1
|
Momeni BZ, Abd-El-Aziz AS. Recent advances in the design and applications of platinum-based supramolecular architectures and macromolecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Sotani T, Yajima T, Sogawa H, Sanda F. Synthesis of Platinum-Containing Conjugated Polymers Bearing Optically Active Amide Groups: A Mechanistic Study of Chiral Aggregation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Taichi Sotani
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tatsuo Yajima
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Hiromitsu Sogawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Fumio Sanda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
3
|
Liu X, Zhang K, Gao J, Chen Y, Tung C, Wu L. Monochromophore‐Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angew Chem Int Ed Engl 2020; 59:23456-23460. [DOI: 10.1002/anie.202007039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/30/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao‐Qin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry North University of China Taiyuan 030051 China
| | - Ke Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Feng Gao
- Department of Chemistry North University of China Taiyuan 030051 China
| | - Yu‐Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
Liu X, Zhang K, Gao J, Chen Y, Tung C, Wu L. Monochromophore‐Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Qin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry North University of China Taiyuan 030051 China
| | - Ke Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Feng Gao
- Department of Chemistry North University of China Taiyuan 030051 China
| | - Yu‐Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Mukherjee A, Pal DS, Kar H, Ghosh S. Confined supramolecular polymers in water with exceptional stability, photoluminescence and chiroptical properties. Polym Chem 2020. [DOI: 10.1039/d0py01329c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid-encased chiral supramolecular polymer nanorods (SPNRs), synthesized by the nanoprecipitation method in water from a hydrophobic naphthalene-diimide derivative, exhibit excellent thermal stability, intense fluorescence and strong CPL.
Collapse
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Deep Sankar Pal
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Haridas Kar
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
6
|
Zhang T, Wang C, Ma X. Metal-Free Room-Temperature Phosphorescent Systems for Pure White-Light Emission and Latent Fingerprint Visualization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00910] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chaoyang Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Wang XF, Xiao H, Chen PZ, Yang QZ, Chen B, Tung CH, Chen YZ, Wu LZ. Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. J Am Chem Soc 2019; 141:5045-5050. [PMID: 30827093 DOI: 10.1021/jacs.9b00859] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pure organic room temperature phosphorescence (RTP) has unique advantages and various potential applications. However, it is challengeable to achieve organic RTP under visible and near-infrared (NIR)-light excitation, especially in aqueous solution. Herein we assemble difluoroboron β-diketonate compounds to form organic nanoparticles (NPs) in water. The resulting NPs are able to show efficient RTP, effective uptake, and bright imaging of HeLa cells under both visible- and NIR-light excitation. More strikingly, spectroscopic study, single-crystal X-ray diffraction, and DFT calculation reveal that the efficient RTP in organic NPs is originated from dimers in their excited states. The multiple interactions and intermolecular charge transfer in the dimer structures are of significance in promoting the production of dimer triplet excited states and suppressing the nonradiative decays to boost the RTP under visible- and NIR-light irradiation in water.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Peng-Zhong Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yu-Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
8
|
Ai Y, Li Y, Fu HLK, Chan AKW, Yam VWW. Aggregation and Tunable Color Emission Behaviors of l-Glutamine-Derived Platinum(II) Bipyridine Complexes by Hydrogen-Bonding, π-π Stacking and Metal-Metal Interactions. Chemistry 2019; 25:5251-5258. [PMID: 30680815 DOI: 10.1002/chem.201805901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 12/13/2022]
Abstract
An l-glutamine-derived functional group was introduced to the bis(arylalkynyl)platinum(II) bipyridine complexes 1-4. The emission could be switched between the 3 MLCT excited state and the triplet excimeric state through solvent or temperature changes, which is attributed to the formation and disruption of hydrogen-bonding, π-π stacking, and metal-metal interactions. Different architectures with various morphologies, such as honeycomb nanostructures and nanospheres, were formed upon solvent variations, and these changes were accompanied by 1 H NMR and distinct emission changes. Additionally, yellow and red emissive metallogels were formed at room temperature due to the different aggregation behaviors introduced by the substituent groups on bipyridine. The thermoresponsive metallogel showed emission behavior with tunable colors by controlling the temperature. The negative Gibbs free-energy change (ΔG) and the large association constant for excimer formation have suggested that the molecules undergo aggregation through hydrogen-bonding, π-π, and metal-metal interactions, resulting in triplet excimeric emission.
