1
|
Li B, Peng JH, Liu BX, Rao W, Shen SS, Sheng D, Wang SY. Manganese-Promoted Cyclization Reaction of Enynones with Tetrasulfides: Synthesis of Multisubstituted Furanmethyl Disulfides. J Org Chem 2024; 89:13386-13400. [PMID: 39258469 DOI: 10.1021/acs.joc.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A tandem cyclization reaction of enynones with tetrasulfides has been developed under manganese-promoted conditions, leading to the high-yield formation of various furanmethyl disulfides. This reaction is characterized by readily available starting materials, mild reaction conditions, and a broad substrate scope, making it attractive and practical. It provides a new strategy for the synthesis of disulfide-containing functionalized furans.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Jing-Han Peng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu road, Huqiu district, Suzhou 215009, PR China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
2
|
Jayarani A, Deepa M, Khan HA, Koothradan FF, Yoganandhini S, Sreelakshmi V, Sivasankar C. Ruthenium-Catalyzed Chemo-Selective Carbene Insertion into C-H Bond of Styrene over Cyclopropanation: C-C Bond Formation. J Org Chem 2023; 88:15817-15831. [PMID: 37934176 DOI: 10.1021/acs.joc.3c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The C-C bond formation reactions are important in organic synthesis. Heck reaction is known to arylate the terminal carbon of olefins; however, direct alkylation of the terminal carbon of olefin is limited. Herein, we report a novel ruthenium-catalyzed selective cross-coupling reaction of styrene and α-diazoesters to form a new C-C bond over cyclopropanation via the C-H insertion process for the first time. Using this novel methodology, a wide variety of substrates have been utilized and a variety of α-vinylated benzylic esters and densely functionalized olefins have been synthesized with good stereoselectivity under mild reaction conditions. The overall reaction process proceeds through the carbene insertion into styrene to form the desired products in good to excellent yields with proper stereoselectivity. The selective C-H inserted product, wide substrate scope, and excellent functional group tolerance are the best features of this work.
Collapse
Affiliation(s)
- Arumugam Jayarani
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| | - Masilamani Deepa
- Postgraduate and Research Department of Chemistry, Muthurangam Government Arts College, Vellore, Tamil Nadu 632002, India
| | - Hilal Ahmad Khan
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| | - Fathima Febin Koothradan
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| | - Sekar Yoganandhini
- Postgraduate and Research Department of Chemistry, Muthurangam Government Arts College, Vellore, Tamil Nadu 632002, India
| | - Vinod Sreelakshmi
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University (A Central University), Puducherry, Puducherry 605014, India
| |
Collapse
|
3
|
Zhang M, Yu S, Hua R, Zhang D, Qiu H, Hu W. Copper-catalyzed multicomponent assembly of γ-butenolides via the interception of carbonyl ylides with iminium ions. Org Biomol Chem 2023; 21:783-788. [PMID: 36594521 DOI: 10.1039/d2ob02075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A Cu(I)-catalyzed three-component reaction of cyclopropenes, enamines and aldehydes has been realized. This reaction proceeds via the interception of carbonyl oxonium ylide intermediates with α, β-unsaturated iminium ions that are in situ generated from enamines and aldehydes under the catalysis of Cu(MeCN)4PF6, leading to the desired γ-butenolide derivatives in good yields and with moderate diastereoselectivities. Access to these derivatives with tethered ketone and alkynal groups will expand the structural diversity of multi-substituted butenolides.
Collapse
Affiliation(s)
- Mengchu Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Sifan Yu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Ruyu Hua
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Dan Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen, University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Afsina CMA, Aneeja T, Anilkumar G. Zinc-Catalyzed C-C Coupling Reactions. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Davas DS, Bhardwaj S, Sen R, Gopalakrishnan DK, Vaitla J. Synthesis of Olefins by Formal Carbene Coupling. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Estrada AL, Wititsuwannakul T, Kromm K, Hampel F, Hall MB, Gladysz J. Syntheses, Rearrangements, and Structural Analyses of Unsaturated Nitrogen Donor Ligands Derived from Diphenyldiazomethane and the Chiral Rhenium Lewis Acid [(η5-C5H5)Re(NO)(PPh3)]+. Dalton Trans 2022; 51:7305-7320. [DOI: 10.1039/d2dt00890d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diphenyldiazomethane and a labile chlorobenzene complex of [(η5-C5H5)Re(NO)(PPh3)]+ BF4– react to give the η1 adduct [(η5-C5H5)Re(NO)(PPh3)(NNCPh2)]+ BF4– (73%). When this is con-ducted in the presence of copper powder, a 3-phenyl-1H-indazole...
