1
|
Andre CM, Szymczak NK. Synthesis of heteroleptic bis-phosphine bis-NHC iron (0) complexes: a strategy to enhance small molecule activation. Chem Commun (Camb) 2024; 60:14037-14040. [PMID: 39513982 PMCID: PMC11563305 DOI: 10.1039/d4cc05463f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
We report the synthesis of heteroleptic iron complexes supported by both a bis-phosphine ligand (depe) and a bis-NHC ligand. The mixed ligand sets provide access to iron (0) adducts of N2 and CO that are highly activated, in comparison to homoleptic (i.e. Fe(depe)2L) variants. Computational and experimental studies revealed the mixed ligand set distorts the geometric and electronic structure to yield an unusually basic iron. Although protonation occurred at Fe, silylation of the Fe(0)N2 complex afforded a highly activated silyldiazenido [FeNNSiMe3]+ complex.
Collapse
Affiliation(s)
- Christian M Andre
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA.
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Gravogl L, Keilwerth M, Körber E, Heinemann FW, Meyer K. From d 8 to d 1: Iron(0) and Iron(I) Complexes Complete the Series of Eight Fe Oxidation States within the TIMMN Mes Ligand Framework. Inorg Chem 2024; 63:15888-15905. [PMID: 39145894 DOI: 10.1021/acs.inorgchem.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Reduction of the ferrous precursor [(TIMMNMes)Fe(Cl)]+ (1) (TIMMNMes = tris-[(3-mesitylimidazol-2-ylidene)methyl]amine) to the low-valent iron(0) complex [(TIMMNMes)Fe(CO)3] (2) is presented, where the tris(N-heterocyclic carbene) (NHC) ligand framework remains intact, yet the coordination mode changed from 3-fold to 2-fold coordination of the carbene arms. Further, the corresponding iron(I) complexes [(TIMMNMes)Fe(L)]+ (L = free site, η1-N2, CO, py) (3) are synthesized and fully characterized. Complexes 1-3 demonstrate the notable steric and electronic flexibility of the TIMMNMes ligand framework by variation of the Fe-N anchor and Fe-carbene distances and the variable size of the axial cavity occupation. This is further underpinned by the oxidation of 3-N2 in a reaction with benzophenone to yield the corresponding, charge-separated iron(II) radical complex [(TIMMNMes)Fe(OCPh2)]+ (4). We found rather surprising similarities in the reactivity behavior when going to low- or high-valent oxidation states of the central iron ion. This is demonstrated by the closely related reactivity of 3-N2, where H atom abstraction with TEMPO triggers the formation of the metallacycle [(TIMMNMes*)Fe(py)]+ (5), and the reactivity of the highly unstable Fe(VII) nitride complex [(TIMMNMes)Fe(N)(F)]3+ to give the metallacyclic Fe(V) imido complex [(TIMMNMesN)Fe(NMes)(MeCN)]3+ (6) upon warming. Thus, the employed tris(carbene) chelate is not only capable of stabilizing the superoxidized Fe(VI) and Fe(VII) nitrides but equally supports the iron center in its low oxidation states 0 and +1. Isolation and characterization of these zero- and monovalent iron complexes demonstrate the extraordinary capability of the tris(carbene) chelate TIMMN to support iron in eight different oxidation states within the very same ligand platform.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Eva Körber
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Liu Q, Wang P, Wang Y, Zou J, Leng X, Deng L. Iron(I) Complex Bearing an Open-Shell Diazenido Ligand. J Am Chem Soc 2024; 146:13629-13640. [PMID: 38706251 DOI: 10.1021/jacs.4c03483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Low-valent transition-metal diazenido species are important intermediates in transition-metal-mediated dinitrogen reduction reactions. Isolable complexes of the type unanimously feature closed-shell diazenido ligands. Those bearing open-shell diazenido ligands have remained elusive. Herein, we report the synthesis, characterization, and reactivity of a d7 iron(I) complex featuring an open-shell silyldiazenido