Collapse
Affiliation(s)
- Yeye Ai
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yongguang Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Heidi Li-Ki Fu
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Vivian Wing-Wah Yam
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
9
|
Fard MA, Behnia A, Puddephatt RJ. Platinum(II) complexes of pyridine–amine ligands with phenol substituents: isotactic supramolecular polymers. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The platinum(II) complexes [PtCl(SMe2)(κ2-N,N′-L)]Cl and [PtMe(SMe2)(κ2-N,N′-L)]Cl, L = 2-C5H4NCH2NH-x-C6H4OH (x = 2, 3, or 4), have been prepared and structurally characterized. In all cases, the complexes form supramolecular polymers in the solid state by NH··Cl and OH··Cl hydrogen bonding to the chloride anion. The ligands are chiral at the amine nitrogen atom, and in all cases, the polymers are isotactic, formed by self-recognition or narcissistic self-assembly. The structures in the crystalline state all have the Me2S ligand trans to pyridyl, but in solution, the methylplatinum(II) complexes isomerise slowly to give an equilibrium with the isomers having the methyl group trans to the pyridyl donor.
Collapse
Affiliation(s)
- Mahmood A. Fard
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Ava Behnia
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Richard J. Puddephatt
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
10
|
McCready M, Puddephatt RJ. Supramolecular Organoplatinum(IV) Chemistry: Dimers and Polymers Formed by Intermolecular Hydrogen Bonding. ACS OMEGA 2018; 3:13621-13629. [PMID: 31458067 PMCID: PMC6645029 DOI: 10.1021/acsomega.8b01860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/28/2018] [Indexed: 06/10/2023]
Abstract
The reaction of [PtMe2(6-dppd)], 1, where 6-dppd is a 1,4-bis(2-pyridyl)pyridazine derivative, with bromoalkanes BrCH2R, having a hydrogen-bond donor group R, gave the corresponding chiral products of trans oxidative addition [PtBrMe2(CH2R)(6-dppd)], 2a, R = CO2H; 3, R = 4-C6H4CO2H; 4, R = 4-C6H4CH2CO2H; 7, R = 2-C6H4CH2OH; 8, R = 4-C6H4B(OH)2; 9, R = 3-C6H4B(OH)2; and 10, R = 2-C6H4B(OH)2. Complex 2a was formed in equilibrium with two isomers formed by cis oxidative addition, while the reaction of 1 with BrCH2CH2CO2H gave mostly [PtBrMe(6-dppd)], 6. The supramolecular chemistry was studied by structure determination of six of the platinum(IV) complexes, with emphasis on the preference of the hydrogen bond acceptor (O, pyridyl N, or Br atom), formation of monomer, dimer, or polymer, and self-recognition or self-discrimination in self-assembly. Complex 7 formed a monomer with the OH···N hydrogen bond, and complexes 2a and 10 formed racemic dimers by complementary hydrogen bonding with self-discrimination between CO2H or B(OH)2 groups, respectively. Complexes 3, 4, and 9 formed polymers by intermolecular hydrogen bonding with self-recognition, with 4 containing OH···N and 3 and 9 containing OH···Br hydrogen bonds. It is concluded that there is no clear preference for the hydrogen bond acceptor group, and that the observed product depends also on the orientation of the hydrogen bond donor group.
