-lactamases, are used clinically to prevent degradation of β-lactam antibiotics. However, a second class of β-lactamase, the metallo-β-lactamases (MBLs), function by a different mechanism to serine-β-lactamases and no inhibitors of MBLs have progressed to be used in the clinic. Bacteria that express MBLs are an increasingly important threat to human health. This review outlines various approaches taken to discover MBL inhibitors, with an emphasis on the different chemical classes of inhibitors. Recent progress, particularly new screening methods and the rational design of potent MBL inhibitors are discussed.
Collapse
|
27
|
Hou CFD, Liu JW, Collyer C, Mitić N, Pedroso MM, Schenk G, Ollis DL. Insights into an evolutionary strategy leading to antibiotic resistance. Sci Rep 2017; 7:40357. [PMID: 28074907 PMCID: PMC5225480 DOI: 10.1038/srep40357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e. site-saturation mutagenesis (SSM) of active site residues and in vitro evolution. Both approaches demonstrated that a single mutation in AIM-1 can greatly enhance a pathogen's resistance towards broad spectrum antibiotics without significantly compromising the catalytic efficiency of the enzyme. Importantly, the evolution experiments demonstrated that relevant amino acids are not necessarily in close proximity to the catalytic centre of the enzyme. This observation is a powerful demonstration that MBLs have a diverse array of possibilities to adapt to new selection pressures, avenues that cannot easily be predicted from a crystal structure alone.
Collapse
Affiliation(s)
- Chun-Feng D Hou
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- CSIRO Entomology, Black Mountain, ACT 2601, Australia
| | - Charles Collyer
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L Ollis
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|