ligand, [(ICy)Fe(NNSiiPr3)(η2:η2-dvtms)] (1, ICy = 1,3-dicyclohexylimidazole-2-ylidene, dvtms = divinyltetramethyldisiloxane). Complex 1 is prepared in good yield by silylation of the iron(-I)-N2 complex [K(18-crown-6)][(ICy)Fe(N2)(η2:η2-dvtms)] with iPr3SiOTf and has been fully characterized by various spectroscopic methods. Theoretical studies, in combination with characterization data, established an S = 1/2 ground spin-state for 1 that can best be described as a quartet iron(I) center featuring an antiferromagnetically coupled triplet silyldiazenido ligand. The diazenido and alkene ligands in 1 are labile, as indicated by the facile disproportionation reaction of 1 at ambient temperature to transform into the iron(II) bis(diazenido) species [(ICy)(NNSiiPr3)2Fe(dvtms)Fe(NNSiiPr3)2(ICy)] (2) and the iron(0) species [(ICy)Fe(η2:η2-dvtms)] and also the alkene-exchange reaction of 1 with PhCH═CHBC8H14 to form [(ICy)Fe(NNSiiPr3)(η2-trans-PhCH═CHBC8H14)] (3). Complex 1 is light-sensitive. Upon photolysis, it undergoes a SiiPr3 radical-transfer reaction to yield [(ICy)Fe(σ:η2-MeCHSiMe2OSiMe2CH═CHSiiPr3)] (4) and N2. The reactions of 1 with the trityl radical and organic bromides yield iron(II) complexes, which indicates its reducing nature. Moreover, 1 is a weak hydrogen-atom abstractor, as indicated by its inertness toward HSi(SiMe3)3 and cyclohexa-1,4-diene and the low calculated N-H bond dissociation energy (48 kcal/mol) of its corresponding iron(II) iso-hydrazenido species.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yujian Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Junjie Zou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
4
|
Schmitt M, Krossing I. Terminal end-on coordination of dinitrogen versus isoelectronic CO: A comparison using the charge displacement analysis. J Comput Chem 2023; 44:149-158. [PMID: 35312076 DOI: 10.1002/jcc.26837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022]
Abstract
The metal dinitrogen bonding in a wide series of terminal end-on dinitrogen complexes is investigated with the charge displacement analysis based on natural orbitals of chemical valence (CD-NOCV). The effect of the σ donation and π backdonation on the NN bond are discussed and compared with the observations for a series of carbonyl complexes, published in 2016 by Tarantelli et al. The σ donation is relative invariant over the series of dinitrogen complexes and has no significant effect on the NN bond strength, whereas the π backdonation causes a considerable elongation of the NN bond. Some uncommon examples of weakly bound dinitrogen with blue-shifted stretching frequency compared to free N2 (ν = 2330 cm-1 ) are known. The dinitrogen bonding in these complexes is simulated with a point charge. Apparently, electrostatics account for the shortened N─N bond in these systems.
Collapse
Affiliation(s)
- Manuel Schmitt
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Kuriyama S, Kato T, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Catalytic Reduction of Dinitrogen to Ammonia and Hydrazine Using Iron–Dinitrogen Complexes Bearing Anionic Benzene-Based PCP-type Pincer Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Takeru Kato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya 457-8530
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| |
Collapse
|
6
|
Li S, Ouyang Z, Zou J, Wang D, Xu B, Deng L. A Mononuclear Iron Thiolate Complex with N-Heterocyclic Carbene Ligation. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ye Z, Yang Z, Yang C, Huang M, Xu X, Ke Z. Disarming the alkoxide trap to access a practical FeCl 3 system for borrowing-hydrogen N-alkylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00825d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disarming the alkoxide trap using an in situ reduction strategy to access a practical FeCl3 and N-heterocyclic carbene system for borrowing-hydrogen N-alkylation.
