1
|
Saladin L, Breton V, Le Berruyer V, Nazac P, Lequeu T, Didier P, Danglot L, Collot M. Targeted Photoconvertible BODIPYs Based on Directed Photooxidation-Induced Conversion for Applications in Photoconversion and Live Super-Resolution Imaging. J Am Chem Soc 2024; 146:17456-17473. [PMID: 38861358 DOI: 10.1021/jacs.4c05231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Photomodulable fluorescent probes are drawing increasing attention due to their applications in advanced bioimaging. Whereas photoconvertible probes can be advantageously used in tracking, photoswitchable probes constitute key tools for single-molecule localization microscopy to perform super-resolution imaging. Herein, we shed light on a red and far-red BODIPY, namely, BDP-576 and BDP-650, which possess both properties of conversion and switching. Our study demonstrates that these pyrrolyl-BODIPYs convert into typical green- and red-emitting BODIPYs that are perfectly adapted to microscopy. We also showed that this pyrrolyl-BODIPYs undergo Directed Photooxidation Induced Conversion, a photoconversion mechanism that we recently introduced, where the pyrrole moiety plays a central role. These unique features were used to develop targeted photoconvertible probes toward different organelles or subcellular units (plasma membrane, mitochondria, nucleus, actin, Golgi apparatus, etc.) using chemical targeting moieties and a Halo tag. We notably showed that BDP-650 could be used to track intracellular vesicles over more than 20 min in two-color imagings with laser scanning confocal microscopy, demonstrating its robustness. The switching properties of these photoconverters were studied at the single-molecule level and were then successfully used in live single-molecule localization microscopy in epithelial cells and neurons. Both membrane- and mitochondria- targeted probes could be used to decipher membrane 3D architecture and mitochondrial dynamics at the nanoscale. This study builds a bridge between the photoconversion and photoswitching properties of probes undergoing directed photooxidation and shows the versatility and efficacy of this mechanism in advanced live imaging.
Collapse
Affiliation(s)
- Lazare Saladin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Victor Breton
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain team; NeurImag core facility scientific director, 75014 Paris, France
| | - Valentine Le Berruyer
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain team; NeurImag core facility scientific director, 75014 Paris, France
| | - Thiebault Lequeu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in healthy and Diseased brain team; NeurImag core facility scientific director, 75014 Paris, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| |
Collapse
|
2
|
Martin A, Rivera-Fuentes P. Fluorogenic polymethine dyes by intramolecular cyclization. Curr Opin Chem Biol 2024; 80:102444. [PMID: 38520774 DOI: 10.1016/j.cbpa.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Fluorescence imaging plays a pivotal role in the study of biological processes, and cell-permeable fluorogenic dyes are crucial to visualize intracellular structures with high specificity. Polymethine dyes are vitally important fluorophores in single-molecule localization microscopy and in vivo imaging, but their use in live cells has been limited by high background fluorescence and low membrane permeability. In this review, we summarize recent advances in the development of fluorogenic polymethine dyes via intramolecular cyclization. Finally, we offer an outlook on the prospects of fluorogenic polymethine dyes for bioimaging.
Collapse
Affiliation(s)
- Annabell Martin
- Department of Chemistry, University of Zurich, Zurich, Switzerland; École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Zhang Y, Zheng Y, Tomassini A, Singh AK, Raymo FM. Photoactivatable Fluorophores for Bioimaging Applications. ACS APPLIED OPTICAL MATERIALS 2023; 1:640-651. [PMID: 37601830 PMCID: PMC10437147 DOI: 10.1021/acsaom.3c00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Photoactivatable fluorophores provide the opportunity to switch fluorescence on exclusively in a selected area within a sample of interest at a precise interval of time. Such a level of spatiotemporal fluorescence control enables the implementation of imaging schemes to monitor dynamic events in real time and visualize structural features with nanometer resolution. These transformative imaging methods are contributing fundamental insights on diverse cellular processes with profound implications in biology and medicine. Current photoactivatable fluorophores, however, become emissive only after the activation event, preventing the acquisition of fluorescence images and, hence, the visualization of the sample prior to activation. We developed a family of photoactivatable fluorophores capable of interconverting between emissive states with spectrally resolved fluorescence, instead of switching from a nonemissive state to an emissive one. We demonstrated that our compounds allow the real-time monitoring of molecules diffusing across the cellular blastoderm of developing embryos as well as of polymer beads translocating along the intestinal tract of live nematodes. Additionally, they also permit the tracking of single molecules in the lysosomal compartments of live cells and the visualization of these organelles with nanometer resolution. Indeed, our photoactivatable fluorophores may evolve into invaluable analytical tools for the investigation of the fundamental factors regulating the functions and structures of cells at the molecular level.
