1
|
Shioya N, Fang T, Fujii M, Fujiwara R, Hayashi H, Yamada H, Hasegawa T. Quantitative Analysis of Photochemical Reactions in Pentacene Precursor Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1137-1142. [PMID: 38149378 DOI: 10.1021/acs.langmuir.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
On-surface reactions are rapidly gaining attention as a chemical technique for synthesizing organic functional materials, such as graphene nanoribbons and molecular semiconductors. Quantitative analysis of such reactions is essential for fabricating high-quality film structures, but until our recent work using p-polarized multiple-angle incidence resolution spectrometry (pMAIRS), no analytical technique is available to quantify the reaction rate. In the present study, the pMAIRS technique is employed to analyze the photochemical reaction from 6,13-dihydro-6,13-ethanopentacene-15,16-dione to pentacene in thin films. The spectral analysis on a pMAIRS principle readily reveals the photoconversion rate accurately without other complicated calculations. Thus, this study underlines that the pMAIRS technique is a powerful tool for quantitative analysis of on-surface reactions, as well as molecular orientation.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tao Fang
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masamichi Fujii
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryoi Fujiwara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hironobu Hayashi
- Center for Basic Research on Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Stereoisomer-dependent conversion of dinaphthothienothiophene precursor films. Sci Rep 2022; 12:4448. [PMID: 35292720 PMCID: PMC8924201 DOI: 10.1038/s41598-022-08505-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Abstract
Soluble precursor materials of organic semiconductors are employed for fabricating solution-processable thin film devices. While the so-called precursor approach has already been tried for various organic electronic devices such as transistors and solar cells, understanding of the conversion process in the film lags far behind. Here, we report that molecular aggregation of the precursor compound significantly influences the thermal conversion reaction in the film. For this study, two stereoisomers of a dinaphthothienothiophene (DNTT) precursor that are the endo- and exo-DNTT-phenylmaleimide monoadducts are focused on. The structural change during the thermal conversion process has been investigated by a combination of infrared spectroscopy and X-ray diffraction techniques. The results show that the endo-isomer is readily converted to DNTT in the film by heating, whereas the exo-isomer exhibits no reaction at all. This reaction suppression is found to be due to the self-aggregation property of the exo-isomer accompanying the intermolecular C–H\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\cdots$$\end{document}⋯O interactions. This finding shows a new direction of controlling the on-surface reaction, as well as the importance of analyzing the film structure at the initial stage of the reaction.
Collapse
|
3
|
Ishige R, Tanaka K, Ando S. Quantitative analysis of stereoscopic molecular orientations in thermally reactive and heterogeneous noncrystalline thin films via variable-temperature infrared pMAIRS and GI-XRD. Polym J 2021. [DOI: 10.1038/s41428-020-00458-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Abdul Aziz MZ, Higashimine K, Shioya N, Shimoaka T, Hasegawa T, Sakai H, Vohra V, Murata H. Controlling the concentration gradient in sequentially deposited bilayer organic solar cells via rubbing and annealing. RSC Adv 2020; 10:37529-37537. [PMID: 35521271 PMCID: PMC9057144 DOI: 10.1039/d0ra05991a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/03/2020] [Indexed: 11/21/2022] Open
Abstract
We elucidate the formation mechanism of adequate vertical concentration gradients in sequentially deposited poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) bilayer solar cells. Using advanced analytical techniques, we clarify the origins of the enhanced photovoltaic performances of as-deposited and annealed bilayer P3HT/PCBM organic solar cells upon P3HT layer rubbing prior to PCBM deposition. Energy-dispersive X-ray spectroscopy reveals the individual effects of rubbing and annealing on the formation of adequate concentration gradients in the photoactive layers. Repetitive rubbing of P3HT strongly affects the active layer nanomorphology, forming an intermixed layer in the as-deposited devices which is retained after the annealing process. Infrared p-polarized multiple-angle incidence resolution spectrometry measurements indicate that rubbing induces a minor reorganization of the P3HT molecules in the polymer-only thin films towards face-on orientation. However, the deposition of the upper PCBM layer reverts the P3HT molecules back to their original orientation. These findings suggest that the formation of an adequate concentration gradient upon rubbing corresponds to the dominant contribution to the improved photovoltaic characteristics of rubbed bilayer organic solar cells. Using the reference low bandgap copolymer PCDTBT, we demonstrate that rubbing can be successfully applied to increase the photovoltaic performances of PCDTBT/PCBM organic solar cells. We also demonstrate that rubbing can be an efficient and versatile strategy to improve the power conversion efficiency of non-fullerene solar cells by using the reference materials in the field, PBDB-T and ITIC.