Collapse
Affiliation(s)
- Zongren Ye
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhenjie Yang
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chenhui Yang
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ming Huang
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xianfang Xu
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, School of Chemistry, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming, 525000, P.R. China
| |
Collapse
|
8
|
Li Y, Lin X, Ma F, Mo Y. Computational Study of CO 2 Reduction Catalyzed by Iron(I) Complex at Different Spin States: Cooperativity of Hydrogen Bonding and Auxiliary Group Effect. ACS OMEGA 2021; 6:31971-31981. [PMID: 34870020 PMCID: PMC8637949 DOI: 10.1021/acsomega.1c04758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
To explore alternative approaches to the CO2 reduction to formate and provide an insight into the spin state effect on the CO2 reduction, we theoretically designed a kind of low-valence iron(I) model complex, whose doublet, quartet, and sextet states are denoted as 2 Fe(I), 4 Fe(I), and 6 Fe(I), respectively. This complex is featured with an iron(I) center, which bonds to a 1,2-ethanediamine (en) and a 2-hydroxy-biphenyl group. Reaction mechanisms for the CO2 reduction to formate catalyzed by this iron(I) model complex were explored using density functional theory (DFT) computations. Studies showed that the univalent iron(I) compound can efficiently fix and activate a CO2 molecule, whereas its oxidized forms with trivalent iron(III) or bivalent iron(II) cannot activate CO2. For the iron(I) compound, it was found that the lowest spin state 2 Fe(I) is the most favorable for the CO2 reduction as the reactions barriers involving 2 Fe(I), 4 Fe(I), and 6 Fe(I) are 25.6, 37.2, and 35.9 kcal/mol, respectively. Yet, a photosensitizer-free visible-light-mediated high-low spin shift from 4 Fe(I) and 6 Fe(I) to 2 Fe(I) is likely through the reverse intersystem crossing (RIC) because the 4 Fe(I) and 6 Fe(I) compounds have strong absorption in the visible-light range. Notably, the synergistic interaction between the hydrogen bonding from the auxiliary hydroxyl group in the 2-hydroxy-biphenyl moiety to CO2 and an intermediate five-membered ring promotes the proton transfer, leading to the formation of the -COOH moiety from CO2 and the Fe-O bond. With the addition of H2, one H2 molecule is split by the Fe-O bond and thus serves as H atom sources for both the CO2 reduction and the recovery of the auxiliary hydroxyl group. The present theoretical study provides a novel solution for the challenging CO2 reduction, which calls for further experimental verifications.
Collapse
Affiliation(s)
- Yazhou Li
- School
of Chemistry and Materials Science, Huaibei
Normal University, Huaibei 235000, China
| | - Xuhui Lin
- Sichuan
Engineering Research Center for Biomimetic Synthesis of Natural Drugs,
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Fang Ma
- School
of Chemistry and Materials Science, Huaibei
Normal University, Huaibei 235000, China
| | - Yirong Mo
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
9
|
Rouf AM, Huang Y, Dong S, Zhu J. Systematic Design of a Frustrated Lewis Pair Containing Methyleneborane and Carbene for Dinitrogen Activation. Inorg Chem 2021; 60:5598-5606. [PMID: 33789042 DOI: 10.1021/acs.inorgchem.0c03520] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Activation of atmospherically abundant dinitrogen (N2) by metal-free species under mild reaction conditions has been one of the most challenging areas in chemistry for decades. Very recent but limited progress in N2 activation by boron species, including two-coordinated borylene and methyleneborane and three-coordinated borole and borane, has been made toward metal-free N2 activation. Here, we systematically probe an experimentally viable frustrated Lewis pair (FLP) containing two moieties (methyleneborane and carbene) for N2 activation via density functional theory (DFT) calculations, which has proven to be an efficient approach for N2 activation in a thermodynamically and kinetically favorable manner. Aromaticity is found to play a crucial role in stabilization of the product. This study could be a valuable alternative for the development of metal-free N2 activation chemistry, highlighting great potential of FLP for N2 activation and functionalization.