Collapse
Affiliation(s)
- Yang Zhang
- Program of Polymer and Color Chemistry, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Yeting Zheng
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Andrea Tomassini
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Ambarish Kumar Singh
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
4
|
Zhang Y, Zheng Y, Tomassini A, Singh AK, Raymo FM. Photoactivatable BODIPYs for Live-Cell PALM. Molecules 2023; 28:molecules28062447. [PMID: 36985424 PMCID: PMC10057988 DOI: 10.3390/molecules28062447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Photoactivated localization microscopy (PALM) relies on fluorescence photoactivation and single-molecule localization to overcome optical diffraction and reconstruct images of biological samples with spatial resolution at the nanoscale. The implementation of this subdiffraction imaging method, however, requires fluorescent probes with photochemical and photophysical properties specifically engineered to enable the localization of single photoactivated molecules with nanometer precision. The synthetic versatility and outstanding photophysical properties of the borondipyrromethene (BODIPY) chromophore are ideally suited to satisfy these stringent requirements. Specifically, synthetic manipulations of the BODIPY scaffold can be invoked to install photolabile functional groups and photoactivate fluorescence under photochemical control. Additionally, targeting ligands can be incorporated in the resulting photoactivatable fluorophores (PAFs) to label selected subcellular components in live cells. Indeed, photoactivatable BODIPYs have already allowed the sub-diffraction imaging of diverse cellular substructures in live cells using PALM and can evolve into invaluable analytical probes for bioimaging applications.
Collapse
Affiliation(s)
- Yang Zhang
- Program of Polymer and Color Chemistry, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27606, USA
- Correspondence: (Y.Z.); (F.M.R.)
| | - Yeting Zheng
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Andrea Tomassini
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Ambarish Kumar Singh
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
- Correspondence: (Y.Z.); (F.M.R.)
| |
Collapse
|
5
|
Berdnikova DV. Photoswitches for controllable RNA binding: a future approach in the RNA-targeting therapy. Chem Commun (Camb) 2021; 57:10819-10826. [PMID: 34585681 DOI: 10.1039/d1cc04241f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA is an emerging drug target that opens new perspectives in the treatment of viral and bacterial infections, cancer and a range of so far incurable genetic diseases. Among the various strategies towards the design and development of selective and efficient ligands for targeting and detection of therapeutically relevant RNA, photoswitchable RNA binders represent a very promising approach due to the possibility to control the ligand-RNA and protein-RNA interactions by light with high spatiotemporal resolution. However, the field of photoswitchable RNA binders still remains underexplored due to challenging design of lead structures that should combine high RNA binding selectivity with efficient photochemical performance. The aim of this highlight article is to describe the development of photoswitchable noncovalent RNA binders and to outline the current situation and perspectives of this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Daria V Berdnikova
- Universität Siegen, Organische Chemie II, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| |
Collapse
|
6
|
Zhang Y, Zheng Y, Meana Y, Raymo FM. BODIPYs with Photoactivatable Fluorescence. Chemistry 2021; 27:11257-11267. [PMID: 34062023 DOI: 10.1002/chem.202101628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/11/2022]
Abstract
The borondipyrromethene (BODIPY) chromophore is a versatile platform for the construction of photoresponsive dyes with unique properties. Specifically, its covalent connection to a photocleavable group can be exploited to engineer compounds with photoswitchable fluorescence. The resulting photoactivatable fluorophores can increase their emission intensity or shift their emission wavelengths in response to switching. Such changes permit the spatiotemporal control of fluorescence with optical stimulations and the implementation of imaging strategies that would be impossible to replicate with conventional fluorophores. Indeed, BODIPYs with photoactivatable fluorescence enable the selective highlighting of intracellular targets, the nanoscaled visualization of sub-cellular components, the real-time monitoring of dynamic events and the photochemical writing of optical barcodes.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yeting Zheng
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Yasniel Meana
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| |
Collapse
|
7
|
Far-red photoactivatable BODIPYs for the super-resolution imaging of live cells. Methods Enzymol 2020. [PMID: 32560795 DOI: 10.1016/bs.mie.2020.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The identification of viable designs to construct switchable fluorescent probes and operate them in the interior of live cells is essential to allow the acquisition of SMLM images and permit the visualization of cellular components with sub-diffraction resolution. Our laboratories developed a mechanism to switch the fluorescence of BODIPY chromophores with the photoinduced cleavage of oxazine heterocycles under mild 405-nm illumination. With appropriate structural modifications, these switchable molecules can be engineered to immobilize covalently on large biomolecules within lysosomal compartments of live COS-7 cells and produce bright far-red fluorescence with optimal contrast upon activation. Such a combination of properties permits the acquisition of PALM images of the labeled organelles with localization precision of ca. 15nm. This article reports the experimental protocols for the synthesis of and live-cell labeling with these compounds as well as for the reconstruction of super-resolution images of the resulting biological preparations.
