1
|
Lu Y, Cao T, Li K, Lin YW, Zhu L, Huang J. Total Synthesis of Brevitaxin. Org Lett 2024; 26:5237-5242. [PMID: 38856036 DOI: 10.1021/acs.orglett.4c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Brevitaxin was prepared in nine steps from commercially available carnosic acid. The construction of the 1,4-benzodioxin moiety involved an unique stepwise ortho-quinone-engaged [4+2] cycloaddition. Two strategic stages were employed to prepare the highly unsaturated cycloaddition precursor 3: (1) synthesizing the diene moiety (C1-C2 and C10-C20 double bonds) by regioselective ortho-quinone tautomerization, and (2) installing four sp2-hybridized carbon atoms (C3, C5, C6 and C7) in one step using a SeO2-promoted chemo- and regioselective oxidation reaction.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Tingting Cao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Kang Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Lei Zhu
- College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Jun Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Hanif M, Zahoor AF, Saif MJ, Nazeer U, Ali KG, Parveen B, Mansha A, Chaudhry AR, Irfan A. Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: a review. RSC Adv 2024; 14:13100-13128. [PMID: 38655462 PMCID: PMC11036177 DOI: 10.1039/d4ra01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Epoxides are oxygen containing heterocycles which are significantly employed as crucial intermediates in various organic transformations. They are considered highly reactive three-membered heterocycles due to ring strain and they undergo epoxide ring opening reactions with diverse range of nucleophiles. Epoxide ring-opening reactions have gained prominence as flexible and effective means to obtain various functionalized molecules. These reactions have garnered substantial attention in organic synthesis, driven by the need to comprehend the synthesis of biologically and structurally important organic compounds. They have also found applications in the synthesis of complex natural products. In this review article, we have summarized the implementation of epoxide ring opening reactions in the synthesis of alkaloids and terpenoids based natural products reported within the last decade (2014-2023).
Collapse
Affiliation(s)
- Madiha Hanif
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P.O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
3
|
Balasubramani A, Ganaie BA, Mehta G. Direct Two Carbon Ring Expansion of 1-Indanones with Ynones: An Eco-Friendly, One-Flask Approach to Functionally Enriched 5H-Benzo[7]annulenes. J Org Chem 2023; 88:15452-15460. [PMID: 37880254 DOI: 10.1021/acs.joc.3c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Direct 2C-ring expansion of 1-indanones with ynones to 5H-benzo[7]annulenes has been observed, and its generality has been gauged (19 examples). Overall, this simple and convenient cascade process to 5H-benzo[7]annulenes involves engagement of 1-indanone with two ynone moieties with formation of three new C-C σ-bonds, cleavage of C-C σ-bond, and concurrent functionality amplification. The resulting seven-membered ring, laced with an opportunistic disposition of four proximal functional groups, offers avenues for their further productive interplay. Our new approach embraces many green and eco-friendly features.
Collapse
Affiliation(s)
| | | | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
4
|
Jia J, Wang Y, Zhou Q, Chen R, Chen X. Formal Synthesis of Ecteinascidin 743 from N-Cbz-l-tyrosine. J Org Chem 2023. [PMID: 37463501 DOI: 10.1021/acs.joc.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A formal total synthesis of ecteinascidin 743 and lurbinectedin is achieved. Key features involve a Pictet-Spengler cyclization coupling of the tetrahydroisoquinoline and phenylalaninol moieties prepared by a common route with high yield and selectivity, a Parikh-Doering oxidation with good chemoselectivity and functionality tolerance, and a light-mediated A-ring elaboration of pentacyclic methoxyquinone substrates. By the approach, the known advanced intermediate (4-step conversion to Et-743) can be obtained conveniently in 21 total steps from N-Cbz-l-tyrosine.