Collapse
Affiliation(s)
- Mohd Zaidan Abdul Aziz
- School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan
| | - Koichi Higashimine
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan
| | - Nobutaka Shioya
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Takafumi Shimoaka
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Heisuke Sakai
- School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan
| | - Varun Vohra
- Department of Engineering Science, University of Electro-Communications Chofu 182-8585 Japan
| | - Hideyuki Murata
- School of Materials Science, Japan Advanced Institute of Science and Technology Nomi Ishikawa 923-1292 Japan
| |
Collapse
|
5
|
Hasegawa T, Shioya N. MAIRS: Innovation of Molecular Orientation Analysis in a Thin Film. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
6
|
Shioya N, Fujiwara R, Tomita K, Shimoaka T, Hasegawa T. Simultaneous Analysis of Molecular Orientation and Quantity Change of Constituents in a Thin Film Using pMAIRS. J Phys Chem A 2020; 124:2714-2720. [PMID: 32160467 DOI: 10.1021/acs.jpca.0c00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spectral analysis using chemometrics is extensively used for quantitative chemical analysis in a mixture, but it works powerfully only when the peak intensity is solely proportional to the quantity of chemical components. In this sense, thin films on a solid substrate are not suitable for chemometric analysis, because the molecular orientation also influences the peak intensity via the surface selection rules. In the present study, this long-term analytical issue has readily been overcome by using p-polarized multiple-angle incidence resolution spectrometry (pMAIRS), which has a characteristic that the in-plane (IP) and out-of-plane (OP) vibrational spectra of a thin-film sample are obtained simultaneously in a common ordinate scale. Thanks to this unique power of pMAIRS, the average of the IP and OP spectra annihilates optical anisotropy, yielding an orientation-free spectrum, which enables us to perform the simultaneous quantitative analysis of both quantity change and molecular orientation of the constituents in a thin film. Now, we are ready to examine chemical reactions quantitatively in a thin film.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryoi Fujiwara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazutaka Tomita
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takafumi Shimoaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
7
|
Nagao Y. Progress on highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:79-91. [PMID: 32158509 PMCID: PMC7033726 DOI: 10.1080/14686996.2020.1722740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 05/08/2023]
Abstract
Several current topics are introduced in this review, with particular attention to highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Organized structure and molecularly oriented structure are anticipated as more promising approaches than conventional less-molecular-ordered structure to elucidate mechanisms of high proton conduction and control proton conduction. This review introduces related polymer materials and molecular design using lyotropic liquid crystals and hydrogen bond networks for high proton conduction. It also outlines the use of substrate surfaces and external fields, such as pressure and centrifugal force, for organizing structures and molecularly oriented structures.