Collapse
|
7
|
Lv K, Bao X. Mechanistic differences between aryl iodide electrophiles and pronucleophiles in Pd-catalyzed coupling with cyclopropenes: a DFT study. Org Chem Front 2022. [DOI: 10.1039/d2qo00966h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational studies were carried out to investigate the mechanisms of Pd-catalyzed ring-opening reactions of cyclopropenes with pronucleophiles (H-Nu) and aryl iodide electrophiles, respectively.
Collapse
Affiliation(s)
- Kang Lv
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Ma R, Chen Y, Fang S, Jiang H, Yang S, Wu W. Palladium-catalyzed acetalization/cyclization of enynones with alcohols: rapid access to functionalized dihaloalkenyl dihydrofurans. Chem Commun (Camb) 2022; 58:13907-13910. [DOI: 10.1039/d2cc03949d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel Pd-catalyzed acetalization/cyclization of enynones and alcohols for the construction of dihaloalkenyl dihydrofuran derivatives is described.
Collapse
Affiliation(s)
- Ruize Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Songjia Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shaorong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Masal DP, Choudhury R, Singh A, Reddy DS. Ready Access to Densely Substituted Furans Using Tsuji-Wacker-Type Cyclization. J Org Chem 2021; 87:556-568. [PMID: 34962781 DOI: 10.1021/acs.joc.1c02567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A competent method for the construction of highly substituted furans catalyzed by Pd(II) and Cu(II) chloride has been developed. The method provides easy access to di-, tri-, and tetrasubstituted furans from corresponding diols with relatively mild conditions in a unified strategy. The developed method has been successfully tested with more than 25 substrates, which resulted in furans of multiple substitution patterns with up to 84% isolated yields.
Collapse
Affiliation(s)
- Dattatraya P Masal
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Choudhury
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aman Singh
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
10
|
Sadaphal VA, Liu RS. Gold-Catalyzed Synthesis of Diaza-hexatrienes Via Diazo Attack at Vinylgold Carbenes: An Easy Access to 1 H-Pyrazolo[4,3- b]pyridine-5-ones. Org Lett 2021; 23:5496-5500. [PMID: 34232046 DOI: 10.1021/acs.orglett.1c01835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work reports a gold-catalyzed stereoselective synthesis of highly substituted E-configured 2,3-diaza-1,3,5-hexatrienes using α-diazo nitriles and cyclopropene derivatives; such products arise from an atypical diazo attack of α-aryldiazo nitriles at vinylgold carbenes. For these 2,3-diaza-1,3,5-hexatrienes, we develop a novel anionic cyclization of derivatives of one family to form 1H-pyrazolo[4,3-b]pyridine-5-ones.
Collapse
Affiliation(s)
- Vikas Ashokrao Sadaphal
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Rai-Shung Liu
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
11
|
Budeev A, Kantin G, Dar’in D, Krasavin M. Diazocarbonyl and Related Compounds in the Synthesis of Azoles. Molecules 2021; 26:2530. [PMID: 33926128 PMCID: PMC8123665 DOI: 10.3390/molecules26092530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Diazocarbonyl compounds have found numerous applications in many areas of chemistry. Among the most developed fields of diazo chemistry is the preparation of azoles from diazo compounds. This approach represents a useful alternative to more conventional methods of the synthesis of azoles. A comprehensive review on the preparation of various azoles (oxazoles, thiazoles, imidazoles, pyrazoles, triazoles, and tetrazoles) from diazocarbonyl and related compounds is presented for the first time along with discussion of advantages and disadvantages of «diazo» approaches to azoles.