Collapse
Affiliation(s)
- Junhao Jia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yue Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Qin Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | | | - Xiaochuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
5
|
Hwang T, Tuccinardi JP, Beard AA, Jackson AC, Jung MJ, Wood JL. Total Syntheses of (±)-Dracocephalone A and (±)-Dracocequinones A and B. Angew Chem Int Ed Engl 2022; 61:e202210821. [PMID: 36121442 PMCID: PMC9828498 DOI: 10.1002/anie.202210821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 01/12/2023]
Abstract
Described herein are the first total syntheses of (±)-dracocephalone A (1) and (±)-dracocequinones A (4) and B (5). The synthesis was initially envisioned as proceeding through an intramolecular isobenzofuran Diels-Alder reaction, a strategy that eventually evolved into a Lewis acid-promoted spirocyclization. This highly diastereoselective transformation set the stage for trans-decalin formation and a late-stage Suárez oxidation that produced a [3.2.1] oxabicycle suited for conversion to 1. Brønsted acid-mediated aromatization, followed by a series of carefully choreographed oxidations, allowed for rearrangement to a [2.2.2] oxabicycle poised for conversion to 4 and 5.
Collapse
Affiliation(s)
- Taehwan Hwang
- Department of Chemistry and BiochemistryBaylor UniversityOne Bear Place97348WacoTexas 76798USA
| | - Joseph P. Tuccinardi
- Department of Chemistry and BiochemistryBaylor UniversityOne Bear Place97348WacoTexas 76798USA
| | - Alexandra A. Beard
- Department of Chemistry and BiochemistryBaylor UniversityOne Bear Place97348WacoTexas 76798USA
| | - Amy C. Jackson
- Department of Chemistry and BiochemistryBaylor UniversityOne Bear Place97348WacoTexas 76798USA
| | - Min J. Jung
- Department of Chemistry and BiochemistryBaylor UniversityOne Bear Place97348WacoTexas 76798USA
| | - John L. Wood
- Department of Chemistry and BiochemistryBaylor UniversityOne Bear Place97348WacoTexas 76798USA
| |
Collapse
|
6
|
Naeini AA, Ziegelmeier AA, Chain WJ. Recent Developments with Icetexane Natural Products. Chem Biodivers 2022; 19:e202200793. [PMID: 36215180 PMCID: PMC11067433 DOI: 10.1002/cbdv.202200793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Icetexane diterpenoids are a diverse family of natural products sourced from several species of terrestrial plants. Icetexanes exhibit a broad array of biological activities and together with their complex 6-7-6 tricyclic scaffolds, they have piqued the interest of synthetic organic chemists, natural products chemists, and biological investigators over the past four decades and were reviewed 13 years ago. This review summarizes icetexane natural products isolated since 2009, provides an overview of new synthetic approaches to the icetexane problem, and proposes an additional classification of icetexanes based on novel structures that are unlike previously isolated materials.
Collapse
Affiliation(s)
- Ali Amiri Naeini
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Alexandre A Ziegelmeier
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
7
|
Kang J, Quynh Le T, Oh CH. Recent advances in abietane/icetexane synthesis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Xia F, Du SZ, Wu MK, Liu R, Ye YS, Yang J, Xu G, Nian Y. Icetexane diterpenoids as Ca v3.2 T-type calcium channel inhibitors from Salvia prattii and analgesic effect of their Semi-synthesized derivatives. Bioorg Chem 2022; 128:106059. [PMID: 35933895 DOI: 10.1016/j.bioorg.2022.106059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Ten new icetexane diterpenoids, salpratins E-N (1-10) and a known analogue (11) were characterized from Salvia prattii Hemsl. Structurally, 1 is the first 19(4 → 3)-abeo-icetexane diterpenoid featuring with a 6/7/6 ring system. The structures of isolated compounds were determined by comprehensive analyses of spectroscopic data, ECD calculation, and single-crystal X-ray diffraction. Biological studies initially revealed that 1, 7, 10, and 11 are notable Cav3.2 T-type Ca2+ channel (TTCC) inhibitors with IC50 values of 2.9, 5.1, 2.3, and 3.2 μM, respectively. Five icetexane related derivatives (13-17) were synthesized from an abietane type precursor, (+)-carnosic acid (12), for the purpose of overcoming the poor water solubility of aforementioned active compounds and further investigating diverse diterpenes with valuable activity. Among them, 13 and 14 showed potent inhibitions on Cav3.2, having IC50 values of 6.7 and 2.4 μM, respectively. Significantly, they exhibited dose-dependent (1, 3, and 10 mg/kg) and comparable analgesic effects as that of Z944, a TTCCs inhibitor under clinical trial for pain management, in the mouse acetic acid writhing test. These findings further enrich structural diversity and bioactivity of Salvia diterpenoids, as well as provide promising structural templates for the development of Cav3.2 analgesics.