Collapse
Affiliation(s)
- Alvi Muhammad Rouf
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yuanyuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
10
|
Speelman AL, Skubi KL, Mercado BQ, Holland PL. Synthesis and Reactivity of Iron Complexes with a Biomimetic SCS Pincer Ligand. Inorg Chem 2021; 60:1965-1974. [PMID: 33443404 DOI: 10.1021/acs.inorgchem.0c03427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent experimental evidence suggests that the FeMoco of nitrogenase undergoes structural rearrangement during N2 reduction, which may result in the generation of coordinatively unsaturated iron sites with two sulfur donors and a carbon donor. In an effort to synthesize and study small-molecule model complexes with a one-carbon/two-sulfur coordination environment, we have designed two new SCS pincer ligands containing a central NHC donor accompanied by thioether- or thiolate-functionalized aryl groups. Metalation of the thioether ligand with Fe(OTf)2 gives 6-coordinate complexes in which the SCS ligand binds meridionally. In contrast, metalation of the thiolate ligand with Fe(HMDS)2 gives a four-coordinate pseudotetrahedral amide complex in which the ligand binds facially, illustrating the potential structural flexibility of these ligands. Reaction of the amide complex with a bulky monothiol gives a four-coordinate complex with a one-carbon/three-sulfur coordination environment that resembles the resting state of nitrogenase. Reaction of the amide complex with phenylhydrazine gives a product with a rare κ1-bound phenylhydrazido group which undergoes N-N cleavage to give a phenylamido complex.
Collapse
Affiliation(s)
- Amy L Speelman
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Kazimer L Skubi
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Gao Y, Pink M, Smith JM. Iron(II) Complexes of an Anionic Bis(ylide)diphenylborate Ligand. Inorg Chem 2020; 59:17303-17309. [DOI: 10.1021/acs.inorgchem.0c02575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M. Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Lutz SA, Hickey AK, Gao Y, Chen CH, Smith JM. Two-State Reactivity in Iron-Catalyzed Alkene Isomerization Confers σ-Base Resistance. J Am Chem Soc 2020; 142:15527-15535. [PMID: 32786744 DOI: 10.1021/jacs.0c07300] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A low-coordinate, high spin (S = 3/2) organometallic iron(I) complex is a catalyst for the isomerization of alkenes. A combination of experimental and computational mechanistic studies supports a mechanism in which alkene isomerization occurs by the allyl mechanism. Importantly, while substrate binding occurs on the S = 3/2 surface, oxidative addition to an η1-allyl intermediate only occurs on the S = 1/2 surface. Since this spin state change is only possible when the alkene substrate is bound, the catalyst has high immunity to typical σ-base poisons due to the antibonding interactions of the high spin state.
Collapse
Affiliation(s)
- Sean A Lutz
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
13
|
Arnett CH, Agapie T. Activation of an Open Shell, Carbyne-Bridged Diiron Complex Toward Binding of Dinitrogen. J Am Chem Soc 2020; 142:10059-10068. [DOI: 10.1021/jacs.0c01896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Charles H. Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Wang Y, Zhang H, Xie S, Sun H, Li X, Fuhr O, Fenske D. An Air-Stable N-Heterocyclic [PSiP] Pincer Iron Hydride and an Analogous Nitrogen Iron Hydride: Synthesis and Catalytic Dehydration of Primary Amides to Nitriles. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yajie Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People’s Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie und Karlsruher Nano-Micro-Facility, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie und Karlsruher Nano-Micro-Facility, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
15
|
Liang Q, Song D. Iron N-heterocyclic carbene complexes in homogeneous catalysis. Chem Soc Rev 2020; 49:1209-1232. [DOI: 10.1039/c9cs00508k] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review article summarizes recent development of homogeneous iron N-heterocyclic carbene catalysts.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Datong Song
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
16
|
Nagelski AL, Fataftah MS, Bollmeyer MM, McWilliams SF, MacMillan SN, Mercado BQ, Lancaster KM, Holland PL. The influences of carbon donor ligands on biomimetic multi-iron complexes for N 2 reduction. Chem Sci 2020; 11:12710-12720. [PMID: 34094466 PMCID: PMC8163302 DOI: 10.1039/d0sc03447a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The active site clusters of nitrogenase enzymes possess the only examples of carbides in biology. These are the only biological FeS clusters that are capable of reducing N2 to NH4+, implicating the central carbon and its interaction with Fe as important in the mechanism of N2 reduction. This biological question motivates study of the influence of carbon donors on the electronic structure and reactivity of unsaturated, high-spin iron centers. Here, we present functional and structural models that