Collapse
|
8
|
Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 2020; 4:275-290. [PMID: 37127957 DOI: 10.1038/s41570-020-0186-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.
Collapse
|
9
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Zhang Y, Raymo FM. Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores. Bioconjug Chem 2020; 31:1052-1062. [PMID: 32150390 DOI: 10.1021/acs.bioconjchem.0c00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
11
|
Thapaliya ER, Mazza MMA, Cusido J, Baker JD, Raymo FM. A Synthetic Strategy for the Structural Modification of Photoactivatable BODIPY‐Oxazine Dyads. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ek Raj Thapaliya
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
| | - Mercedes M. A. Mazza
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
| | - Janet Cusido
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
- Department of Math and Natural Sciences Miami Dade College – Eduardo J. Padron Campus Miami USA
| | - James D. Baker
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
| |
Collapse
|
12
|
Abstract
As the inhibitory γ-aminobutyric acid-ergic (GABAergic) transmission has a pivotal role in the central nervous system (CNS) and defective forms of its synapses are associated with serious neurological disorders, numerous versions of caged GABA and, more recently, photoswitchable ligands have been developed to investigate such transmission. While the complementary nature of these probes is evident, the mechanisms by which the GABA receptors can be photocontrolled have not been fully exploited. In fact, the ultimate need for specificity is critical for the proper synaptic exploration. No caged allosteric modulators of the GABAA receptor have been reported so far; to introduce such an investigational approach, we exploited the structural motifs of the benzodiazepinic scaffold to develop a photocaged version of diazepam (CD) that was tested on basolateral amygdala (BLa) pyramidal cells in mouse brain slices. CD is devoid of any intrinsic activity toward the GABAA receptor before irradiation. Importantly, CD is a photoreleasable GABAA receptor-positive allosteric modulator that offers a different probing mechanism compared to caged GABA and photoswitchable ligands. CD potentiates the inhibitory signaling by prolonging the decay time of postsynaptic GABAergic currents upon photoactivation. Additionally, no effect on presynaptic GABA release was recorded. We developed a photochemical technology to individually study the GABAA receptor, which specifically expands the toolbox available to study GABAergic synapses.
Collapse
|
13
|
Berdnikova DV. Visible-range hemi-indigo photoswitch: ON-OFF fluorescent binder for HIV-1 RNA. Chem Commun (Camb) 2019; 55:8402-8405. [PMID: 31257385 DOI: 10.1039/c9cc04270a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proof-of-principle for the application of hemi-indigo derivatives as RNA binders with photocontrollable fluorescence is presented. The photoswitch binds to the human immunodeficiency virus type 1 (HIV-1) RNA with a significant light-up effect. The fluorescence of the RNA-bound ligand can be reversibly switched ON and OFF by light without destroying the ligand-RNA associates.
Collapse
Affiliation(s)
- Daria V Berdnikova
- Universität Siegen, Organische Chemie II, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany.