Collapse
Affiliation(s)
- Fan Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Shu-Zong Du
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Kun Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York NY 10027, USA
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China.
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China.
| |
Collapse
|
9
|
Solans MM, Basistyi VS, Law JA, Bartfield NM, Frederich JH. Programmed Polyene Cyclization Enabled by Chromophore Disruption. J Am Chem Soc 2022; 144:6193-6199. [PMID: 35377634 PMCID: PMC10559755 DOI: 10.1021/jacs.2c02144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new polyene cyclization strategy exploiting β-ionyl derivatives was developed. Photoinduced deconjugation of the extended π-system within these chromophores unveils a contrathermodynamic polyene that engages in a Heck bicyclization to afford [4.4.1]-propellanes. This cascade improves upon the limited regioselectivity achieved using existing biomimetic tactics and tolerates both electron-rich and electron-deficient (hetero)aryl groups. The utility of this approach was demonstrated with the diverted total synthesis of taxodione and salviasperanol, two isomeric abietane diterpenes that were previously inaccessible along the same synthetic pathway.
Collapse
Affiliation(s)
- Megan M Solans
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Vitalii S Basistyi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James A Law
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Noah M Bartfield
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James H Frederich
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
10
|
|
11
|
Cao W, Liu T, Yang S, Liu M, Pan Z, Zhou Y, Deng X. Efficient Synthesis of Icetexane Diterpenes and Apoptosis Inducing Effect by Upregulating BiP-ATF4-CHOP Axis in Colorectal Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:2012-2019. [PMID: 34170142 DOI: 10.1021/acs.jnatprod.1c00310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We herein present an efficient and robust synthetic strategy toward 12 icetexane diterpenes and their derivatives, which features a PPh3/DIAD-mediated rearrangement of the reduced carnosic acid derivative (2) to give (-)-barbatusol (3) in a regioselective and scalable way. MTT assay led to the identification of (+)-grandione (11) and (-)-demethylsalvicanol o-quinone derivative (9) as highly cytotoxic agents against HCT-116, COLO-205, and Caco-2 cells. Interestingly, (+)-grandione (11) induced the HCT-116 cell apoptosis in a dose-dependent manner, which might be attributed to the upregulation of the BiP-ATF4-CHOP axis and promotion of the BiP-ATF4 interactions, thereby leading to endoplasmic reticulum (ER) stress. This work not only paves an efficient and scalable pathway to access icetexane diterpenes but also provides new leads for the development of anticolorectal agents with a unique mode of action.
Collapse
Affiliation(s)
- Wei Cao
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
| | - Tingting Liu
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
| | - Shuting Yang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
| | - Moude Liu
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
| | - Zhenghong Pan
- Guangxi Key laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013 Hunan, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410013 Hunan, China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013 Hunan, China
| |
Collapse
|
12
|
Fan JH, Hu YJ, Li LX, Wang JJ, Li SP, Zhao J, Li CC. Recent advances in total syntheses of natural products containing the benzocycloheptane motif. Nat Prod Rep 2021; 38:1821-1851. [PMID: 33650613 DOI: 10.1039/d1np00003a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: 2010 to 2020Benzocycloheptane is a fundamental and unique structural motif found in pharmaceuticals and natural products. The total syntheses of natural products bearing the benzocycloheptane subunit are challenging and there are only a few efficient approaches to access benzocycloheptane. Thus, new methods and innovative strategies for preparing such natural products need to be developed. In this review, recent progress in the total syntheses of natural products bearing the benzocycloheptane motif is presented, and key transformations for the construction of benzocycloheptane are highlighted. This review provides a useful guide for those engaged in the syntheses of natural products containing the benzocycloheptane motif.