Collapse
|
11
|
Ai Y, Ng M, Hong EY, Chan AK, Wei Z, Li Y, Yam VW. Solvent‐Induced and Temperature‐Promoted Aggregation of Bipyridine Platinum(II) Triangular Metallacycles and Their Near‐Infrared Emissive Behaviors. Chemistry 2018; 24:11611-11618. [DOI: 10.1002/chem.201802499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yeye Ai
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Maggie Ng
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Eugene Yau‐Hin Hong
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Alan Kwun‐Wa Chan
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Zhang‐Wen Wei
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yongguang Li
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| |
Collapse
|
12
|
Kotturi K, Masson E. Directional Self-Sorting with Cucurbit[8]uril Controlled by Allosteric π-π and Metal-Metal Interactions. Chemistry 2018; 24:8670-8678. [PMID: 29601113 DOI: 10.1002/chem.201800856] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 12/14/2022]
Abstract
To maximize Coulombic interactions, cucurbit[8]uril (CB[8]) typically forms ternary complexes that distribute the positive charges of the pair of guests (if any) over both carbonylated portals of the macrocycle. We present here the first exception to this recognition pattern. Platinum(II) acetylides flanked by 4'-substituted terpyridyl ligands (tpy) form 2:1 complexes with CB[8] in an exclusively stacked head-to-head orientation in a water/acetonitrile mixture. The host encapsulates the pair of tpy substituents, and both positive Pt centers sit on top of each other at the same CB[8] rim, leaving the other rim free of any interaction with the guests. This dramatic charge imbalance between the CB[8] rims would be electrostatically penalizing, were it not for allosteric π-π interactions between the stacked tpy ligands, and possible metal-metal interactions between both Pt centers. When both tpy and acetylides are substituted with aryl units, the metal-ligand complexes form 2:2 assemblies with CB[8] in aqueous medium, and the directionality of the assembly (head-to-head or head-to-tail) can be controlled, both kinetically and thermodynamically.
Collapse
Affiliation(s)
- Kondalarao Kotturi
- Department of Chemistry and Biochemistry, Ohio University, 181 Clippinger Hall, Athens, Ohio, 45701, USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University, 181 Clippinger Hall, Athens, Ohio, 45701, USA
| |
Collapse
|
13
|
Uflyand IE, Dzhardimalieva GI. Molecular design of supramolecular polymers with chelated units and their application as functional materials. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1465567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Chernogolovka, Russian Federation
| |
Collapse
|
14
|
Chen L, Wang H, Zhang DW, Zhou Y, Li ZT. Pt⋯Pt and π–π interactions-induced pleated polymeric foldamers. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Wang SM, Yu ML, Feng K, Li XB, Chen YZ, Chen B, Tung CH, Wu LZ. Efficient electronic communication-driven photoinduced charge-separation in 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded N,N-dimethylaniline-anthracene assemblies. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Tan S, Sha Y, Zhu T, Rahman MA, Tang C. Photoresponsive supramolecular polymers based on quadruple hydrogen-bonding and a photochromic azobenzene motif. Polym Chem 2018. [DOI: 10.1039/c8py01217b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoresponsive quadruple hydrogen-bonded supramolecular polymer was constructed using photochromic azobenzene and ureidopyrimidinone motifs.
Collapse
Affiliation(s)
- Shaobo Tan
- Department of Applied Chemistry
- School of Science
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Ye Sha
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Md Anisur Rahman
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
17
|
Zhang XP, Zhang DS, Qi XW, Zhu LH, Wang XH, Sun W, Shi ZF, Lin Q. Luminescent mechanochromism of chiral alkynylplatinum(II) bipyridine complexes functionalized with pinene groups. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Chen YZ, Pan D, Chen B, Wang GX, Tung CH, Wu LZ. Synthesis, Characterization, and Selective Sr2+
Sensing Study of Copper(I)-Bridged Calix[4]arene-Based Binuclear Alkynylplatinum(II) Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yu-Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; 100190 Beijing P. R. China
- School of Future Technology; University of Chinese Academy of Sciences; China
| | - Dun Pan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; 100190 Beijing P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; 100190 Beijing P. R. China
- School of Future Technology; University of Chinese Academy of Sciences; China
| | - Ge-Xia Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; 100190 Beijing P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; 100190 Beijing P. R. China
- School of Future Technology; University of Chinese Academy of Sciences; China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; 100190 Beijing P. R. China
- School of Future Technology; University of Chinese Academy of Sciences; China
| |
Collapse
|
19
|
Cheng HK, Chung CYS, Zhang K, Yam VWW. Simple and Versatile Preparation of Luminescent Amphiphilic Platinum(II)-containing Polystyrene Complexes With Transformable Nanostructures Assisted by Pt⋅⋅⋅Pt and π-π Interactions. Chem Asian J 2017; 12:1509-1516. [DOI: 10.1002/asia.201700123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Heung-Kiu Cheng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong
| | - Clive Yik-Sham Chung
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong
| | - Kaka Zhang
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong
| |
Collapse
|