Collapse
Affiliation(s)
- Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Japan
| |
Collapse
|
8
|
Tomita K, Shioya N, Shimoaka T, Eda K, Hasegawa T. Two-Dimensional Film Growth of Zinc Tetraphenylporphyrin with the Aid of Solvent Coordination. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazutaka Tomita
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takafumi Shimoaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuo Eda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Shioya N, Tomita K, Shimoaka T, Hasegawa T. Second Generation of Multiple-Angle Incidence Resolution Spectrometry. J Phys Chem A 2019; 123:7177-7183. [PMID: 31328919 DOI: 10.1021/acs.jpca.9b05316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infrared surface spectroscopic techniques commonly have long-term issues that (1) the multiple reflections of light in the substrate yield optical interference fringes in the absorption spectrum and (2) the double modulation of light at the interferometer in a Fourier transform infrared spectrometer makes the water-vapor subtraction impossible. These measurement troubles often disturb the quantitative analysis of chemical bands of the analyte thin film. Multiple-angle incidence resolution spectrometry (MAIRS) is not an exception in this matter, either. In the present study, the long-term common issues have first been resolved by fixing the angle of incidence at a large angle, whereas the polarization angle is changed. With this simple conceptual change of MAIRS, as a result, we are ready for concentrating on spectral analysis only without concerning about the measurement troubles.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research , Kyoto University , Gokasho, Uji , Kyoto 611-0011 , Japan
| | - Kazutaka Tomita
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research , Kyoto University , Gokasho, Uji , Kyoto 611-0011 , Japan
| | - Takafumi Shimoaka
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research , Kyoto University , Gokasho, Uji , Kyoto 611-0011 , Japan
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research , Kyoto University , Gokasho, Uji , Kyoto 611-0011 , Japan
| |
Collapse
|
10
|
Watanabe Y, Sasabe H, Kido J. Review of Molecular Engineering for Horizontal Molecular Orientation in Organic Light-Emitting Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180336] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuichiro Watanabe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Junji Kido
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
11
|
Abstract
Pentacene attracts a great deal of attention as a basic material used in organic thin-film transistors for many years. Pentacene is known to form a highly ordered structure in a thin film, in which the molecular long axis aligns perpendicularly to the substrate surface, i.e., end-on orientation. On the other hand, the face-on oriented thin film, where the molecular plane is parallel to the substrate, has never been found on an inert substrate represented by SiO2. As a result, the face-on orientation has long been believed to be generated only on specific substrates such as a metal single crystal. In the present study, the face-on orientation grown on a SiO2 surface has first been identified by means of visible and infrared p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) together with two-dimensional grazing incidence X-ray diffraction (2D-GIXD). The combination of the multiple techniques readily reveals that the face-on phase is definitely realized as the dominant component. The face-on film is obtained when the film growth is kinetically restricted to be prevented from transforming into the thermodynamically stable structure, i.e., the end-on orientation. This concept is useful for controlling the molecular orientation in general organic semiconductor thin films.
Collapse
|
12
|
Shioya N, Shimoaka T, Eda K, Hasegawa T. Controlling Mechanism of Molecular Orientation of Poly(3-alkylthiophene) in a Thin Film Revealed by Using pMAIRS. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nobutaka Shioya
- Laboratory
of Chemistry for Functionalized Surfaces, Division of Environmental
Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takafumi Shimoaka
- Laboratory
of Chemistry for Functionalized Surfaces, Division of Environmental
Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuo Eda
- Depatment
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takeshi Hasegawa
- Laboratory
of Chemistry for Functionalized Surfaces, Division of Environmental
Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
13
|
Hasegawa T. Physicochemical Nature of Perfluoroalkyl Compounds Induced by Fluorine. CHEM REC 2017; 17:903-917. [DOI: 10.1002/tcr.201700018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Takeshi Hasegawa
- Institute for Chemical ResearchKyoto University Gokasho, Uji Kyoto-fu 611-0011 Japan
| |
Collapse
|
14
|
Shioya N, Shimoaka T, Hasegawa T. Fringe and Noise Reductions of pMAIRS Spectra Using Principal Component Analysis. ANAL SCI 2017; 33:117-120. [PMID: 28070065 DOI: 10.2116/analsci.33.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Infrared p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) is a promising analytical tool for revealing the molecular orientation quantitatively of each chemical group in a thin film even with surface roughness. The spectra are often disturbed by noise and fringe, however, due to the multiple reflections in the substrate and the film, which makes the quantitative analysis very difficult. Therefore, improvement of the signal to noise (SN) ratio of the spectra is expected. Principal component analysis (PCA), in the present study, is first applied to the noise reduction for pMAIRS spectra of a poly(3-hexylthiophene) spin-coated thin film by employing the spin-speed as the experimental parameter. As a result, high quality pMAIRS spectra are readily obtained, with which highly reliable quantitative discussion is made.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Laboratory of Solution and Interface Chemistry, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University
| | | | | |
Collapse
|