Collapse
Affiliation(s)
- Jian-Hong Fan
- Institute of Chinese Medical Sciences, University of Macau, Macau, China. and Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ya-Jian Hu
- Institute of Chinese Medical Sciences, University of Macau, Macau, China. and Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Li-Xuan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jing-Jing Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shao-Ping Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Jing Zhao
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Ando Y, Matsumoto T, Suzuki K. Photoredox Reaction of Naphthoquinone
C
‐Glycoside Revisited: Insight into Stereochemical Aspect. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoshio Ando
- Department of Chemistry Tokyo Institute of Technology 2-12-1 O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Takashi Matsumoto
- Department of Chemistry Tokyo Institute of Technology 2-12-1 O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Keisuke Suzuki
- Department of Chemistry Tokyo Institute of Technology 2-12-1 O-Okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
14
|
Wang Y, Chen B, He X, Gui J. Development of Biomimetic Synthesis of Propindilactone G
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Bo Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Xubiao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
15
|
Zhang J, Jin Y, Qiu FG. Tandem [5 + 2]/[4 + 2] Cycloadditions To Construct the [6–7–6] Tricyclic Skeleton of Icetexane Diterpenes: Total Synthesis of Euolutchuol E, Przewalskine E and Brussonol. Org Lett 2020; 22:7415-7418. [DOI: 10.1021/acs.orglett.0c02309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yehua Jin
- Launch Pharma Technologies, 190 Kaiyuan Avenue, The Science Park of Guangzhou, Guangzhou 510530, P. R. China
| | - Fayang G. Qiu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R. China
- Launch Pharma Technologies, 190 Kaiyuan Avenue, The Science Park of Guangzhou, Guangzhou 510530, P. R. China
| |
Collapse
|
16
|
Wang Y, Chen B, He X, Gui J. Bioinspired Synthesis of Nortriterpenoid Propindilactone G. J Am Chem Soc 2020; 142:5007-5012. [DOI: 10.1021/jacs.0c00363] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xubiao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
17
|
Zheng G, Kadir A, Zheng X, Jin P, Liu J, Maiwulanjiang M, Yao G, Aisa HA. Spirodesertols A and B, two highly modified spirocyclic diterpenoids with an unprecedented 6-isopropyl-3H-spiro[benzofuran-2,1′-cyclohexane] motif from Salvia deserta. Org Chem Front 2020. [DOI: 10.1039/d0qo00735h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two highly modified spirocyclic diterpenoids with an unprecedented 6-isopropyl-3H-spiro[benzofuran-2,1′-cyclohexane] motif and four new icetexane diterpenoids were isolated from Salvia deserta. 1 showed more potent cytotoxicity than cis-platin.