test the impacts of carbon donors and sulfide donors in simpler iron compounds. We report the first example of a diiron complex that is bridged by an alkylidene and a sulfide, which serves as a high-fidelity structural and spectroscopic model of a two-iron portion of the active-site cluster (FeMoco) in the resting state of Mo-nitrogenase. The model complexes have antiferromagnetically coupled pairs of high-spin iron centers, and sulfur K-edge X-ray absorption spectroscopy shows comparable covalency of the sulfide for C and S bridged species. The sulfur-bridged compound does not interact with N2 even upon reduction, but upon removal of the sulfide it becomes capable of reducing N2 to NH4+ with the addition of protons and electrons. This provides synthetic support for sulfide extrusion in the activation of nitrogenase cofactors. High-spin diiron alkylidenes give insight into the electronic structure and functional relevance of carbon in the FeMoco active site of nitrogenase.![]()
Collapse
Affiliation(s)
| | | | - Melissa M. Bollmeyer
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | |
Collapse
|
17
|
Speelman AL, Čorić I, Van Stappen C, DeBeer S, Mercado BQ, Holland PL. Nitrogenase-Relevant Reactivity of a Synthetic Iron-Sulfur-Carbon Site. J Am Chem Soc 2019; 141:13148-13157. [PMID: 31403298 DOI: 10.1021/jacs.9b05353] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simple synthetic compounds with only S and C donors offer a ligation environment similar to the active site of nitrogenase (FeMoco) and thus demonstrate reasonable mechanisms and geometries for N2 binding and reduction in nature. We recently reported the first example of N2 binding at a mononuclear iron site supported by only S and C donors. In this work, we report experiments that examine the mechanism of N2 binding in this system. The reduction of an iron(II) tris(thiolate) complex with 1 equiv of KC8 leads to a thermally unstable intermediate, and a combination of Mössbauer, EPR, and X-ray absorption spectroscopies identifies it as a high-spin (S = 3/2) iron(I) species that maintains coordination of all three sulfur atoms. DFT calculations suggest that this iron(I) intermediate has a pseudotetrahedral geometry that resembles the S3C iron coordination environment of the belt iron sites in the resting state of the FeMoco. Further reduction to the iron(0) oxidation level under argon causes the dissociation of one of the thiolate donors and gives an η6-arene species which reacts with N2. Thus, in this system the loss of thiolate and binding of N2 require reduction beyond the iron(I) level to the iron(0) level. Further reduction of the iron(0)-N2 complex gives a reactive, formally iron(-I) species. Treatment of the putative iron(-I) complex with weak acids gives low yields of ammonia and hydrazine, demonstrating that these nitrogenase products can be generated from N2 at a synthetic Fe-S-C site. Catalytic N2 reduction is not observed, which is attributed to protonation of the supporting ligand and degradation of the complex via ligand dissociation. Identification of the challenges in this system gives insight into the design features needed for functional biomimetic complexes.
Collapse
Affiliation(s)
- Amy L Speelman
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Ilija Čorić
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Brandon Q Mercado
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Patrick L Holland
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|
18
|
Field LD, Li HL, Dalgarno SJ, McIntosh RD. Ammonia and Hydrazine from Coordinated Dinitrogen by Complexes of Iron(0). Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leslie D. Field
- School of Chemistry University of New South Wales NSW 2052 Australia
| | - Hsiu L. Li
- School of Chemistry University of New South Wales NSW 2052 Australia
| | | | | |
Collapse
|
19
|
McWilliams SF, Bill E, Lukat-Rodgers G, Rodgers KR, Mercado BQ, Holland PL. Effects of N 2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. J Am Chem Soc 2018; 140:8586-8598. [PMID: 29957940 PMCID: PMC6115203 DOI: 10.1021/jacs.8b04828] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Distinguishing the reactivity differences between N2 complexes having different binding modes is crucial for the design of effective N2-functionalizing reactions. Here, we compare the reactions of a K-bridged, dinuclear FeNNFe complex with a monomeric Fe(N2) complex where the bimetallic core is broken up by the addition of chelating agents. The new anionic iron(0) dinitrogen complex has enhanced electron density at the distal N atoms of coordinated N2, and though the N2 is not as weakened in this monomeric compound, it is much more reactive toward silylation by (CH3)3SiI (TMSI). Double silylation of N2 gives a three-coordinate iron(III) hydrazido(2-) complex, which is finely balanced between coexisting S = 1/2 and S = 3/2 states that are characterized by crystallography, spectroscopy, and computations. These results give insight into the interdependence between binding modes, alkali dependence, reactivity, and magnetic properties within an iron system that functionalizes N2.