Collapse
Affiliation(s)
| | | | - Dmitry Dar’in
- Institute of Chemistry, St. Petersburg State University, 198504 Peterhof, Russia; (A.B.); (G.K.)
| | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, 198504 Peterhof, Russia; (A.B.); (G.K.)
| |
Collapse
|
12
|
Kardile RD, Liu RS. Gold(I)-Catalyzed Reactions between 2-(1-Alkynyl)-2-alken-1-ones and Vinyldiazo Ketones for Divergent Synthesis of Nonsymmetric Heteroaryl-Substituted Triarylmethanes: N- versus C-Attack Paths. Org Lett 2020; 22:8229-8233. [DOI: 10.1021/acs.orglett.0c02765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Dadabhau Kardile
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Rai-Shung Liu
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
13
|
Ding H, Lv G, Chen Y, Luo Y, Li J, Guo L, Wu Y. Synthesis of 2,3‐dihydrofurans
via
Lewis acid‐Catalyzed [4+1] Cycloaddition of Enynones with Sulfoxonium Ylides in Ionic Liquids: A Mild and Green Platform. ChemistrySelect 2020. [DOI: 10.1002/slct.202002188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haosheng Ding
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Guanghui Lv
- Department of Pharmacy, Taihe HospitalHubei University of Medicine No. 32 South Renmin Road Huibei, Shiyan 442000 P. R. China
| | - Yuncan Chen
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yi Luo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Li Guo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| |
Collapse
|
14
|
Vicente R. C–C Bond Cleavages of Cyclopropenes: Operating for Selective Ring-Opening Reactions. Chem Rev 2020; 121:162-226. [DOI: 10.1021/acs.chemrev.0c00151] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rubén Vicente
- Facultad de Quı́mica, Departamento de Quı́mica Orgánica e Inorgánica, Instituto de Quı́mica Organometálica Enrique Moles, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
15
|
Zhu D, Chen L, Fan H, Yao Q, Zhu S. Recent progress on donor and donor-donor carbenes. Chem Soc Rev 2020; 49:908-950. [PMID: 31958107 DOI: 10.1039/c9cs00542k] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Donor and donor-donor carbenes are two important kinds of carbenes, which have experienced tremendous growth in the past two decades. This review provides a comprehensive overview of the recent development of donor and donor-donor carbene chemistry. The development of this chemistry offers efficient protocols to construct a wide variety of C-C and C-X bonds in organic synthesis. This review is organized based on the different types of carbene precursors, including diazo compounds, hydrazones, enynones, cycloheptatrienes and cyclopropenes. The typical transformations, the reaction mechanisms, as well as their subsequent applications in the synthesis of complex natural products and bioactive molecules are discussed. Due to the rapidly increasing interest in this area, we believe that this review will provide a timely and comprehensive discussion of recent progress in donor and donor-donor carbene chemistry.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | | | |
Collapse
|
16
|
Ruan W, Yang T, Shi C, Bai W, Sung HHY, Williams ID, Lin Z, Jia G. Substituent Effect on the Reactions of OsCl2(PPh3)3 with o-Ethynylphenyl Carbonyl Compounds. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenqing Ruan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chuan Shi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Bai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
17
|
Peng H, Wan Y, Zhang Y, Deng G. Synthesis of 2-alkenylfurans via a Ag(i)-catalyzed tandem cyclization/cross-coupling reaction of enynones with iodonium ylides. Chem Commun (Camb) 2020; 56:1417-1420. [PMID: 31912806 DOI: 10.1039/c9cc08561k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A silver(i)-catalyzed tandem cyclization/cross-coupling reaction of enynones with iodonium ylides to construct carbon-carbon double bonds has been developed. The strategy provides a novel method for the synthesis of 2-alkenylfurans. This is the first cross-coupling reaction between metal-carbene complexes and iodonium ylides.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China.
| | | | | | | |
Collapse
|
18
|
Chen L, Wang K, Shao Y, Sun J. Stereoselective Synthesis of Fully Substituted β-Lactams via Metal–Organo Relay Catalysis. Org Lett 2019; 21:3804-3807. [DOI: 10.1021/acs.orglett.9b01255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Long Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Kai Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
19
|
Mao S, Tang L, Wu C, Tu X, Gao Q, Deng G. Ag(I)-Catalyzed Tandem Reaction of Conjugated Ene-yne-ketones in the Presence of PhI(OAc) 2 and Triethylamine: Synthesis of 2-Alkenylfurans. Org Lett 2019; 21:2416-2420. [PMID: 30912661 DOI: 10.1021/acs.orglett.9b00712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Silver-catalyzed tandem cyclization-elimination reactions of conjugated ene-yne-ketones in PhI(OAc)2/triethylamine system lead to the formation of 2-alkenylfurans. 2-Furylsilver carbene and phenyliodonium ylide are proposed as the key intermediates in these transformations.