Collapse
Affiliation(s)
- Guijuan Zheng
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| | - Abdukriem Kadir
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| | - Xiaofeng Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan, Hubei 430030
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan, Hubei 430030
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan, Hubei 430030
| | - Maitinuer Maiwulanjiang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| | - Guangmin Yao
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| |
Collapse
|
18
|
Liu B, Fu S, Zhou C. Naturally occurring [4 + 2] type terpenoid dimers: sources, bioactivities and total syntheses. Nat Prod Rep 2020; 37:1627-1660. [DOI: 10.1039/c9np00037b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article highlights recent progress on their sources, bioactivities, biosynthetic hypotheses and total chemical syntheses of naturally occurring [4 + 2] type terpenoid dimers.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Chengying Zhou
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- China
| |
Collapse
|
19
|
Mohammadhosseini M, Venditti A, Akbarzadeh A. The genusPerovskiaKar.: ethnobotany, chemotaxonomy and phytochemistry: a review. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1691013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Majid Mohammadhosseini
- Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Le TQ, Karmakar S, Lee S, Chai U, Le MH, Oh CH. Generation of the Icetexane Core by Use of a Heck Strategy: Total Synthesis of Taxamairin B. ChemistrySelect 2019. [DOI: 10.1002/slct.201903404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Thuy Quynh Le
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Swastik Karmakar
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
- Department of ChemistryBasirhat College Basirhat 743412, West Bengal India
| | - Seonmi Lee
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Uiseong Chai
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Minh Hoang Le
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Chang Ho Oh
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| |
Collapse
|
21
|
Ahmad A, Burtoloso ACB. Total Synthesis of (±)-Brussonol and (±)-Komaroviquinone via a Regioselective Cross-Electrophile Coupling of Aryl Bromides and Epoxides. Org Lett 2019; 21:6079-6083. [DOI: 10.1021/acs.orglett.9b02221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anees Ahmad
- Instituto de Química de Sao Carlos, Universidade de Sao Paulo, CEP 13560-970, Sao Carlos, SP, Brazil
| | - Antonio C. B. Burtoloso
- Instituto de Química de Sao Carlos, Universidade de Sao Paulo, CEP 13560-970, Sao Carlos, SP, Brazil
| |
Collapse
|
22
|
He W, Zhang Z, Ma D. A Scalable Total Synthesis of the Antitumor Agents Et‐743 and Lurbinectedin. Angew Chem Int Ed Engl 2019; 58:3972-3975. [DOI: 10.1002/anie.201900035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/21/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Weiming He
- Interdisciplinary Center on Biology and Chemistry & State Key Laboratory of Bioorganic & Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Zhigao Zhang
- Interdisciplinary Center on Biology and Chemistry & State Key Laboratory of Bioorganic & Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- Interdisciplinary Center on Biology and Chemistry & State Key Laboratory of Bioorganic & Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
23
|
He W, Zhang Z, Ma D. A Scalable Total Synthesis of the Antitumor Agents Et‐743 and Lurbinectedin. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weiming He
- Interdisciplinary Center on Biology and Chemistry & State Key Laboratory of Bioorganic & Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Zhigao Zhang
- Interdisciplinary Center on Biology and Chemistry & State Key Laboratory of Bioorganic & Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- Interdisciplinary Center on Biology and Chemistry & State Key Laboratory of Bioorganic & Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
24
|
Saito N, Yokoya M, Takahashi S. Preparation of Tricyclic Analog as CDE Ring Model of Renieramycin Marine Natural Product by Novel Photo-Induced Transformation of 6-Methoxy-1,2,3,4-Tetrahydroisoquinoline-5,8-dione. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Moon DJ, Al-Amin M, Lewis RS, Arnold KM, Yap GPA, Sims-Mourtada J, Chain WJ. A Strategy toward Icetexane Natural Products. European J Org Chem 2018; 2018:3348-3351. [PMID: 30923458 PMCID: PMC6433415 DOI: 10.1002/ejoc.201800707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 11/05/2022]
Abstract
Icetexane diterpenoids are richly complex polycyclic natural products that have been described with a variety of biological activities. We report here a general synthetic approach toward the 6-7-6 tricyclic core structure of these interesting synthetic targets based on a two-step enolate alkylation and ring-closing metathesis reaction sequence.