| |
Collapse
|
14
|
Zhang Y, Song KH, Tang S, Ravelo L, Cusido J, Sun C, Zhang HF, Raymo FM. Far-Red Photoactivatable BODIPYs for the Super-Resolution Imaging of Live Cells. J Am Chem Soc 2018; 140:12741-12745. [PMID: 30247890 PMCID: PMC9884153 DOI: 10.1021/jacs.8b09099] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The photoinduced disconnection of an oxazine heterocycle from a borondipyrromethene (BODIPY) chromophore activates bright far-red fluorescence. The high brightness of the product and the lack of autofluorescence in this spectral region allow its detection at the single-molecule level within the organelles of live cells. Indeed, these photoactivatable fluorophores localize in lysosomal compartments and remain covalently immobilized within these organelles. The suppression of diffusion allows the reiterative reconstruction of subdiffraction images and the visualization of the labeled organelles with excellent localization precision. Thus, the combination of photochemical, photophysical and structural properties designed into our fluorophores enable the visualization of live cells with a spatial resolution that is inaccessible to conventional fluorescence imaging.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431,,Departments of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60201
| | - Ki-Hee Song
- Departments of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60201
| | - Sicheng Tang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431
| | - Laura Ravelo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431
| | - Janet Cusido
- Department of Natural and Social Sciences, Miami Dade College – InterAmerican Campus, 627 S.W. 27th Avenue, Miami, FL 33135-2937
| | - Cheng Sun
- Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60201
| | - Hao F. Zhang
- Departments of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60201,Corresponding Author,
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431,,Corresponding Author,
| |
Collapse
|
15
|
Sansalone L, Tang S, Garcia-Amorós J, Zhang Y, Nonell S, Baker JD, Captain B, Raymo FM. A Photoactivatable Far-Red/Near-Infrared BODIPY To Monitor Cellular Dynamics in Vivo. ACS Sens 2018; 3:1347-1353. [PMID: 29863337 DOI: 10.1021/acssensors.8b00262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A mechanism to photoactivate far-red/near-infrared fluorescence with infinite contrast and under mild visible illumination was designed around the photophysical properties of borondipyrromethene (BODIPY) dyes and the photochemical behavior of oxazine heterocycles. Specifically, the photoinduced and irreversible cleavage of an oxazine ring with a laser line at 405 nm extends the electronic conjugation of a BODIPY chromophore over a 3 H-indole auxochrome with a 2-(4-methoxyphenyl)ethenyl substituent in position 5. This structural transformation shifts bathochromically the main absorption band of the BODIPY component to allow the selective excitation of the photochemical product with a laser line of 633 nm and produce fluorescence between 600 and 850 nm. This combination of activation, excitation, and emission wavelengths permits the visualization of the cellular blastoderm of developing Drosophila melanogaster embryos with optimal contrast and essentially no autofluorescence from the biological specimen. Furthermore, the sequential acquisition of images, after the photoactivation event, enables the tracking of individual cells within the embryos in real time. Thus, our structural design and operating principles for the photoactivation of far-red/near-infrared fluorescence can evolve into invaluable probes to monitor cellular dynamics in vivo.
Collapse
Affiliation(s)
- Lorenzo Sansalone
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Sicheng Tang
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Jaume Garcia-Amorós
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franqués 1, E-08028, Barcelona, Spain
| | - Yang Zhang
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, E-08017, Barcelona, Spain
| | - James D. Baker
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Burjor Captain
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
16
|
Wang X, Gu C, Zheng H, Zhang YM, Zhang SXA. A Multi-Stimuli-Responsive Oxazine Molecular Switch: A Strategy for the Design of Electrochromic Materials. Chem Asian J 2018. [DOI: 10.1002/asia.201800282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaojun Wang
- State Key Lab of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Chang Gu
- State Key Lab of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Hongzhi Zheng
- State Key Lab of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
17
|
Tang S, Zhang Y, Dhakal P, Ravelo L, Anderson CL, Collins KM, Raymo FM. Photochemical Barcodes. J Am Chem Soc 2018; 140:4485-4488. [PMID: 29561604 PMCID: PMC6056178 DOI: 10.1021/jacs.8b00887] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A photochemical strategy to encode fluorescence signals in vivo with spatial control was designed around the unique properties of a photoactivatable borondipyrromethene (BODIPY). The photoinduced disconnection of two oxazines, flanking a single BODIPY, in two consecutive steps produces a mixture of three emissive molecules with resolved fluorescence inside polymer beads. The relative amounts and emission intensities of the three fluorophores can be regulated precisely in each bead by adjusting the dose of activating photons to mark individual particles with distinct codes of fluorescence signals. The visible wavelengths and mild illumination sufficient to induce these transformations permit the photochemical barcoding of beads also in living nematodes. Different regions of the same animal can be labeled with distinct barcodes to allow the monitoring of their dynamics for long times with no toxic effects. Thus, our photochemical strategy for the generation of fluorescence barcodes can produce multiple and distinguishable labels in the same biological sample to enable the spatiotemporal tracking of, otherwise indistinguishable, targets.
Collapse
Affiliation(s)
| | | | | | - Laura Ravelo
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Cheyenne L. Anderson
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Kevin M. Collins
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
18
|
Zhang Y, Tang S, Thapaliya ER, Sansalone L, Raymo FM. Fluorescence activation with switchable oxazines. Chem Commun (Camb) 2018; 54:8799-8809. [DOI: 10.1039/c8cc03094d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activatable fluorophores allow the spatiotemporal control of fluorescence required to acquire subdiffraction images, highlight cancer cells and monitor dynamic events
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Sicheng Tang
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Ek Raj Thapaliya
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Lorenzo Sansalone
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| |
Collapse
|