Collapse
Affiliation(s)
- Sean F. McWilliams
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| | - Eckhard Bill
- Max-Planck-Insitut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Gudrun Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| |
Collapse
|
20
|
Gao Y, Li G, Deng L. Bis(dinitrogen)cobalt(−1) Complexes with NHC Ligation: Synthesis, Characterization, and Their Dinitrogen Functionalization Reactions Affording Side-on Bound Diazene Complexes. J Am Chem Soc 2018; 140:2239-2250. [DOI: 10.1021/jacs.7b11660] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yafei Gao
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, Shanghai
Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Guangyu Li
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, Shanghai
Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Liang Deng
- State Key Laboratory of Organometallic
Chemistry, Center for Excellence in Molecular Synthesis, Shanghai
Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
21
|
Bai Y, Zhang J, Cui C. An arene-tethered silylene ligand enabling reversible dinitrogen binding to iron and catalytic silylation. Chem Commun (Camb) 2018; 54:8124-8127. [DOI: 10.1039/c8cc03734e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A silylene–iron(0) dinitrogen complex enabled the catalytic silylation of N2 with high activity.
Collapse
Affiliation(s)
- Yunping Bai
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Jianying Zhang
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chunming Cui
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry
- Nankai University
- Tianjin 300071
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
22
|
Cavaillé A, Joyeux B, Saffon-Merceron N, Nebra N, Fustier-Boutignon M, Mézailles N. Triphos–Fe dinitrogen and dinitrogen–hydride complexes: relevance to catalytic N2 reductions. Chem Commun (Camb) 2018; 54:11953-11956. [DOI: 10.1039/c8cc07466f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanistic investigations of the catalyzed reduction of N2 with a rare (tridentate phosphine)Fe(0) bis dinitrogen complex.
Collapse
Affiliation(s)
- Anthony Cavaillé
- Laboratoire Hétérochimie Fondamentale et Appliquée
- Université Paul Sabatier
- CNRS
- 31062 Toulouse
- France
| | - Benjamin Joyeux
- Laboratoire Hétérochimie Fondamentale et Appliquée
- Université Paul Sabatier
- CNRS
- 31062 Toulouse
- France
| | | | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée
- Université Paul Sabatier
- CNRS
- 31062 Toulouse
- France
| | - Marie Fustier-Boutignon
- Laboratoire Hétérochimie Fondamentale et Appliquée
- Université Paul Sabatier
- CNRS
- 31062 Toulouse
- France
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée
- Université Paul Sabatier
- CNRS
- 31062 Toulouse
- France
| |
Collapse
|
23
|
Imayoshi R, Nakajima K, Takaya J, Iwasawa N, Nishibayashi Y. Synthesis and Reactivity of Iron- and Cobalt-Dinitrogen Complexes Bearing PSiP-Type Pincer Ligands toward Nitrogen Fixation. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700569] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryuji Imayoshi
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| | - Kazunari Nakajima
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| | - Jun Takaya
- Department of Chemistry; Tokyo Institute of Technology; O-okayama, Meguro-ku 152-8551 Tokyo Japan
| | - Nobuharu Iwasawa
- Department of Chemistry; Tokyo Institute of Technology; O-okayama, Meguro-ku 152-8551 Tokyo Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation; School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| |
Collapse
|
24
|
Reiners M, Baabe D, Zaretzke MK, Freytag M, Walter MD. Reversible dinitrogen binding to [Cp′Fe(NHC)] associated with an N2-induced spin state change. Chem Commun (Camb) 2017; 53:7274-7277. [DOI: 10.1039/c7cc01535f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible N2 coordination to [Cp′Fe(IiPr2Me2)] induces a spin-state change.
Collapse
Affiliation(s)
- Matthias Reiners
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| | - Marc-Kevin Zaretzke
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| | - Matthias Freytag
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität
- 38106 Braunschweig
- Germany
| |
Collapse
|