Collapse
Affiliation(s)
- Daniel J Moon
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19176, United States
| | - Mohammad Al-Amin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19176, United States
| | - Robert S Lewis
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19176, United States
| | - Kimberly M Arnold
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Christiana Care Health Service, Newark, DE 19713, United States
- Department of Medical Laboratory Sciences, University of Delaware, Newark, DE 19176, United States
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19176, United States
| | - Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Christiana Care Health Service, Newark, DE 19713, United States
- Department of Medical Laboratory Sciences, University of Delaware, Newark, DE 19176, United States
- Department of Biological Sciences, University of Delaware, Newark, DE 19176, United States
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19176, United States
| |
Collapse
|
26
|
Bisai V, Bisai A. Diels-Alder Reactions in Creating Complexity in Higher Order Isoprenoids: Proposed Biosynthesis and Biomimetic Total Syntheses. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vishnumaya Bisai
- Department of Chemistry; Indian Institute of Science Education and Research Tirupati , Transit Campus :; Karkambadi Road, Rami Reddy Nagar, Mangalam (P.O.) Tirupati- 517 507 Andhra Pradesh India
| | - Alakesh Bisai
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhauri, Bhopal- 462 066 MP India
| |
Collapse
|
27
|
Affiliation(s)
- Lei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhuang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiwu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
28
|
Li Z, Zhang X, Yang Z, Zhang Y, Xie Z. Biomimetic Synthesis of Isorosmanol and Przewalskin A. J Org Chem 2017; 83:437-442. [DOI: 10.1021/acs.joc.7b02369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongle Li
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xun Zhang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhenjie Yang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuhan Zhang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhixiang Xie
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
29
|
Liffert R, Linden A, Gademann K. Total Synthesis of the Sesquiterpenoid Periconianone A Based on a Postulated Biogenesis. J Am Chem Soc 2017; 139:16096-16099. [PMID: 29076340 DOI: 10.1021/jacs.7b10053] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first enantioselective total synthesis of the complex tricarbocyclic sesquiterpenoid periconianone A based on a postulated biogenesis is reported. Key elements of the synthetic route include the use of an isopropenyl group as a removable directing group for stereoselective synthesis, a sequence featuring a Rh-mediated O-H insertion/[3,3]-sigmatropic rearrangement and subsequent α-ketol rearrangement, and a late stage aldol reaction to furnish the complex cage-like framework.
Collapse
Affiliation(s)
- Raphael Liffert
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, Zurich CH 8057, Switzerland
| |
Collapse
|
30
|
Esquivel B, Bustos-Brito C, Sánchez-Castellanos M, Nieto-Camacho A, Ramírez-Apan T, Joseph-Nathan P, Quijano L. Structure, Absolute Configuration, and Antiproliferative Activity of Abietane and Icetexane Diterpenoids from Salvia ballotiflora. Molecules 2017; 22:E1690. [PMID: 29057832 PMCID: PMC6151488 DOI: 10.3390/molecules22101690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/29/2017] [Indexed: 01/22/2023] Open
Abstract
From the aerial parts of Salvia ballotiflora, eleven diterpenoids were isolated; among them, four icetexanes and one abietane (1-5) are reported for the first time. Their structures were established by spectroscopic means, mainly ¹H- and 13C-NMR, including 1D and 2D homo- and hetero-nuclear experiments. Most of the isolated diterpenoids were tested for their antiproliferative, anti-inflammatory, and radical scavenging activities using the sulforhodamine B assay on six cancer cell lines, the TPA-induced ear edema test in mice, and the reduction of the DPPH assay, respectively. Some diterpenoids showed anti-proliferative activity, these being icetexanes 6 and 3, which were the most active with IC50 (μM) = 0.27 ± 0.08 and 1.40 ± 0.03, respectively, for U251 (human glioblastoma) and IC50 (μM) = 0.0.46 ± 0.05 and 0.82 ± 0.06 for SKLU-1 (human lung adenocarcinoma), when compared with adriamycin (IC50 (μM) = 0.08 ± 0.003 and 0.05 ± 0.003, as the positive control), respectively. Compounds 3 and 10 showed significant reduction of the induced ear edema of 37.4 ± 2.8 and 25.4 ± 3.0% (at 1.0 μmol/ear), respectively. Compound 4 was the sole active diterpenoid in the antioxidant assay (IC50 = 98. 4 ± 3.3), using α-tocopherol as the positive control (IC50 (μM) = 31.7 ± 1.04). The diterpenoid profile found is of chemotaxonomic relevance and reinforces the evolutionary link of S. ballotiflora with other members of the section Tomentellae.
Collapse
Affiliation(s)
- Baldomero Esquivel
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico.
| | - Celia Bustos-Brito
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico.
| | - Mariano Sánchez-Castellanos
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico.
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico.
| | - Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico.
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, Mexico City 07000, Mexico.
| | - Leovigildo Quijano
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico.
| |
Collapse
|