Collapse
Affiliation(s)
- Shanjian Mao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Chenggui Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Xianxia Tu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Qianwen Gao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| |
Collapse
|
20
|
Lad BS, Katukojvala S. Piano-Stool Rhodium Enalcarbenoids: Application to Catalyst-Controlled Metal-Templated Annulations of Diazoenals and 1,3-Dicarbonyls. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bapurao Sudam Lad
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sreenivas Katukojvala
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
21
|
Pei C, Rong GW, Yu ZX, Xu XF. Copper-Catalyzed Intramolecular Annulation of Conjugated Enynones to Substituted 1 H-Indenes and Mechanistic Studies. J Org Chem 2018; 83:13243-13255. [PMID: 30284824 DOI: 10.1021/acs.joc.8b02064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, a copper-catalyzed intramolecular cascade reaction of conjugated enynones to deliver substituted 1 H-indenes is reported. The inexpensive and less toxic copper salt served as the only catalyst in the transformation, affording the 3-(2-furyl)-substituted 1 H-indenes in good to excellent yields under mild reaction conditions with broad functional group tolerance and making it highly appealing for synthetic organic chemistry. Notably, detailed DFT calculations have been carried out to elucidate that the reaction undergoes a copper-mediated 5- exo-dig cyclization of enynones to afford copper-(2-furyl)-carbene intermediate, followed by diene-carbene cyclization (one step but involving 6π cyclization of Cu-carbene and reductive elimination) and 1,5-hydrogen shift to provide the 1 H-indenes.
Collapse
Affiliation(s)
- Chao Pei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Guang-Wei Rong
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry , Peking University , Beijing 100871 , China
| | - Xin-Fang Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China.,School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| |
Collapse
|
22
|
Synthesis of 3H-naphtho[2.1-b]pyran-2-carboxamides from cyclocoupling of β-naphthol, propargyl alcohols and isocyanide in the presence of Lewis acids. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
|
24
|
Hossain ML, Wang J. Cu(I)‐Catalyzed Cross‐Coupling of Diazo Compounds with Terminal Alkynes: An Efficient Access to Allenes. CHEM REC 2018; 18:1548-1559. [DOI: 10.1002/tcr.201800023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/09/2018] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of ChemistryPeking University Beijing 100871 China
| |
Collapse
|
25
|
Wang B, Yi H, Zhang H, Sun T, Zhang Y, Wang J. Ru(II)-Catalyzed Cross-Coupling of Cyclopropenes with Diazo Compounds: Formation of Olefins from Two Different Carbene Precursors. J Org Chem 2018; 83:1026-1032. [DOI: 10.1021/acs.joc.7b02634] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bo Wang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Heng Yi
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Hang Zhang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Tong Sun
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Yan Zhang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing
National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
- The
State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
26
|
Liu P, Sun J. Stereoselective Synthesis of Tetrasubstituted Furylalkenes via Gold-Catalyzed Cross-Coupling of Enynones with Diazo Compounds. Org Lett 2017; 19:3482-3485. [DOI: 10.1021/acs.orglett.7b01467] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pei Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
27
|
Mata S, López LA, Vicente R. Zinc-Catalyzed Synthesis of Allylsilanes by Si−H Bond Insertion of Vinyl Carbenoids Generated from Cyclopropenes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sergio Mata
- Departamento de Química Orgánica e Inorgánica e Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/Julián Clavería 8 33006 Oviedo Spain
| | - Luis A. López
- Departamento de Química Orgánica e Inorgánica e Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/Julián Clavería 8 33006 Oviedo Spain
| | - Rubén Vicente
- Departamento de Química Orgánica e Inorgánica e Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
28
|
Mata S, López LA, Vicente R. Zinc-Catalyzed Synthesis of Allylsilanes by Si−H Bond Insertion of Vinyl Carbenoids Generated from Cyclopropenes. Angew Chem Int Ed Engl 2017; 56:7930-7934. [DOI: 10.1002/anie.201703319] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/03/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Sergio Mata
- Departamento de Química Orgánica e Inorgánica e Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/Julián Clavería 8 33006 Oviedo Spain
| | - Luis A. López
- Departamento de Química Orgánica e Inorgánica e Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/Julián Clavería 8 33006 Oviedo Spain
| | - Rubén Vicente
- Departamento de Química Orgánica e Inorgánica e Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|